Mercurial > hg > svgui
view layer/SliceLayer.cpp @ 680:ced5f158eda7 tonioni
Merge from default branch
author | Chris Cannam |
---|---|
date | Fri, 22 Nov 2013 10:40:51 +0000 |
parents | 5b72899d692b |
children | 1a0dfcbffaf1 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2007 QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "SliceLayer.h" #include "view/View.h" #include "base/AudioLevel.h" #include "base/RangeMapper.h" #include "base/RealTime.h" #include "ColourMapper.h" #include "ColourDatabase.h" #include "PaintAssistant.h" #include <QPainter> #include <QPainterPath> #include <QTextStream> SliceLayer::SliceLayer() : m_sliceableModel(0), m_colourMap(0), m_energyScale(dBScale), m_samplingMode(SampleMean), m_plotStyle(PlotSteps), m_binScale(LinearBins), m_normalize(false), m_threshold(0.0), m_initialThreshold(0.0), m_gain(1.0), m_currentf0(0), m_currentf1(0) { } SliceLayer::~SliceLayer() { } void SliceLayer::setSliceableModel(const Model *model) { const DenseThreeDimensionalModel *sliceable = dynamic_cast<const DenseThreeDimensionalModel *>(model); if (model && !sliceable) { std::cerr << "WARNING: SliceLayer::setSliceableModel(" << model << "): model is not a DenseThreeDimensionalModel" << std::endl; } if (m_sliceableModel == sliceable) return; m_sliceableModel = sliceable; connectSignals(m_sliceableModel); emit modelReplaced(); } void SliceLayer::sliceableModelReplaced(const Model *orig, const Model *replacement) { SVDEBUG << "SliceLayer::sliceableModelReplaced(" << orig << ", " << replacement << ")" << endl; if (orig == m_sliceableModel) { setSliceableModel (dynamic_cast<const DenseThreeDimensionalModel *>(replacement)); } } void SliceLayer::modelAboutToBeDeleted(Model *m) { SVDEBUG << "SliceLayer::modelAboutToBeDeleted(" << m << ")" << endl; if (m == m_sliceableModel) { setSliceableModel(0); } } QString SliceLayer::getFeatureDescription(View *v, QPoint &p) const { int minbin, maxbin, range; return getFeatureDescription(v, p, true, minbin, maxbin, range); } QString SliceLayer::getFeatureDescription(View *v, QPoint &p, bool includeBinDescription, int &minbin, int &maxbin, int &range) const { minbin = 0; maxbin = 0; if (!m_sliceableModel) return ""; int xorigin = m_xorigins[v]; int w = v->width() - xorigin - 1; int mh = m_sliceableModel->getHeight(); minbin = getBinForX(p.x() - xorigin, mh, w); maxbin = getBinForX(p.x() - xorigin + 1, mh, w); if (minbin >= mh) minbin = mh - 1; if (maxbin >= mh) maxbin = mh - 1; if (minbin < 0) minbin = 0; if (maxbin < 0) maxbin = 0; int sampleRate = m_sliceableModel->getSampleRate(); size_t f0 = m_currentf0; size_t f1 = m_currentf1; RealTime rt0 = RealTime::frame2RealTime(f0, sampleRate); RealTime rt1 = RealTime::frame2RealTime(f1, sampleRate); range = f1 - f0 + 1; QString rtrangestr = QString("%1 s").arg((rt1 - rt0).toText().c_str()); if (includeBinDescription) { float minvalue = 0.f; if (minbin < int(m_values.size())) minvalue = m_values[minbin]; float maxvalue = minvalue; if (maxbin < int(m_values.size())) maxvalue = m_values[maxbin]; if (minvalue > maxvalue) std::swap(minvalue, maxvalue); QString binstr; if (maxbin != minbin) { binstr = tr("%1 - %2").arg(minbin+1).arg(maxbin+1); } else { binstr = QString("%1").arg(minbin+1); } QString valuestr; if (maxvalue != minvalue) { valuestr = tr("%1 - %2").arg(minvalue).arg(maxvalue); } else { valuestr = QString("%1").arg(minvalue); } QString description = tr("Time:\t%1 - %2\nRange:\t%3 samples (%4)\nBin:\t%5\n%6 value:\t%7") .arg(QString::fromStdString(rt0.toText(true))) .arg(QString::fromStdString(rt1.toText(true))) .arg(range) .arg(rtrangestr) .arg(binstr) .arg(m_samplingMode == NearestSample ? tr("First") : m_samplingMode == SampleMean ? tr("Mean") : tr("Peak")) .arg(valuestr); return description; } else { QString description = tr("Time:\t%1 - %2\nRange:\t%3 samples (%4)") .arg(QString::fromStdString(rt0.toText(true))) .arg(QString::fromStdString(rt1.toText(true))) .arg(range) .arg(rtrangestr); return description; } } float SliceLayer::getXForBin(int bin, int count, float w) const { float x = 0; switch (m_binScale) { case LinearBins: x = (float(w) * bin) / count; break; case LogBins: x = (float(w) * log10f(bin + 1)) / log10f(count + 1); break; case InvertedLogBins: x = w - (float(w) * log10f(count - bin - 1)) / log10f(count); break; } return x; } int SliceLayer::getBinForX(float x, int count, float w) const { int bin = 0; switch (m_binScale) { case LinearBins: bin = int((x * count) / w + 0.0001); break; case LogBins: bin = int(powf(10.f, (x * log10f(count + 1)) / w) - 1 + 0.0001); break; case InvertedLogBins: bin = count + 1 - int(powf(10.f, (log10f(count) * (w - x)) / float(w)) + 0.0001); break; } return bin; } float SliceLayer::getYForValue(float value, const View *v, float &norm) const { norm = 0.f; if (m_yorigins.find(v) == m_yorigins.end()) return 0; value *= m_gain; int yorigin = m_yorigins[v]; int h = m_heights[v]; float thresh = getThresholdDb(); float y = 0.f; if (h <= 0) return y; switch (m_energyScale) { case dBScale: { float db = thresh; if (value > 0.f) db = 10.f * log10f(fabsf(value)); if (db < thresh) db = thresh; norm = (db - thresh) / -thresh; y = yorigin - (float(h) * norm); break; } case MeterScale: y = AudioLevel::multiplier_to_preview(value, h); norm = float(y) / float(h); y = yorigin - y; break; case AbsoluteScale: value = fabsf(value); // and fall through default: norm = (value - m_threshold); if (norm < 0) norm = 0; y = yorigin - (float(h) * norm); break; } return y; } float SliceLayer::getValueForY(float y, const View *v) const { float value = 0.f; if (m_yorigins.find(v) == m_yorigins.end()) return value; int yorigin = m_yorigins[v]; int h = m_heights[v]; float thresh = getThresholdDb(); if (h <= 0) return value; y = yorigin - y; switch (m_energyScale) { case dBScale: { float db = ((y / h) * -thresh) + thresh; value = powf(10.f, db/10.f); break; } case MeterScale: value = AudioLevel::preview_to_multiplier(lrintf(y), h); break; default: value = y / h + m_threshold; } return value / m_gain; } void SliceLayer::paint(View *v, QPainter &paint, QRect rect) const { if (!m_sliceableModel || !m_sliceableModel->isOK() || !m_sliceableModel->isReady()) return; paint.save(); paint.setRenderHint(QPainter::Antialiasing, false); paint.setBrush(Qt::NoBrush); if (v->getViewManager() && v->getViewManager()->shouldShowScaleGuides()) { if (!m_scalePoints.empty()) { paint.setPen(QColor(240, 240, 240)); //!!! and dark background? for (size_t i = 0; i < m_scalePoints.size(); ++i) { paint.drawLine(0, m_scalePoints[i], rect.width(), m_scalePoints[i]); } } } paint.setPen(getBaseQColor()); int xorigin = getVerticalScaleWidth(v, true, paint) + 1; int w = v->width() - xorigin - 1; m_xorigins[v] = xorigin; // for use