view layer/SpectrogramLayer.h @ 38:beb801473743

* Rearrange spectrogram cacheing so that gain, normalization, instantaneous frequency calculations etc can be done from the cached data (increasing the size of the cache, but also the usability).
author Chris Cannam
date Thu, 23 Feb 2006 18:01:31 +0000
parents 21d061e66177
children 5ce844ec854a
line wrap: on
line source
/* -*- c-basic-offset: 4 -*-  vi:set ts=8 sts=4 sw=4: */

/*
    A waveform viewer and audio annotation editor.
    Chris Cannam, Queen Mary University of London, 2005-2006
    
    This is experimental software.  Not for distribution.
*/

#ifndef _SPECTROGRAM_LAYER_H_
#define _SPECTROGRAM_LAYER_H_

#include "base/Layer.h"
#include "base/Window.h"
#include "model/PowerOfSqrtTwoZoomConstraint.h"
#include "model/DenseTimeValueModel.h"

#include <QThread>
#include <QMutex>
#include <QWaitCondition>

#include <fftw3.h>

#include <stdint.h>

class View;
class QPainter;
class QImage;
class QPixmap;
class QTimer;
class RealTime;

/**
 * SpectrogramLayer represents waveform data (obtained from a
 * DenseTimeValueModel) in spectrogram form.
 */

class SpectrogramLayer : public Layer,
			 public PowerOfSqrtTwoZoomConstraint
{
    Q_OBJECT

public:
    enum Configuration { FullRangeDb, MelodicRange, MelodicPeaks };
    
    SpectrogramLayer(View *w, Configuration = FullRangeDb);
    ~SpectrogramLayer();

    virtual const ZoomConstraint *getZoomConstraint() const { return this; }
    virtual const Model *getModel() const { return m_model; }
    virtual void paint(QPainter &paint, QRect rect) const;

    virtual int getVerticalScaleWidth(QPainter &) const;
    virtual void paintVerticalScale(QPainter &paint, QRect rect) const;

    virtual QString getFeatureDescription(QPoint &) const;

    virtual bool snapToFeatureFrame(int &frame,
				    size_t &resolution,
				    SnapType snap) const;

    void setModel(const DenseTimeValueModel *model);

    virtual PropertyList getProperties() const;
    virtual PropertyType getPropertyType(const PropertyName &) const;
    virtual QString getPropertyGroupName(const PropertyName &) const;
    virtual int getPropertyRangeAndValue(const PropertyName &,
					   int *min, int *max) const;
    virtual QString getPropertyValueLabel(const PropertyName &,
					  int value) const;
    virtual void setProperty(const PropertyName &, int value);

    /**
     * Specify the channel to use from the source model.
     * A value of -1 means to mix all available channels.
     * The default is channel 0.
     */
    void setChannel(int);
    int getChannel() const;

    void setWindowSize(size_t);
    size_t getWindowSize() const;
    
    void setWindowOverlap(size_t percent);
    size_t getWindowOverlap() const;

    void setWindowType(WindowType type);
    WindowType getWindowType() const;

    /**
     * Set the gain multiplier for sample values in this view prior to
     * FFT calculation.
     *
     * The default is 1.0.
     */
    void setGain(float gain);
    float getGain() const;

    /**
     * Set the threshold for sample values to be shown in the FFT,
     * in voltage units.
     *
     * The default is 0.0.
     */
    void setThreshold(float threshold);
    float getThreshold() const;

    void setMinFrequency(size_t);
    size_t getMinFrequency() const;

    void setMaxFrequency(size_t); // 0 -> no maximum
    size_t getMaxFrequency() const;

    enum ColourScale {
	LinearColourScale,
	MeterColourScale,
	dBColourScale,
	PhaseColourScale
    };

    /**
     * Specify the scale for sample levels.  See WaveformLayer for
     * details of meter and dB scaling.  The default is dBColourScale.
     */
    void setColourScale(ColourScale);
    ColourScale getColourScale() const;

    enum FrequencyScale {
	LinearFrequencyScale,
	LogFrequencyScale
    };
    
