Mercurial > hg > svgui
view layer/SpectrogramLayer.cpp @ 170:bdba24db0446
* minor fixes to tooltip
author | Chris Cannam |
---|---|
date | Tue, 17 Oct 2006 13:50:17 +0000 |
parents | 86cee2b060c7 |
children | 96b8a790730a |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "SpectrogramLayer.h" #include "view/View.h" #include "base/Profiler.h" #include "base/AudioLevel.h" #include "base/Window.h" #include "base/Pitch.h" #include "base/Preferences.h" #include "base/RangeMapper.h" #include <QPainter> #include <QImage> #include <QPixmap> #include <QRect> #include <QTimer> #include <QApplication> #include <iostream> #include <cassert> #include <cmath> #define DEBUG_SPECTROGRAM_REPAINT 1 SpectrogramLayer::SpectrogramLayer(Configuration config) : Layer(), m_model(0), m_channel(0), m_windowSize(1024), m_windowType(HanningWindow), m_windowHopLevel(2), m_zeroPadLevel(0), m_fftSize(1024), m_gain(1.0), m_threshold(0.0), m_colourRotation(0), m_minFrequency(10), m_maxFrequency(8000), m_initialMaxFrequency(8000), m_colourScale(dBColourScale), m_colourScheme(DefaultColours), m_frequencyScale(LinearFrequencyScale), m_binDisplay(AllBins), m_normalizeColumns(false), m_normalizeVisibleArea(false), m_lastEmittedZoomStep(-1), m_updateTimer(0), m_candidateFillStartFrame(0), m_exiting(false) { if (config == MelodicRange) { setWindowSize(8192); setWindowHopLevel(4); // setWindowType(ParzenWindow); m_initialMaxFrequency = 1000; setMaxFrequency(1000); setColourScale(LinearColourScale); } else if (config == MelodicPeaks) { setWindowSize(4096); setWindowHopLevel(5); // setWindowType(BlackmanWindow); m_initialMaxFrequency = 2000; setMaxFrequency(2000); setMinFrequency(40); setFrequencyScale(LogFrequencyScale); setColourScale(MeterColourScale); setBinDisplay(PeakFrequencies); setNormalizeColumns(true); } Preferences *prefs = Preferences::getInstance(); connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); setWindowType(prefs->getWindowType()); setColourmap(); } SpectrogramLayer::~SpectrogramLayer() { delete m_updateTimer; m_updateTimer = 0; invalidateFFTModels(); } void SpectrogramLayer::setModel(const DenseTimeValueModel *model) { // std::cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << std::endl; if (model == m_model) return; m_model = model; invalidateFFTModels(); if (!m_model || !m_model->isOK()) return; connect(m_model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged())); connect(m_model, SIGNAL(modelChanged(size_t, size_t)), this, SIGNAL(modelChanged(size_t, size_t))); connect(m_model, SIGNAL(completionChanged()), this, SIGNAL(modelCompletionChanged())); connect(m_model, SIGNAL(modelChanged()), this, SLOT(cacheInvalid())); connect(m_model, SIGNAL(modelChanged(size_t, size_t)), this, SLOT(cacheInvalid(size_t, size_t))); emit modelReplaced(); } Layer::PropertyList SpectrogramLayer::getProperties() const { PropertyList list; list.push_back("Colour"); list.push_back("Colour Scale"); list.push_back("Window Size"); list.push_back("Window Increment"); list.push_back("Normalize Columns"); list.push_back("Normalize Visible Area"); list.push_back("Bin Display"); list.push_back("Threshold"); list.push_back("Gain"); list.push_back("Colour Rotation"); // list.push_back("Min Frequency"); // list.push_back("Max Frequency"); list.push_back("Frequency Scale"); //// list.push_back("Zero Padding"); return list; } QString SpectrogramLayer::getPropertyLabel(const PropertyName &name) const { if (name == "Colour") return tr("Colour"); if (name == "Colour Scale") return tr("Colour Scale"); if (name == "Window Size") return tr("Window Size"); if (name == "Window Increment") return tr("Window Overlap"); if (name == "Normalize Columns") return tr("Normalize Columns"); if (name == "Normalize Visible Area") return tr("Normalize Visible Area"); if (name == "Bin Display") return tr("Bin Display"); if (name == "Threshold") return tr("Threshold"); if (name == "Gain") return tr("Gain"); if (name == "Colour Rotation") return tr("Colour Rotation"); if (name == "Min Frequency") return tr("Min Frequency"); if (name == "Max Frequency") return tr("Max Frequency"); if (name == "Frequency Scale") return tr("Frequency Scale"); if (name == "Zero Padding") return tr("Smoothing"); return ""; } Layer::PropertyType SpectrogramLayer::getPropertyType(const PropertyName &name) const { if (name == "Gain") return RangeProperty; if (name == "Colour Rotation") return RangeProperty; if (name == "Normalize Columns") return ToggleProperty; if (name == "Normalize Visible Area") return ToggleProperty; if (name == "Threshold") return RangeProperty; if (name == "Zero Padding") return ToggleProperty; return ValueProperty; } QString SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const { if (name == "Bin Display" || name == "Frequency Scale") return tr("Bins"); if (name == "Window Size" || name == "Window Increment" || name == "Zero Padding") return tr("Window"); if (name == "Colour" || // name == "Gain" || name == "Threshold" || name == "Colour Rotation") return tr("Colour"); if (name == "Normalize Columns" || name == "Normalize Visible Area" || // name == "Bin Display" || name == "Gain" || name == "Colour Scale") return tr("Scale"); // if (name == "Max Frequency" || // name == "Min Frequency" || // name == "Frequency Scale" || // name == "Frequency Adjustment") return tr("Range"); return QString(); } int SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max) const { int deft = 0; int garbage0, garbage1; if (!min) min = &garbage0; if (!max) max = &garbage1; if (name == "Gain") { *min = -50; *max = 50; deft = lrint(log10(m_gain) * 20.0); if (deft < *min) deft = *min; if (deft > *max) deft = *max; } else if (name == "Threshold") { *min = -50; *max = 0; deft = lrintf(AudioLevel::multiplier_to_dB(m_threshold)); if (deft < *min) deft = *min; if (deft > *max) deft = *max; } else if (name == "Colour Rotation") { *min = 0; *max = 256; deft = m_colourRotation; } else if (name == "Colour Scale") { *min = 0; *max = 3; deft = (int)m_colourScale; } else if (name == "Colour") { *min = 0; *max = 6; deft = (int)m_colourScheme; } else if (name == "Window Size") { *min = 0; *max = 10; deft = 0; int ws = m_windowSize; while (ws > 32) { ws >>= 1; deft ++; } } else if (name == "Window Increment") { *min = 0; *max = 5; deft = m_windowHopLevel; } else if (name == "Zero Padding") { *min = 0; *max = 1; deft = m_zeroPadLevel > 0 ? 