in getFeatureDescription int yorigin = v->height() - 20 - paint.fontMetrics().height() - 7; int h = yorigin - paint.fontMetrics().height() - 8; m_yorigins[v] = yorigin; // for getYForValue etc m_heights[v] = h; if (h <= 0) return; QPainterPath path; size_t mh = m_sliceableModel->getHeight(); int divisor = 0; m_values.clear(); for (size_t bin = 0; bin < mh; ++bin) { m_values.push_back(0.f); } size_t f0 = v->getCentreFrame(); int f0x = v->getXForFrame(f0); f0 = v->getFrameForX(f0x); size_t f1 = v->getFrameForX(f0x + 1); if (f1 > f0) --f1; // std::cerr << "centre frame " << v->getCentreFrame() << ", x " << f0x << ", f0 " << f0 << ", f1 " << f1 << std::endl; size_t res = m_sliceableModel->getResolution(); size_t col0 = f0 / res; size_t col1 = col0; if (m_samplingMode != NearestSample) col1 = f1 / res; f0 = col0 * res; f1 = (col1 + 1) * res - 1; // std::cerr << "resolution " << res << ", col0 " << col0 << ", col1 " << col1 << ", f0 " << f0 << ", f1 " << f1 << std::endl; m_currentf0 = f0; m_currentf1 = f1; BiasCurve curve; getBiasCurve(curve); size_t cs = curve.size(); for (size_t col = col0; col <= col1; ++col) { for (size_t bin = 0; bin < mh; ++bin) { float value = m_sliceableModel->getValueAt(col, bin); if (bin < cs) value *= curve[bin]; if (m_samplingMode == SamplePeak) { if (value > m_values[bin]) m_values[bin] = value; } else { m_values[bin] += value; } } ++divisor; } float max = 0.f; for (size_t bin = 0; bin < mh; ++bin) { if (m_samplingMode == SampleMean) m_values[bin] /= divisor; if (m_values[bin] > max) max = m_values[bin]; } if (max != 0.f && m_normalize) { for (size_t bin = 0; bin < mh; ++bin) { m_values[bin] /= max; } } float py = 0; float nx = xorigin; ColourMapper mapper(m_colourMap, 0, 1); for (size_t bin = 0; bin < mh; ++bin) { float x = nx; nx = xorigin + getXForBin(bin + 1, mh, w); float value = m_values[bin]; float norm = 0.f; float y = getYForValue(value, v, norm); if (m_plotStyle == PlotLines) { if (bin == 0) { path.moveTo(x, y); } else { path.lineTo(x, y); } } else if (m_plotStyle == PlotSteps) { if (bin == 0) { path.moveTo(x, y); } else { path.lineTo(x, y); } path.lineTo(nx, y); } else if (m_plotStyle == PlotBlocks) { path.moveTo(x, yorigin); path.lineTo(x, y); path.lineTo(nx, y); path.lineTo(nx, yorigin); path.lineTo(x, yorigin); } else if (m_plotStyle == PlotFilledBlocks) { paint.fillRect(QRectF(x, y, nx - x, yorigin - y), mapper.map(norm)); } py = y; } if (m_plotStyle != PlotFilledBlocks) { paint.drawPath(path); } paint.restore(); /* QPoint discard; if (v->getViewManager() && v->getViewManager()->shouldShowFrameCount() && v->shouldIlluminateLocalFeatures(this, discard)) { int sampleRate = m_sliceableModel->getSampleRate(); QString startText = QString("%1 / %2") .arg(QString::fromStdString (RealTime::frame2RealTime (f0, sampleRate).toText(true))) .arg(f0); QString endText = QString(" %1 / %2") .arg(QString::fromStdString (RealTime::frame2RealTime (f1, sampleRate).toText(true))) .arg(f1); QString durationText = QString("(%1 / %2) ") .arg(QString::fromStdString (RealTime::frame2RealTime (f1 - f0 + 1, sampleRate).toText(true))) .arg(f1 - f0 + 1); v->drawVisibleText (paint, xorigin + 5, paint.fontMetrics().ascent() + 5, startText, View::OutlinedText); v->drawVisibleText (paint, xorigin + 5, paint.fontMetrics().ascent() + paint.fontMetrics().height() + 10, endText, View::OutlinedText); v->drawVisibleText (paint, xorigin + 5, paint.fontMetrics().ascent() + 2*paint.fontMetrics().height() + 15, durationText, View::OutlinedText); } */ } int SliceLayer::getVerticalScaleWidth(View *, bool, QPainter &paint) const { if (m_energyScale == LinearScale || m_energyScale == AbsoluteScale) { return std::max(paint.fontMetrics().width("0.0") + 13, paint.fontMetrics().width("x10-10")); } else { return std::max(paint.fontMetrics().width(tr("0dB")), paint.fontMetrics().width(tr("-Inf"))) + 13; } } void SliceLayer::paintVerticalScale(View *v, bool, QPainter &paint, QRect rect) const { float thresh = m_threshold; if (m_energyScale != LinearScale && m_energyScale != AbsoluteScale) { thresh = AudioLevel::dB_to_multiplier(getThresholdDb()); } // int h = (rect.height() * 3) / 4; // int y = (rect.height() / 2) - (h / 2); int yorigin = v->height() - 20 - paint.fontMetrics().height() - 6; int h = yorigin - paint.fontMetrics().height() - 8; if (h < 0) return; QRect actual(rect.x(), rect.y() + yorigin - h, rect.width(), h); int mult = 1; PaintAssistant::paintVerticalLevelScale (paint, actual, thresh, 1.0 / m_gain, PaintAssistant::Scale(m_energyScale), mult, const_cast<std::vector<int> *>(&m_scalePoints)); if (mult != 1 && mult != 0) { int log = lrintf(log10f(mult)); QString a = tr("x10"); QString b = QString("%1").arg(-log); paint.drawText(3, 8 + paint.fontMetrics().ascent(), a); paint.drawText(3 + paint.fontMetrics().width(a), 3 + paint.fontMetrics().ascent(), b); } } Layer::PropertyList SliceLayer::getProperties() const { PropertyList list = SingleColourLayer::getProperties(); list.push_back("Bin Scale"); list.push_back("Plot Type"); list.push_back("Scale"); list.push_back("Normalize"); list.push_back("Threshold"); list.push_back("Gain"); return list; } QString SliceLayer::getPropertyLabel(const PropertyName &name) const { if (name == "Plot Type") return tr("Plot Type"); if (name == "Scale") return tr("Scale"); if (name == "Normalize") return tr("Normalize"); if (name == "Threshold") return tr("Threshold"); if (name == "Gain") return tr("Gain"); if (name == "Sampling Mode") return tr("Sampling Mode"); if (name == "Bin Scale") return tr("Bin Scale"); return SingleColourLayer::getPropertyLabel(name); } QString SliceLayer::getPropertyIconName(const PropertyName &name) const { if (name == "Normalize") return "normalise"; return ""; } Layer::PropertyType SliceLayer::getPropertyType(const PropertyName &name) const { if (name == "Gain") return RangeProperty; if (name == "Normalize") return ToggleProperty; if (name == "Threshold") return RangeProperty; if (name == "Plot Type") return ValueProperty; if (name == "Scale") return ValueProperty; if (name == "Sampling Mode") return ValueProperty; if (name == "Bin Scale") return ValueProperty; if (name == "Colour" && m_plotStyle == PlotFilledBlocks) return ValueProperty; return SingleColourLayer::getPropertyType(name); } QString SliceLayer::getPropertyGroupName(const PropertyName &name) const { if (name == "Scale" || name == "Normalize" || name == "Sampling Mode" || name == "Threshold" || name == "Gain") return tr("Scale"); if (name == "Plot Type" || name == "Bin Scale") return tr("Bins"); return SingleColourLayer::getPropertyGroupName(name); } int SliceLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max, int *deflt) const { int val = 0; int garbage0, garbage1, garbage2; if (!min) min = &garbage0; if (!max) max = &garbage1; if (!deflt) deflt = &garbage2; if (name == "Gain") { *min = -50; *max = 50; *deflt = 0; std::cerr << "gain is " << m_gain << ", mode is " << m_samplingMode << std::endl; val = lrint(log10(m_gain) * 20.0); if (val < *min) val = *min; if (val > *max) val = *max; } else if (name == "Threshold") { *min = -80; *max = 0; *deflt = lrintf(AudioLevel::multiplier_to_dB(m_initialThreshold)); if (*deflt < *min) *deflt = *min; if (*deflt > *max) *deflt = *max; val = lrintf(AudioLevel::multiplier_to_dB(m_threshold)); if (val < *min) val = *min; if (val > *max) val = *max; } else if (name == "Normalize") { val = (m_normalize ? 1 : 0); *deflt = 0; } else if (name == "Colour" && m_plotStyle == PlotFilledBlocks) { *min = 0; *max = ColourMapper::getColourMapCount() - 1; *deflt = 0; val = m_colourMap; } else if (name == "Scale") { *min = 0; *max = 3; *deflt = (int)dBScale; val = (int)m_energyScale; } else if (name == "Sampling Mode") { *min = 0; *max = 2; *deflt = (int)SampleMean; val = (int)m_samplingMode; } else if (name == "Plot Type") { *min = 0; *max = 3; *deflt = (int)PlotSteps; val = (int)m_plotStyle; } else if (name == "Bin Scale") { *min = 0; *max = 2; *deflt = (int)LinearBins; // *max = 1; // I don't think we really do want to offer inverted log val = (int)m_binScale; } else { val = SingleColourLayer::getPropertyRangeAndValue(name, min, max, deflt); } return val; } QString SliceLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == "Colour" && m_plotStyle == PlotFilledBlocks) { return ColourMapper::getColourMapName(value); } if (name == "Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Meter"); case 2: return tr("Log"); case 3: return tr("Absolute"); } } if (name == "Sampling Mode") { switch (value) { default: case 0: return tr("Any"); case 1: return tr("Mean"); case 2: return tr("Peak"); } } if (name == "Plot Type") { switch (value) { default: case 0: return tr("Lines"); case 1: return tr("Steps"); case 2: return tr("Blocks"); case 3: return tr("Colours"); } } if (name == "Bin Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Log"); case 2: return tr("Rev Log"); } } return SingleColourLayer::getPropertyValueLabel(name, value); } RangeMapper * SliceLayer::getNewPropertyRangeMapper(const PropertyName &name) const { if (name == "Gain") { return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); } if (name == "Threshold") { return new LinearRangeMapper(-80, 0, -80, 0, tr("dB")); } return SingleColourLayer::getNewPropertyRangeMapper(name); } void SliceLayer::setProperty(const PropertyName &name, int value) { if (name == "Gain") { setGain(pow(10, float(value)/20.0)); } else if (name == "Threshold") { if (value == -80) setThreshold(0.0); else setThreshold(AudioLevel::dB_to_multiplier(value)); } else if (name == "Colour" && m_plotStyle == PlotFilledBlocks) { setFillColourMap(value); } else if (name == "Scale") { switch (value) { default: case 0: setEnergyScale(LinearScale); break; case 1: setEnergyScale(MeterScale); break; case 2: setEnergyScale(dBScale); break; case 3: setEnergyScale(AbsoluteScale); break; } } else if (name == "Plot Type") { setPlotStyle(PlotStyle(value)); } else if (name == "Sampling Mode") { switch (value) { default: case 0: setSamplingMode(NearestSample); break; case 1: setSamplingMode(SampleMean); break; case 2: setSamplingMode(SamplePeak); break; } } else