comparison Syncopation models/SG.py @ 20:b959c2acb927

Refactored all models except for KTH, all past testing except for SG.
author csong <csong@eecs.qmul.ac.uk>
date Tue, 07 Apr 2015 19:05:07 +0100
parents 031e2ccb1fb6
children df1e7c378ee0
comparison
equal deleted inserted replaced
19:9030967a05f8 20:b959c2acb927
2 Author: Chunyang Song 2 Author: Chunyang Song
3 Institution: Centre for Digital Music, Queen Mary University of London 3 Institution: Centre for Digital Music, Queen Mary University of London
4 4
5 ''' 5 '''
6 6
7 from BasicFuncs import get_H, get_min_timeSpan 7 from basic_functions import get_H, get_min_timeSpan, get_rhythm_category
8 from TMC import find_L
8 9
9 def get_syncopation(seq, subdivision_seq, weight_seq, L_max, rhythm_category): 10 #def get_syncopation(seq, subdivision_seq, weight_seq, L_max, rhythm_category):
11 def get_syncopation(bar, parameters = None):
10 syncopation = None 12 syncopation = None
11 if rhythm_category == 'poly': 13 velocitySequence = bar.get_velocity_sequence()
12 print 'Error: SG model cannot deal with polyrhythms.' 14 subdivisionSequence = bar.get_subdivision_sequence()
15
16 if get_rhythm_category(velocitySequence, subdivisionSequence) == 'poly':
17 print 'Warning: SG model detects polyrhythms so returning None.'
13 else: 18 else:
14 19 velocitySequence = get_min_timeSpan(velocitySequence) # converting to the minimum time-span format
15 seq = get_min_timeSpan(seq) # converting to the minimum time-span format 20
16 21 # If the parameters are not given, use the default settings
17 # checking whether the given L_max is enough to analyse the given sequence, if not, request a bigger L_max 22 if parameters == None:
18 new_L_max = True 23 Lmax = 5
19 matching_level = L_max 24 weightSequence = range(Lmax+1) # i.e. [0,1,2,3,4,5]
20 while matching_level >= 0: 25 else:
21 if len(get_H(weight_seq,subdivision_seq, matching_level)) == len(seq): 26 if are_parameters_valid(parameters):
22 new_L_max = False 27 Lmax = parameters['Lmax']
23 break 28 weightSequence = parameters['W']
24 else: 29 else:
25 matching_level = matching_level - 1 30 pass
31 #raise InvalidParameterError
26 32
27 if new_L_max == True: 33 L = find_L(velocitySequence, Lmax, weightSequence, subdivisionSequence)
28 print 'Error: needs a bigger L_max (i.e. the lowest metrical level) to match the given rhythm sequence.' 34 print 'L', L
29 35 if L != None:
30 else:
31 syncopation = 0 36 syncopation = 0
32 # generate the metrical weights of the lowest level 37 # generate the metrical weights of the lowest level
33 H = get_H(weight_seq,subdivision_seq, matching_level) 38 H = get_H(weightSequence,subdivisionSequence, L)
39 print 'H', H
34 40
35 # The aveDif_neighbours function calculates the (weighted) average of the difference between the note at a certain index and its neighbours in a certain metrical level 41 # The ave_dif_neighbours function calculates the (weighted) average of the difference between the note at a certain index and its neighbours in a certain metrical level
36 def aveDif_neighbours(index, level): 42 def ave_dif_neighbours(index, level):
43
37 averages = [] 44 averages = []
38 parameter_garma = 0.8 45 parameterGarma = 0.8
39 46
40 # The findPre function is to calculate the index of the previous neighbour at a certain metrical level. 47 # The findPre function is to calculate the index of the previous neighbour at a certain metrical level.
41 def findPre(index, level): 48 def find_pre(index, level):
42 pre_index = (index - 1)%len(H) 49 preIndex = (index - 1)%len(H) # using % is to restrict the index varies within range(0, len(H))
43 while(H[pre_index] > level): 50 while(H[preIndex] > level):
44 pre_index = (pre_index - 1)%len(H) 51 preIndex = (preIndex - 1)%len(H)
45 return pre_index 52 print 'preIndex', preIndex
53 return preIndex
46 54
47 # The findPost function is to calculate the index of the next neighbour at a certain metrical level. 55 # The findPost function is to calculate the index of the next neighbour at a certain metrical level.
48 def findPost(index, level): 56 def find_post(index, level):
49 post_index = (index + 1)%len(H) 57 postIndex = (index + 1)%len(H)
50 while(H[post_index] > level): 58 while(H[postIndex] > level):
51 post_index = (post_index + 1)%len(H) 59 postIndex = (postIndex + 1)%len(H)
52 return post_index 60 print 'postIndex', postIndex
61 return postIndex
53 62
54 # The dif function is to calculate a difference level factor between two notes (at note position index1 and index 2) in velocity sequence 63 # The dif function is to calculate a difference level factor between two notes (at note position index1 and index 2) in velocity sequence
55 def dif(index1,index2): 64 def dif(index1,index2):
56 parameter_beta = 0.5 65 parameterBeta = 0.5
57 dif_v = seq[index1]-seq[index2] 66 dif_v = velocitySequence[index1]-velocitySequence[index2]
58 dif_h = abs(H[index1]-H[index2]) 67 dif_h = abs(H[index1]-H[index2])
59 dif = dif_v*(parameter_beta*dif_h/4+1-parameter_beta) 68 dif = dif_v*(parameterBeta*dif_h/4+1-parameterBeta)
69 print 'dif', dif
60 return dif 70 return dif
61 71
62 # From the highest to the lowest metrical levels where the current note resides, calculate the difference between the note and its neighbours at that level 72 # From the highest to the lowest metrical levels where the current note resides, calculate the difference between the note and its neighbours at that level
63 for l in range(level, max(H)+1): 73 for l in range(level, max(H)+1):
64 ave = ( parameter_garma*dif(index,findPre(index,l))+dif(index,findPost(index,l)) )/(1+parameter_garma) 74 ave = (parameterGarma*dif(index,find_pre(index,l))+dif(index,find_post(index,l)) )/(1+parameterGarma)
65 averages.append(ave) 75 averages.append(ave)
76 print 'averages', averages
66 return averages 77 return averages
67 78
68 # Calculate the syncopation value for each note 79 # Calculate the syncopation value for each note
69 for index in range(len(seq)): 80 for index in range(len(velocitySequence)):
70 if seq[index] != 0: # Onset detected 81 if velocitySequence[index] != 0: # Onset detected
71 h = H[index] 82 h = H[index]
72 potential = 1 - pow(0.5,h) # Syncopation potential according to its metrical level, which is equal to the metrical weight 83 # Syncopation potential according to its metrical level, which is equal to the metrical weight
73 level = h # Metrical weight happens to be equal to its metrical level 84 potential = 1 - pow(0.5,h)
74 syncopation += min(aveDif_neighbours(index, h))*potential 85 level = h # Metrical weight is equal to its metrical level
86 syncopation += min(ave_dif_neighbours(index, level))*potential
75 87
76 return syncopation 88 return syncopation