1 : 0; } else if (name == "Min Frequency") { *min = 0; *max = 9; switch (m_minFrequency) { case 0: default: deft = 0; break; case 10: deft = 1; break; case 20: deft = 2; break; case 40: deft = 3; break; case 100: deft = 4; break; case 250: deft = 5; break; case 500: deft = 6; break; case 1000: deft = 7; break; case 4000: deft = 8; break; case 10000: deft = 9; break; } } else if (name == "Max Frequency") { *min = 0; *max = 9; switch (m_maxFrequency) { case 500: deft = 0; break; case 1000: deft = 1; break; case 1500: deft = 2; break; case 2000: deft = 3; break; case 4000: deft = 4; break; case 6000: deft = 5; break; case 8000: deft = 6; break; case 12000: deft = 7; break; case 16000: deft = 8; break; default: deft = 9; break; } } else if (name == "Frequency Scale") { *min = 0; *max = 1; deft = (int)m_frequencyScale; } else if (name == "Bin Display") { *min = 0; *max = 2; deft = (int)m_binDisplay; } else if (name == "Normalize Columns") { deft = (m_normalizeColumns ? 1 : 0); } else if (name == "Normalize Visible Area") { deft = (m_normalizeVisibleArea ? 1 : 0); } else { deft = Layer::getPropertyRangeAndValue(name, min, max); } return deft; } QString SpectrogramLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == "Colour") { switch (value) { default: case 0: return tr("Default"); case 1: return tr("White on Black"); case 2: return tr("Black on White"); case 3: return tr("Red on Blue"); case 4: return tr("Yellow on Black"); case 5: return tr("Blue on Black"); case 6: return tr("Fruit Salad"); } } if (name == "Colour Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Meter"); case 2: return tr("dB"); case 3: return tr("Other"); case 4: return tr("Phase"); } } if (name == "Window Size") { return QString("%1").arg(32 << value); } if (name == "Window Increment") { switch (value) { default: case 0: return tr("None"); case 1: return tr("25 %"); case 2: return tr("50 %"); case 3: return tr("75 %"); case 4: return tr("87.5 %"); case 5: return tr("93.75 %"); } } if (name == "Zero Padding") { if (value == 0) return tr("None"); return QString("%1x").arg(value + 1); } if (name == "Min Frequency") { switch (value) { default: case 0: return tr("No min"); case 1: return tr("10 Hz"); case 2: return tr("20 Hz"); case 3: return tr("40 Hz"); case 4: return tr("100 Hz"); case 5: return tr("250 Hz"); case 6: return tr("500 Hz"); case 7: return tr("1 KHz"); case 8: return tr("4 KHz"); case 9: return tr("10 KHz"); } } if (name == "Max Frequency") { switch (value) { default: case 0: return tr("500 Hz"); case 1: return tr("1 KHz"); case 2: return tr("1.5 KHz"); case 3: return tr("2 KHz"); case 4: return tr("4 KHz"); case 5: return tr("6 KHz"); case 6: return tr("8 KHz"); case 7: return tr("12 KHz"); case 8: return tr("16 KHz"); case 9: return tr("No max"); } } if (name == "Frequency Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Log"); } } if (name == "Bin Display") { switch (value) { default: case 0: return tr("All Bins"); case 1: return tr("Peak Bins"); case 2: return tr("Frequencies"); } } return tr("<unknown>"); } RangeMapper * SpectrogramLayer::getNewPropertyRangeMapper(const PropertyName &name) const { if (name == "Gain") { return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); } if (name == "Threshold") { return new LinearRangeMapper(-50, 0, -50, 0, tr("dB")); } return 0; } void SpectrogramLayer::setProperty(const PropertyName &name, int value) { if (name == "Gain") { setGain(pow(10, float(value)/20.0)); } else if (name == "Threshold") { if (value == -50) setThreshold(0.0); else setThreshold(AudioLevel::dB_to_multiplier(value)); } else if (name == "Colour Rotation") { setColourRotation(value); } else if (name == "Colour") { switch (value) { default: case 0: setColourScheme(DefaultColours); break; case 1: setColourScheme(WhiteOnBlack); break; case 2: setColourScheme(BlackOnWhite); break; case 3: setColourScheme(RedOnBlue); break; case 4: setColourScheme(YellowOnBlack); break; case 5: setColourScheme(BlueOnBlack); break; case 6: setColourScheme(Rainbow); break; } } else if (name == "Window Size") { setWindowSize(32 << value); } else if (name == "Window Increment") { setWindowHopLevel(value); } else if (name == "Zero Padding") { setZeroPadLevel(value > 0.1 ? 3 : 0); } else if (name == "Min Frequency") { switch (value) { default: case 0: setMinFrequency(0); break; case 1: setMinFrequency(10); break; case 2: setMinFrequency(20); break; case 3: setMinFrequency(40); break; case 4: setMinFrequency(100); break; case 5: setMinFrequency(250); break; case 6: setMinFrequency(500); break; case 7: setMinFrequency(1000); break; case 8: setMinFrequency(4000); break; case 9: setMinFrequency(10000); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Max Frequency") { switch (value) { case 0: setMaxFrequency(500); break; case 1: setMaxFrequency(1000); break; case 2: setMaxFrequency(1500); break; case 3: setMaxFrequency(2000); break; case 4: setMaxFrequency(4000); break; case 5: setMaxFrequency(6000); break; case 6: setMaxFrequency(8000); break; case 7: setMaxFrequency(12000); break; case 8: setMaxFrequency(16000); break; default: case 9: setMaxFrequency(0); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Colour Scale") { switch (value) { default: case 0: setColourScale(LinearColourScale); break; case 1: setColourScale(MeterColourScale); break; case 2: setColourScale(dBColourScale); break; case 3: setColourScale(OtherColourScale); break; case 4: setColourScale(PhaseColourScale); break; } } else if (name == "Frequency Scale") { switch (value) { default: case 0: setFrequencyScale(LinearFrequencyScale); break; case 1: setFrequencyScale(LogFrequencyScale); break; } } else if (name == "Bin Display") { switch (value) { default: case 0: setBinDisplay(AllBins); break; case 1: setBinDisplay(PeakBins); break; case 2: setBinDisplay(PeakFrequencies); break; } } else if (name == "Normalize Columns") { setNormalizeColumns(value ? true : false); } else if (name == "Normalize Visible Area") { setNormalizeVisibleArea(value ? true : false); } } void SpectrogramLayer::invalidatePixmapCaches() { for (ViewPixmapCache::iterator i = m_pixmapCaches.begin(); i != m_pixmapCaches.end(); ++i) { i->second.validArea = QRect(); } } void SpectrogramLayer::invalidatePixmapCaches(size_t startFrame, size_t endFrame) { for (ViewPixmapCache::iterator i = m_pixmapCaches.begin(); i != m_pixmapCaches.end(); ++i) { //!!! when are views removed from the map? on setLayerDormant? const View *v = i->first; if (startFrame < v->getEndFrame() && int(endFrame) >= v->getStartFrame()) { i->second.validArea = QRect(); } } } void SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) { std::cerr << "SpectrogramLayer::preferenceChanged(" << name.toStdString() << ")" << std::endl; if (name == "Window Type") { setWindowType(Preferences::getInstance()->getWindowType()); return; } if (name == "Smooth Spectrogram") { invalidatePixmapCaches(); invalidateMagnitudes(); emit layerParametersChanged(); } if (name == "Tuning Frequency") { emit layerParametersChanged(); } } void SpectrogramLayer::setChannel(int ch) { if (m_channel == ch) return; invalidatePixmapCaches(); m_channel = ch; invalidateFFTModels(); emit layerParametersChanged(); } int SpectrogramLayer::getChannel() const { return m_channel; } void SpectrogramLayer::setWindowSize(size_t ws) { if (m_windowSize == ws) return; invalidatePixmapCaches(); m_windowSize = ws; m_fftSize = ws * (m_zeroPadLevel + 1); invalidateFFTModels(); emit layerParametersChanged(); } size_t SpectrogramLayer::getWindowSize() const { return m_windowSize; } void SpectrogramLayer::setWindowHopLevel(size_t v) { if (m_windowHopLevel == v) return; invalidatePixmapCaches(); m_windowHopLevel = v; invalidateFFTModels(); emit layerParametersChanged(); // fillCache(); } size_t SpectrogramLayer::getWindowHopLevel() const { return m_windowHopLevel; } void SpectrogramLayer::setZeroPadLevel(size_t v) { if (m_zeroPadLevel == v) return; invalidatePixmapCaches(); m_zeroPadLevel = v; m_fftSize = m_windowSize * (v + 1); invalidateFFTModels(); emit layerParametersChanged(); } size_t SpectrogramLayer::getZeroPadLevel() const { return m_zeroPadLevel; } void SpectrogramLayer::setWindowType(WindowType w) { if (m_windowType == w) return; invalidatePixmapCaches(); m_windowType = w; invalidateFFTModels(); emit layerParametersChanged(); } WindowType SpectrogramLayer::getWindowType() const { return m_windowType; } void SpectrogramLayer::setGain(float gain) { // std::cerr << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " // << m_gain << ")" << std::endl; if (m_gain == gain) return; invalidatePixmapCaches(); m_gain = gain; emit layerParametersChanged(); } float SpectrogramLayer::getGain() const { return m_gain; } void SpectrogramLayer::setThreshold(float threshold) { if (m_threshold == threshold) return; invalidatePixmapCaches(); m_threshold = threshold; emit layerParametersChanged(); } float SpectrogramLayer::getThreshold() const { return m_threshold; } void SpectrogramLayer::setMinFrequency(size_t mf) { if (m_minFrequency == mf) return; invalidatePixmapCaches(); invalidateMagnitudes(); m_minFrequency = mf; emit layerParametersChanged(); } size_t SpectrogramLayer::getMinFrequency() const { return m_minFrequency; } void SpectrogramLayer::setMaxFrequency(size_t mf) { if (m_maxFrequency == mf) return; invalidatePixmapCaches(); invalidateMagnitudes(); m_maxFrequency = mf; emit layerParametersChanged(); } size_t SpectrogramLayer::getMaxFrequency() const { return m_maxFrequency; } void SpectrogramLayer::setColourRotation(int r) { invalidatePixmapCaches(); if (r < 0) r = 0; if (r > 256) r = 256; int distance = r - m_colourRotation; if (distance != 0) { rotateColourmap(-distance); m_colourRotation = r; } emit layerParametersChanged(); } void SpectrogramLayer::setColourScale(ColourScale colourScale) { if (m_colourScale == colourScale) return; invalidatePixmapCaches(); m_colourScale = colourScale; emit layerParametersChanged(); } SpectrogramLayer::ColourScale SpectrogramLayer::getColourScale() const { return m_colourScale; } void SpectrogramLayer::setColourScheme(ColourScheme scheme) { if (m_colourScheme == scheme) return; invalidatePixmapCaches(); m_colourScheme = scheme; setColourmap(); emit layerParametersChanged(); } SpectrogramLayer::ColourScheme SpectrogramLayer::getColourScheme() const { return m_colourScheme; } void SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale) { if (m_frequencyScale == frequencyScale) return; invalidatePixmapCaches(); m_frequencyScale = frequencyScale; emit layerParametersChanged(); } SpectrogramLayer::FrequencyScale SpectrogramLayer::getFrequencyScale() const { return m_frequencyScale; } void SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) { if (m_binDisplay == binDisplay) return; invalidatePixmapCaches(); m_binDisplay = binDisplay; emit layerParametersChanged(); } SpectrogramLayer::BinDisplay