    /**
     * Specify the scale for the y axis.
     */
    void setFrequencyScale(FrequencyScale);
    FrequencyScale getFrequencyScale() const;

    enum BinDisplay {
	AllBins,
	PeakBins,
	PeakFrequencies
    };
    
    /**
     * Specify the processing of frequency bins for the y axis.
     */
    void setBinDisplay(BinDisplay);
    BinDisplay getBinDisplay() const;

    void setNormalizeColumns(bool n);
    bool getNormalizeColumns() const;

    enum ColourScheme { DefaultColours, WhiteOnBlack, BlackOnWhite,
			RedOnBlue, YellowOnBlack, RedOnBlack };

    void setColourScheme(ColourScheme scheme);
    ColourScheme getColourScheme() const;

    /**
     * Specify the colourmap rotation for the colour scale.
     */
    void setColourRotation(int);
    int getColourRotation() const;

    virtual VerticalPosition getPreferredFrameCountPosition() const {
	return PositionTop;
    }

    virtual bool isLayerOpaque() const { return true; }

    virtual int getCompletion() const;

    virtual QString toXmlString(QString indent = "",
				QString extraAttributes = "") const;

    void setProperties(const QXmlAttributes &attributes);

    virtual void setLayerDormant(bool dormant);

protected slots:
    void cacheInvalid();
    void cacheInvalid(size_t startFrame, size_t endFrame);

    void fillTimerTimedOut();

protected:
    const DenseTimeValueModel *m_model; // I do not own this
    
    int                 m_channel;
    size_t              m_windowSize;
    WindowType          m_windowType;
    size_t              m_windowOverlap;
    float               m_gain;
    float               m_threshold;
    int                 m_colourRotation;
    size_t              m_minFrequency;
    size_t              m_maxFrequency;
    ColourScale         m_colourScale;
    ColourScheme        m_colourScheme;
    FrequencyScale      m_frequencyScale;
    BinDisplay          m_binDisplay;
    bool                m_normalizeColumns;

    // At the moment we cache one unsigned char per bin for the
    // magnitude -- which is nothing like precise enough to allow us
    // to subsequently adjust gain etc without recalculating the
    // cached values -- plus optionally one unsigned char per bin for
    // phase-adjusted frequency.
    
    // To speed up redrawing after parameter changes, we would like to
    // cache magnitude in a way that can have gain applied afterwards
    // and can determine whether something is a peak or not, and also
    // cache phase rather than only phase-adjusted frequency so that
    // we don't have to recalculate if switching between phase and
    // magnitude displays.

    // This implies probably 16 bits for a normalized magnitude (in
    // dB?) and at most 16 bits for phase.  16 or 32 bits per bin
    // instead of 8 or 16.

    // Each column's magnitudes are expected to be stored normalized
    // to [0,1] with respect to the column, so the normalization
    // factor should be calculated before all values in a column, and
    // set appropriately.

    class Cache {
    public:
	Cache(); // of size zero, call resize() before using
	~Cache();

	size_t getWidth() const { return m_width; }
	size_t getHeight() const { return m_height; }
	
	void resize(size_t width, size_t height);
	void reset(); // zero-fill or 1-fill as appropriate without changing size
	
	float getMagnitudeAt(size_t x, size_t y) const {
	    return getNormalizedMagnitudeAt(x, y) * m_factor[x];
	}

	float getNormalizedMagnitudeAt(size_t x, size_t y) const {
	    return float(m_magnitude[y][x]) / 65535.0;
	}

	float getPhaseAt(size_t x, size_t y) const {
	    return (float(m_phase[y][x]) / 32767.0) * M_PI;
	}

	bool isLocalPeak(size_t x, size_t y) const {
	    if (y > 0 && m_magnitude[y][x] < m_magnitude[y-1][x]) return false;
	    if (y < m_height-1 && m_magnitude[y][x] < m_magnitude[y+1][x]) return false;
	    return true;
	}