if (name == "Bin Scale") { switch (value) { default: case 0: setBinScale(LinearBins); break; case 1: setBinScale(LogBins); break; case 2: setBinScale(InvertedLogBins); break; } } else if (name == "Normalize") { setNormalize(value ? true : false); } else { SingleColourLayer::setProperty(name, value); } } void SliceLayer::setFillColourMap(int map) { if (m_colourMap == map) return; m_colourMap = map; emit layerParametersChanged(); } void SliceLayer::setEnergyScale(EnergyScale scale) { if (m_energyScale == scale) return; m_energyScale = scale; emit layerParametersChanged(); } void SliceLayer::setSamplingMode(SamplingMode mode) { if (m_samplingMode == mode) return; m_samplingMode = mode; emit layerParametersChanged(); } void SliceLayer::setPlotStyle(PlotStyle style) { if (m_plotStyle == style) return; bool colourTypeChanged = (style == PlotFilledBlocks || m_plotStyle == PlotFilledBlocks); m_plotStyle = style; if (colourTypeChanged) { emit layerParameterRangesChanged(); } emit layerParametersChanged(); } void SliceLayer::setBinScale(BinScale scale) { if (m_binScale == scale) return; m_binScale = scale; emit layerParametersChanged(); } void SliceLayer::setNormalize(bool n) { if (m_normalize == n) return; m_normalize = n; emit layerParametersChanged(); } void SliceLayer::setThreshold(float thresh) { if (m_threshold == thresh) return; m_threshold = thresh; emit layerParametersChanged(); } void SliceLayer::setGain(float gain) { if (m_gain == gain) return; m_gain = gain; emit layerParametersChanged(); } float SliceLayer::getThresholdDb() const { if (m_threshold == 0.0) return -80.f; float db = AudioLevel::multiplier_to_dB(m_threshold); return db; } int SliceLayer::getDefaultColourHint(bool darkbg, bool &impose) { impose = false; return ColourDatabase::getInstance()->getColourIndex (QString(darkbg ? "Bright Blue" : "Blue")); } void SliceLayer::toXml(QTextStream &stream, QString indent, QString extraAttributes) const { QString s; s += QString("colourScheme=\"%1\" " "energyScale=\"%2\" " "samplingMode=\"%3\" " "plotStyle=\"%4\" " "binScale=\"%5\" " "gain=\"%6\" " "threshold=\"%7\" " "normalize=\"%8\"") .arg(m_colourMap) .arg(m_energyScale) .arg(m_samplingMode) .arg(m_plotStyle) .arg(m_binScale) .arg(m_gain) .arg(m_threshold) .arg(m_normalize ? "true" : "false"); SingleColourLayer::toXml(stream, indent, extraAttributes + " " + s); } void SliceLayer::setProperties(const QXmlAttributes &attributes) { bool ok = false; SingleColourLayer::setProperties(attributes); EnergyScale scale = (EnergyScale) attributes.value("energyScale").toInt(&ok); if (ok) setEnergyScale(scale); SamplingMode mode = (SamplingMode) attributes.value("samplingMode").toInt(&ok); if (ok) setSamplingMode(mode); int colourMap = attributes.value("colourScheme").toInt(&ok); if (ok) setFillColourMap(colourMap); PlotStyle s = (PlotStyle) attributes.value("plotStyle").toInt(&ok); if (ok) setPlotStyle(s); BinScale b = (BinScale) attributes.value("binScale").toInt(&ok); if (ok) setBinScale(b); float gain = attributes.value("gain").toFloat(&ok); if (ok) setGain(gain); float threshold = attributes.value("threshold").toFloat(&ok); if (ok) setThreshold(threshold); bool normalize = (attributes.value("normalize").trimmed() == "true"); setNormalize(normalize); } bool SliceLayer::getValueExtents(float &, float &, bool &, QString &) const { return false; }