SpectrogramLayer::getBinDisplay() const { return m_binDisplay; } void SpectrogramLayer::setNormalizeColumns(bool n) { if (m_normalizeColumns == n) return; invalidatePixmapCaches(); invalidateMagnitudes(); m_normalizeColumns = n; emit layerParametersChanged(); } bool SpectrogramLayer::getNormalizeColumns() const { return m_normalizeColumns; } void SpectrogramLayer::setNormalizeVisibleArea(bool n) { if (m_normalizeVisibleArea == n) return; invalidatePixmapCaches(); invalidateMagnitudes(); m_normalizeVisibleArea = n; emit layerParametersChanged(); } bool SpectrogramLayer::getNormalizeVisibleArea() const { return m_normalizeVisibleArea; } void SpectrogramLayer::setLayerDormant(const View *v, bool dormant) { if (dormant) { if (isLayerDormant(v)) { return; } Layer::setLayerDormant(v, true); invalidatePixmapCaches(); m_pixmapCaches.erase(v); if (m_fftModels.find(v) != m_fftModels.end()) { delete m_fftModels[v].first; m_fftModels.erase(v); } } else { Layer::setLayerDormant(v, false); } } void SpectrogramLayer::cacheInvalid() { invalidatePixmapCaches(); invalidateMagnitudes(); } void SpectrogramLayer::cacheInvalid(size_t, size_t) { // for now (or forever?) cacheInvalid(); } void SpectrogramLayer::fillTimerTimedOut() { if (!m_model) return; bool allDone = true; for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { const View *v = i->first; const FFTModel *model = i->second.first; size_t lastFill = i->second.second; if (model) { size_t fill = model->getFillExtent(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::fillTimerTimedOut: extent for " << model << ": " << fill << ", last " << lastFill << ", total " << m_model->getEndFrame() << std::endl; #endif if (fill >= lastFill) { if (fill >= m_model->getEndFrame() && lastFill > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "complete!" << std::endl; #endif invalidatePixmapCaches(); emit modelChanged(); i->second.second = -1; } else if (fill > lastFill) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: emitting modelChanged(" << lastFill << "," << fill << ")" << std::endl; #endif invalidatePixmapCaches(lastFill, fill); emit modelChanged(lastFill, fill); i->second.second = fill; } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: going backwards, emitting modelChanged(" << m_model->getStartFrame() << "," << m_model->getEndFrame() << ")" << std::endl; #endif invalidatePixmapCaches(); emit modelChanged(m_model->getStartFrame(), m_model->getEndFrame()); i->second.second = fill; } if (i->second.second >= 0) { allDone = false; } } } if (allDone) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: all complete!" << std::endl; #endif delete m_updateTimer; m_updateTimer = 0; } } void SpectrogramLayer::setColourmap() { int formerRotation = m_colourRotation; if (m_colourScheme == BlackOnWhite) { m_colourMap.setColour(NO_VALUE, Qt::white); } else { m_colourMap.setColour(NO_VALUE, Qt::black); } for (int pixel = 1; pixel < 256; ++pixel) { QColor colour; int hue, px; switch (m_colourScheme) { default: case DefaultColours: hue = 256 - pixel; colour = QColor::fromHsv(hue, pixel/2 + 128, pixel); m_crosshairColour = QColor(255, 150, 50); // m_crosshairColour = QColor::fromHsv(240, 160, 255); break; case WhiteOnBlack: colour = QColor(pixel, pixel, pixel); m_crosshairColour = Qt::red; break; case BlackOnWhite: colour = QColor(256-pixel, 256-pixel, 256-pixel); m_crosshairColour = Qt::darkGreen; break; case RedOnBlue: colour = QColor(pixel > 128 ? (pixel - 128) * 2 : 0, 0, pixel < 128 ? pixel : (256 - pixel)); m_crosshairColour = Qt::green; break; case YellowOnBlack: px = 256 - pixel; colour = QColor(px < 64 ? 255 - px/2 : px < 128 ? 224 - (px - 64) : px < 192 ? 160 - (px - 128) * 3 / 2 : 256 - px, pixel, pixel / 4); m_crosshairColour = QColor::fromHsv(240, 255, 255); break; case BlueOnBlack: colour = QColor::fromHsv (240, pixel > 226 ? 256 - (pixel - 226) * 8 : 255, (pixel * pixel) / 255); m_crosshairColour = Qt::red; break; case Rainbow: hue = 250 - pixel; if (hue < 0) hue += 256; colour = QColor::fromHsv(pixel, 255, 255); m_crosshairColour = Qt::white; break; } m_colourMap.setColour(pixel, colour); } m_colourRotation = 0; rotateColourmap(m_colourRotation - formerRotation); m_colourRotation = formerRotation; } void SpectrogramLayer::rotateColourmap(int distance) { QColor newPixels[256]; newPixels[NO_VALUE] = m_colourMap.getColour(NO_VALUE); for (int pixel = 1; pixel < 256; ++pixel) { int target = pixel + distance; while (target < 1) target += 255; while (target > 255) target -= 255; newPixels[target] = m_colourMap.getColour(pixel); } for (int pixel = 0; pixel < 256; ++pixel) { m_colourMap.setColour(pixel, newPixels[pixel]); } } float SpectrogramLayer::calculateFrequency(size_t bin, size_t windowSize, size_t windowIncrement, size_t sampleRate, float oldPhase, float newPhase, bool &steadyState) { // At frequency f, phase shift of 2pi (one cycle) happens in 1/f sec. // At hopsize h and sample rate sr, one hop happens in h/sr sec. // At window size w, for bin b, f is b*sr/w. // thus 2pi phase shift happens in w/(b*sr) sec. // We need to know what phase shift we expect from h/sr sec. // -> 2pi * ((h/sr) / (w/(b*sr))) // = 2pi * ((h * b * sr) / (w * sr)) // = 2pi * (h * b) / w. float frequency = (float(bin) * sampleRate) / windowSize; float expectedPhase = oldPhase + (2.0 * M_PI * bin * windowIncrement) / windowSize; float phaseError = princargf(newPhase - expectedPhase); if (fabsf(phaseError) < (1.1f * (windowIncrement * M_PI) / windowSize)) { // The new frequency estimate based on the phase error // resulting from assuming the "native" frequency of this bin float newFrequency = (sampleRate * (expectedPhase + phaseError - oldPhase)) / (2 * M_PI * windowIncrement); steadyState = true; return newFrequency; } steadyState = false; return frequency; } unsigned char SpectrogramLayer::getDisplayValue(View *v, float input) const { int value; float min = 0.f; float max = 1.f; if (m_normalizeVisibleArea) { min = m_viewMags[v].getMin(); max = m_viewMags[v].getMax(); } else if (!m_normalizeColumns) { if (m_colourScale == LinearColourScale || m_colourScale == MeterColourScale) { max = 0.1f; } } float thresh = -80.f; if (max == 0.f) max = 1.f; if (max == min) min = max - 0.0001f; switch (m_colourScale) { default: case LinearColourScale: // value = int // (input * (m_normalizeColumns ? 