	bool isOverThreshold(size_t x, size_t y, float threshold) const {
	    if (threshold == 0.0) return true;
	    return getMagnitudeAt(x, y) > threshold;
	}

	void setNormalizationFactor(size_t x, float factor) {
	    m_factor[x] = factor;
	}

	void setMagnitudeAt(size_t x, size_t y, float mag) {
	    // norm factor must already be set
	    setNormalizedMagnitudeAt(x, y, mag / m_factor[x]);
	}

	void setNormalizedMagnitudeAt(size_t x, size_t y, float norm) {
	    m_magnitude[y][x] = uint16_t(norm * 65535.0);
	}

	void setPhaseAt(size_t x, size_t y, float phase) {
	    // phase in range -pi -> pi
	    m_phase[y][x] = uint16_t((phase * 32767) / M_PI);
	}

	QColor getColour(unsigned char index) const {
	    return m_colours[index];
	}

	void setColour(unsigned char index, QColor colour) {
	    m_colours[index] = colour;
	}

    private:
	size_t m_width;
	size_t m_height;
	uint16_t **m_magnitude;
	uint16_t **m_phase;
	float *m_factor;
	QColor m_colours[256];

	void resize(uint16_t **&, size_t, size_t);
    };

    enum { NO_VALUE = 0 }; // colour index for unused pixels

    Cache *m_cache;
    bool m_cacheInvalid;

    class CacheFillThread : public QThread
    {
    public:
	CacheFillThread(SpectrogramLayer &layer) :
	    m_layer(layer), m_fillExtent(0) { }

	size_t getFillExtent() const { return m_fillExtent; }
	size_t getFillCompletion() const { return m_fillCompletion; }
	virtual void run();

    protected:
	SpectrogramLayer &m_layer;
	size_t m_fillExtent;
	size_t m_fillCompletion;
    };

    void fillCache();

    mutable QPixmap *m_pixmapCache;
    mutable bool m_pixmapCacheInvalid;
    mutable long m_pixmapCacheStartFrame;
    mutable size_t m_pixmapCacheZoomLevel;

    QWaitCondition m_condition;
    mutable QMutex m_mutex;

    CacheFillThread *m_fillThread;
    QTimer *m_updateTimer;
    size_t m_lastFillExtent;
    bool m_exiting;

    void setCacheColourmap();
    void rotateCacheColourmap(int distance);

    void fillCacheColumn(int column,
			 double *inputBuffer,
			 fftw_complex *outputBuffer,
			 fftw_plan plan,
			 size_t windowSize,
			 size_t windowIncrement,
			 const Window<double> &windower)
	const;

    static float calculateFrequency(size_t bin,
				    size_t windowSize,
				    size_t windowIncrement,
				    size_t sampleRate,
				    float previousPhase,
				    float currentPhase,
				    bool &steadyState);

    unsigned char getDisplayValue(float input) const;

    bool getYBinRange(int y, float &freqBinMin, float &freqBinMax) const;

    struct LayerRange {
	long   startFrame;
	int    zoomLevel;
	size_t modelStart;
	size_t modelEnd;
    };
    bool getXBinRange(int x, float &windowMin, float &windowMax) const;

    bool getYBinSourceRange(int y, float &freqMin, float &freqMax) const;
    bool getAdjustedYBinSourceRange(int x, int y,
				    float &freqMin, float &freqMax,
				    float &adjFreqMin, float &adjFreqMax) const;
    bool getXBinSourceRange(int x, RealTime &timeMin, RealTime &timeMax) const;
    bool getXYBinSourceRange(int x, int y, float &min, float &max,
			     float &phaseMin, float &phaseMax) const;

    size_t getWindowIncrement() const {
	return m_windowSize - m_windowSize * m_windowOverlap / 100;
    }
};

#endif