1.0 : 50.0) * 255.0) + 1; value = int(((input - min) / (max - min)) * 255.f) + 1; break; case MeterColourScale: // value = AudioLevel::multiplier_to_preview // (input * (m_normalizeColumns ? 1.0 : 50.0), 255) + 1; value = AudioLevel::multiplier_to_preview((input - min) / (max - min), 255) + 1; break; case dBColourScale: //!!! experiment with normalizing the visible area this way. //In any case, we need to have some indication of what the dB //scale is relative to. input = input / max; if (input > 0.f) { input = 10.f * log10f(input); } else { input = thresh; } if (min > 0.f) { thresh = 10.f * log10f(min); if (thresh < -80.f) thresh = -80.f; } input = (input - thresh) / (-thresh); if (input < 0.f) input = 0.f; if (input > 1.f) input = 1.f; value = int(input * 255.f) + 1; break; case OtherColourScale: //!!! the "Other" scale is just where our current experiments go //!!! power rather than v input = (input * input) / (max * max); if (input > 0.f) { input = 10.f * log10f(input); } else { input = thresh; } if (min > 0.f) { thresh = 10.f * log10f(min * min); if (thresh < -80.f) thresh = -80.f; } input = (input - thresh) / (-thresh); if (input < 0.f) input = 0.f; if (input > 1.f) input = 1.f; value = int(input * 255.f) + 1; break; /*!!! input = 10.f * log10f(input * input); input = 1.f / (1.f + expf(- (input + 20.f) / 10.f)); if (input < 0.f) input = 0.f; if (input > 1.f) input = 1.f; value = int(input * 255.f) + 1; */ break; case PhaseColourScale: value = int((input * 127.0 / M_PI) + 128); break; } if (value > UCHAR_MAX) value = UCHAR_MAX; if (value < 0) value = 0; return value; } float SpectrogramLayer::getInputForDisplayValue(unsigned char uc) const { //!!! unused int value = uc; float input; //!!! incorrect for normalizing visible area (and also out of date) switch (m_colourScale) { default: case LinearColourScale: input = float(value - 1) / 255.0 / (m_normalizeColumns ? 1 : 50); break; case MeterColourScale: input = AudioLevel::preview_to_multiplier(value - 1, 255) / (m_normalizeColumns ? 1.0 : 50.0); break; case dBColourScale: input = float(value - 1) / 255.0; input = (input * 80.0) - 80.0; input = powf(10.0, input) / 20.0; value = int(input); break; case OtherColourScale: input = float(value - 1) / 255.0; input = (input * 80.0) - 80.0; input = powf(10.0, input) / 20.0; value = int(input); break; case PhaseColourScale: input = float(value - 128) * M_PI / 127.0; break; } return input; } float SpectrogramLayer::getEffectiveMinFrequency() const { int sr = m_model->getSampleRate(); float minf = float(sr) / m_fftSize; if (m_minFrequency > 0.0) { size_t minbin = size_t((double(m_minFrequency) * m_fftSize) / sr + 0.01); if (minbin < 1) minbin = 1; minf = minbin * sr / m_fftSize; } return minf; } float SpectrogramLayer::getEffectiveMaxFrequency() const { int sr = m_model->getSampleRate(); float maxf = float(sr) / 2; if (m_maxFrequency > 0.0) { size_t maxbin = size_t((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; maxf = maxbin * sr / m_fftSize; } return maxf; } bool SpectrogramLayer::getYBinRange(View *v, int y, float &q0, float &q1) const { int h = v->height(); if (y < 0 || y >= h) return false; int sr = m_model->getSampleRate(); float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); //!!! wrong for smoothing -- wrong fft size for fft model q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); // Now map these on to actual bins int b0 = int((q0 * m_fftSize) / sr); int b1 = int((q1 * m_fftSize) / sr); //!!! this is supposed to return fractions-of-bins, as it were, hence the floats q0 = b0; q1 = b1; // q0 = (b0 * sr) / m_fftSize; // q1 = (b1 * sr) / m_fftSize; return true; } bool SpectrogramLayer::getXBinRange(View *v, int x, float &s0, float &s1) const { size_t modelStart = m_model->getStartFrame(); size_t modelEnd = m_model->getEndFrame(); // Each pixel column covers an exact range of sample frames: int f0 = v->getFrameForX(x) - modelStart; int f1 = v->getFrameForX(x + 1) - modelStart - 1; if (f1 < int(modelStart) || f0 > int(modelEnd)) { return false; } // And that range may be drawn from a possibly non-integral // range of spectrogram windows: size_t windowIncrement = getWindowIncrement(); s0 = float(f0) / windowIncrement; s1 = float(f1) / windowIncrement; return true; } bool SpectrogramLayer::getXBinSourceRange(View *v, int x, RealTime &min, RealTime &max) const { float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int windowIncrement = getWindowIncrement(); int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2; int w1 = s1i * windowIncrement + windowIncrement + (m_windowSize - windowIncrement)/2 - 1; min = RealTime::frame2RealTime(w0, m_model->getSampleRate()); max = RealTime::frame2RealTime(w1, m_model->getSampleRate()); return true; } bool SpectrogramLayer::getYBinSourceRange(View *v, int y, float &freqMin, float &freqMax) const { float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int sr = m_model->getSampleRate(); for (int q = q0i; q <= q1i; ++q) { if (q == q0i) freqMin = (sr * q) / m_fftSize; if (q == q1i) freqMax = (sr * (q+1)) / m_fftSize; } return true; } bool SpectrogramLayer::getAdjustedYBinSourceRange(View *v, int x, int y, float &freqMin, float &freqMax, float &adjFreqMin, float &adjFreqMax) const { FFTModel *fft = getFFTModel(v); if (!fft) return false; float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int q0i = int(q0 + 0.001); int q1i = int(q1); int sr = m_model->getSampleRate(); size_t windowSize = m_windowSize; size_t windowIncrement = getWindowIncrement(); bool haveAdj = false; bool peaksOnly = (m_binDisplay == PeakBins || m_binDisplay == PeakFrequencies); for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (!fft->isColumnAvailable(s)) continue; float binfreq = (sr * q) / m_windowSize; if (q == q0i) freqMin = binfreq; if (q == q1i) freqMax = binfreq; if (peaksOnly && !fft->isLocalPeak(s, q)) continue; if (!fft->isOverThreshold(s, q, m_threshold)) continue; float freq = binfreq; bool steady = false; if (s < int(fft->getWidth()) - 1) { freq = calculateFrequency(q, windowSize, windowIncrement, sr, fft->getPhaseAt(s, q), fft->getPhaseAt(s+1, q), steady); if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq; if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq; haveAdj = true; } } } if (!haveAdj) { adjFreqMin = adjFreqMax = 0.0; } return haveAdj; } bool SpectrogramLayer::getXYBinSourceRange(View *v, int x, int y, float &min, float &max, float &phaseMin, float &phaseMax) const { float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int s0i = int(s0 + 0.001); int s1i = int(s1); bool rv = false; size_t zp = getZeroPadLevel(v); q0i *= zp + 1; q1i *= zp + 1; FFTModel *fft = getFFTModel(v); if (fft) { int cw = fft->getWidth(); int ch = fft->getHeight(); min = 0.0; max = 0.0; phaseMin = 0.0; phaseMax = 0.0; bool have = false; for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (s >= 0 && q >= 0 && s < cw && q < ch) { if (!fft->isColumnAvailable(s)) continue; float value; value = fft->getPhaseAt(s, q); if (!have || value < phaseMin) { phaseMin = value; } if (!have || value > phaseMax) { phaseMax = value; } value = fft->getMagnitudeAt(s, q); if (!have || value < min) { min = value; } if (!have || value > max) { max = value; } have = true; } } } if (have) { rv = true; } } return rv; } size_t SpectrogramLayer::getZeroPadLevel(const View *v) const { //!!! tidy all this stuff if (m_binDisplay != AllBins) return 0; if (!Preferences::getInstance()->getSmoothSpectrogram()) return 0; if (m_frequencyScale == LogFrequencyScale) return 3; int sr = m_model->getSampleRate(); size_t bins = m_fftSize / 2; if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (bins > m_fftSize / 2) bins = m_fftSize / 2; } size_t minbin = 1; if (m_minFrequency > 0) { minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.1); if (minbin < 1) minbin = 1; if (minbin >= bins) minbin = bins - 1; } float perPixel = float(v->height()) / float((bins - minbin) / (m_zeroPadLevel + 1)); if (perPixel > 2.8) { return 3; // 4x oversampling } else if (perPixel > 1.5) { return 1; // 2x } else { return 0; // 1x } } size_t SpectrogramLayer::getFFTSize(const View *v) const { return m_fftSize * (getZeroPadLevel(v) + 1); } FFTModel * SpectrogramLayer::getFFTModel(const View *v) const { if (!m_model) return 0; size_t fftSize = getFFTSize(v); if (m_fftModels.find(v) != m_fftModels.end()) { if (m_fftModels[v].first->getHeight() != fftSize / 2) { delete m_fftModels[v].first; m_fftModels.erase(v); } } if (m_fftModels.find(v) == m_fftModels.end()) { FFTModel *model = new FFTModel(m_model, m_channel, m_windowType, m_windowSize, getWindowIncrement(), fftSize, true, m_candidateFillStartFrame); m_fftModels[v] = FFTFillPair(model, 0); model->resume(); delete m_updateTimer; m_updateTimer = new QTimer((SpectrogramLayer *)this); connect(m_updateTimer, SIGNAL(timeout()), this, SLOT(fillTimerTimedOut())); m_updateTimer->start(200); } return m_fftModels[v].first; } void SpectrogramLayer::invalidateFFTModels() { for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { delete i->second.first; } m_fftModels.clear(); } void SpectrogramLayer::invalidateMagnitudes() { m_viewMags.clear(); for (std::vector<MagnitudeRange>::iterator i = m_columnMags.begin(); i != m_columnMags.end(); ++i) { *i = MagnitudeRange(); } } bool SpectrogramLayer::updateViewMagnitudes(View *v) const { MagnitudeRange mag; int x0 = 0, x1 = v->width(); float s00 = 0, s01 = 0, s10 = 0, s11 = 0; getXBinRange(v, x0, s00, s01); getXBinRange(v, x1, s10, s11); int s0 = int(std::min(s00, s10) + 0.0001); int s1 = int(std::max(s01, s11)); if (m_columnMags.size() <= s1) { m_columnMags.resize(s1 + 1); } for (int s = s0; s <= s1; ++s) { if (m_columnMags[s].isSet()) { mag.sample(m_columnMags[s]); } } std::cerr << "SpectrogramLayer::updateViewMagnitudes returning from cols " << s0 << " -> " << s1 << " inclusive" << std::endl; if (!mag.isSet()) return false; if (mag == m_viewMags[v]) return false; m_viewMags[v] = mag; return true; } void SpectrogramLayer::paint(View *v, QPainter &paint, QRect rect) const { if (m_colourScheme == BlackOnWhite) { v->setLightBackground(true); } else { v->setLightBackground(false); } Profiler profiler("SpectrogramLayer::paint", true); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << ", m_updateTimer " << m_updateTimer << std::endl; std::cerr << "rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << std::endl; #endif long startFrame = v->getStartFrame(); if (startFrame < 0) m_candidateFillStartFrame = 0; else m_candidateFillStartFrame = startFrame; if (!m_model || !m_model->isOK() || !m_model->isReady()) { return; } if (isLayerDormant(v)) { std::cerr << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << std::endl; } // Need to do this even if !isLayerDormant, as that could mean v // is not in the dormancy map at all -- we need it to be present // and accountable for when determining whether we need the cache // in the cache-fill thread above. //!!! no longer use cache-fill thread const_cast<SpectrogramLayer *>(this)->Layer::setLayerDormant(v, false); size_t fftSize = getFFTSize(v); FFTModel *fft = getFFTModel(v); if (!fft) { std::cerr << "ERROR: SpectrogramLayer::paint(): No FFT model, returning" << std::endl; return; } PixmapCache &cache = m_pixmapCaches[v]; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): pixmap cache valid area " << cache.validArea.x() << ", " << cache.validArea.y() << ", " << cache.validArea.width() << "x" << cache.validArea.height() << std::endl; #endif bool stillCacheing = (m_updateTimer != 0); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): Still cacheing = " << stillCacheing << std::endl; #endif int zoomLevel = v->getZoomLevel(); int x0 = 0; int x1 = v->width(); int y0 = 0; int y1 = v->height(); bool recreateWholePixmapCache = true; x0 = rect.left(); x1 = rect.right() + 1; y0 = rect.top(); y1 = rect.bottom() + 1; if (cache.validArea.width() > 0) { if (int(cache.zoomLevel) == zoomLevel && cache.pixmap.width() == v->width() && cache.pixmap.height() == v->height()) { if (v->getXForFrame(cache.startFrame) == v->getXForFrame(startFrame) && cache.validArea.x() <= x0 && cache.validArea.x() + cache.validArea.width() >= x1) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache good" << std::endl; #endif paint.drawPixmap(rect, cache.pixmap, rect); illuminateLocalFeatures(v, paint); return; } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache partially OK" << std::endl; #endif recreateWholePixmapCache = false; int dx = v->getXForFrame(cache.startFrame) - v->getXForFrame(startFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: dx = " << dx << " (pixmap cache " << cache.pixmap.width() << "x" << cache.pixmap.height() << ")" << std::endl; #endif if (dx != 0 && dx > -cache.pixmap.width() && dx < cache.pixmap.width()) { #if defined(Q_WS_WIN32) || defined(Q_WS_MAC) // Copying a pixmap to itself doesn't work // properly on Windows or Mac (it only works when // moving in one direction). //!!! Need a utility function for this static QPixmap *tmpPixmap = 0; if (!tmpPixmap || tmpPixmap->width() != cache.pixmap.width() || tmpPixmap->height() != cache.pixmap.height()) { delete tmpPixmap; tmpPixmap = new QPixmap(cache.pixmap.width(), cache.pixmap.height()); } QPainter cachePainter; cachePainter.begin(tmpPixmap); cachePainter.drawPixmap(0, 0, cache.pixmap); cachePainter.end(); cachePainter.begin(&cache.pixmap); cachePainter.drawPixmap(dx, 0, *tmpPixmap); cachePainter.end(); #else QPainter cachePainter(&cache.pixmap); cachePainter.drawPixmap(dx, 0, cache.pixmap); cachePainter.end(); #endif int px = cache.validArea.x(); int pw = cache.validArea.width(); if (dx < 0) { x0 = cache.pixmap.width() + dx; x1 = cache.pixmap.width(); px += dx; if (px < 0) { pw += px; px = 0; if (pw < 0) pw = 0; } } else { x0 = 0; x1 = dx; px += dx; if (px + pw > cache.pixmap.width()) { pw = int(cache.pixmap.width()) - px; if (pw < 0) pw = 0; } } cache.validArea = QRect(px, cache.validArea.y(), pw, cache.validArea.height()); paint.drawPixmap(rect & cache.validArea, cache.pixmap, rect & cache.validArea); } } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache useless" << std::endl; #endif cache.validArea = QRect(); } } /* if (stillCacheing) { x0 = rect.left(); x1 = rect.right() + 1; y0 = rect.top(); y1 = rect.bottom() + 1; } */ if (updateViewMagnitudes(v)) { std::cerr << "SpectrogramLayer: magnitude range changed to [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; recreateWholePixmapCache = true; } else { std::cerr << "No change in magnitude range [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; } if (recreateWholePixmapCache) { x0 = 0; x1 = v->width(); } int paintBlockWidth = (300000 / zoomLevel); if (paintBlockWidth < 20) paintBlockWidth = 20; if (cache.validArea.width() > 0) { int vx0 = 0, vx1 = 0; vx0 = cache.validArea.x(); vx1 = cache.validArea.x() + cache.validArea.width(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "x0 " << x0 << ", x1 " << x1 << ", vx0 " << vx0 << ", vx1 " << vx1 << ", paintBlockWidth " << paintBlockWidth << std::endl; #endif if (x0 < vx0) { if (x0 + paintBlockWidth < vx0) { x0 = vx0 - paintBlockWidth; } else { x0 = 0; } } else if (x0 > vx1) { x0 = vx1; } if (x1 < vx0) { x1 = vx0; } else if (x1 > vx1) { if (vx1 + paintBlockWidth < x1) { x1 = vx1 + paintBlockWidth; } else { x1 = v->width(); } } cache.validArea = QRect (std::min(vx0, x0), cache.validArea.y(), std::max(vx1 - std::min(vx0, x0), x1 - std::min(vx0, x0)), cache.validArea.height()); } else { if (x1 > x0 + paintBlockWidth) { int sfx = x1; if (startFrame < 0) sfx = v->getXForFrame(0); if (sfx >= x0 && sfx + paintBlockWidth <= x1) { x0 = sfx; x1 = x0 + paintBlockWidth; } else { int mid = (x1 + x0) / 2; x0 = mid - paintBlockWidth/2; x1 = x0 + paintBlockWidth; } } cache.validArea = QRect(x0, 0, x1 - x0, v->height()); } int w = x1 - x0; int h = y1 - y0; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << std::endl; #endif if (m_drawBuffer.width() < w || m_drawBuffer.height() < h) { m_drawBuffer = QImage(w, h, QImage::Format_RGB32); } m_drawBuffer.fill(m_colourMap.getColour(0).rgb()); int sr = m_model->getSampleRate(); // Set minFreq and maxFreq to the frequency extents of the possibly // zero-padded visible bin range, and displayMinFreq and displayMaxFreq // to the actual scale frequency extents (presumably not zero padded). size_t bins = fftSize / 2; if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * fftSize) / sr + 0.1); if (bins > fftSize / 2) bins = fftSize / 2; } size_t minbin = 1; if (m_minFrequency > 0) { minbin = int((double(m_minFrequency) * fftSize) / sr + 0.1); if (minbin < 1) minbin = 1; if (minbin >= bins) minbin = bins - 1; } float minFreq = (float(minbin) * sr) / fftSize; float maxFreq = (float(bins) * sr) / fftSize; float displayMinFreq = minFreq; float displayMaxFreq = maxFreq; if (fftSize != m_fftSize) { displayMinFreq = getEffectiveMinFrequency(); displayMaxFreq = getEffectiveMaxFrequency(); } float ymag[h]; float ydiv[h]; float yval[bins + 1]; //!!! cache this? size_t increment = getWindowIncrement(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); for (size_t q = minbin; q <= bins; ++q) { float f0 = (float(q) * sr) / fftSize; yval[q] = v->getYForFrequency(f0, displayMinFreq, displayMaxFreq, logarithmic); // std::cerr << "min: " << minFreq << ", max: " << maxFreq << ", yval[" << q << "]: " << yval[q] << std::endl; } MagnitudeRange overallMag = m_viewMags[v]; bool overallMagChanged = false; bool fftSuspended = false; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << (float(v->getFrameForX(1) - v->getFrameForX(0)) / increment) << " bins per pixel" << std::endl; #endif for (int x = 0; x < w; ++x) { for (int y = 0; y < h; ++y) { ymag[y] = 0.f; ydiv[y] = 0.f; } float s0 = 0, s1 = 0; if (!getXBinRange(v, x0 + x, s0, s1)) { assert(x <= m_drawBuffer.width()); continue; } int s0i = int(s0 + 0.001); int s1i = int(s1); if (s1i >= fft->getWidth()) { if (s0i >= fft->getWidth()) { continue; } else { s1i = s0i; } } for (int s = s0i; s <= s1i; ++s) { if (!fft->isColumnAvailable(s)) continue; if (!fftSuspended) { fft->suspendWrites(); fftSuspended = true; } MagnitudeRange mag; for (size_t q = minbin; q < bins; ++q) { float y0 = yval[q + 1]; float y1 = yval[q]; if (m_binDisplay == PeakBins || m_binDisplay == PeakFrequencies) { if (!fft->isLocalPeak(s, q)) continue; } if (m_threshold != 0.f && !fft->isOverThreshold(s, q, m_threshold)) { continue; } float sprop = 1.0; if (s == s0i) sprop *= (s + 1) - s0; if (s == s1i) sprop *= s1 - s; if (m_binDisplay == PeakFrequencies && s < int(fft->getWidth()) - 1) { bool steady = false; float f = calculateFrequency(q, m_windowSize, increment, sr, fft->getPhaseAt(s, q), fft->getPhaseAt(s+1, q), steady); y0 = y1 = v->getYForFrequency (f, displayMinFreq, displayMaxFreq, logarithmic); } int y0i = int(y0 + 0.001); int y1i = int(y1); float value; if (m_colourScale == PhaseColourScale) { value = fft->getPhaseAt(s, q); } else if (m_normalizeColumns) { value = fft->getNormalizedMagnitudeAt(s, q); mag.sample(value); value *= m_gain; } else { value = fft->getMagnitudeAt(s, q); mag.sample(value); value *= m_gain; } for (int y = y0i; y <= y1i; ++y) { if (y < 0 || y >= h) continue; float yprop = sprop; if (y == y0i) yprop *= (y + 1) - y0; if (y == y1i) yprop *= y1 - y; ymag[y] += yprop * value; ydiv[y] += yprop; } } if (mag.isSet()) { m_columnMags[s].sample(mag); if (overallMag.sample(mag)) { //!!! scaling would change here overallMagChanged = true; std::cerr << "Overall mag changed (again?) at column " << s << ", to [" << overallMag.getMin() << "->" << overallMag.getMax() << "]" << std::endl; } } } for (int y = 0; y < h; ++y) { if (ydiv[y] > 0.0) { unsigned char pixel = 0; float avg = ymag[y] / ydiv[y]; pixel = getDisplayValue(v, avg); assert(x <= m_drawBuffer.width()); QColor c = m_colourMap.getColour(pixel); m_drawBuffer.setPixel(x, y, qRgb(c.red(), c.green(), c.blue())); } } } if (overallMagChanged) { m_viewMags[v] = overallMag; std::cerr << "Overall mag is now [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "] - will be updating" << std::endl; } else { std::cerr << "Overall mag unchanged at [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; } Profiler profiler2("SpectrogramLayer::paint: draw image", true); paint.drawImage(x0, y0, m_drawBuffer, 0, 0, w, h); if (recreateWholePixmapCache) { cache.pixmap = QPixmap(v->width(), v->height()); } QPainter cachePainter(&cache.pixmap); cachePainter.drawImage(x0, y0, m_drawBuffer, 0, 0, w, h); cachePainter.end(); if (!m_normalizeVisibleArea || !overallMagChanged) { cache.startFrame = startFrame; cache.zoomLevel = zoomLevel; if (cache.validArea.x() > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint() updating left (0, " << cache.validArea.x() << ")" << std::endl; #endif v->update(0, 0, cache.validArea.x(), v->height()); } if (cache.validArea.x() + cache.validArea.width() < cache.pixmap.width()) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint() updating right (" << cache.validArea.x() + cache.validArea.width() << ", " << cache.pixmap.width() - (cache.validArea.x() + cache.validArea.width()) << ")" << std::endl; #endif v->update(cache.validArea.x() + cache.validArea.width(), 0, cache.pixmap.width() - (cache.validArea.x() + cache.validArea.width()), v->height()); } } else { // overallMagChanged cache.validArea = QRect(); v->update(); } illuminateLocalFeatures(v, paint); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint() returning" << std::endl; #endif if (fftSuspended) fft->resume(); } void SpectrogramLayer::illuminateLocalFeatures(View *v, QPainter &paint) const { QPoint localPos; if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { return; } std::cerr << "SpectrogramLayer: illuminateLocalFeatures(" << localPos.x() << "," << localPos.y() << ")" << std::endl; float s0, s1; float f0, f1; if (getXBinRange(v, localPos.x(), s0, s1) && getYBinSourceRange(v, localPos.y(), f0, f1)) { int s0i = int(s0 + 0.001); int s1i = int(s1); int x0 = v->getXForFrame(s0i * getWindowIncrement()); int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); int y1 = getYForFrequency(v, f1); int y0 = getYForFrequency(v, f0); std::cerr << "SpectrogramLayer: illuminate " << x0 << "," << y1 << " -> " << x1 << "," << y0 << std::endl; paint.setPen(Qt::white); //!!! should we be using paintCrosshairs for this? paint.drawRect(x0, y1, x1 - x0 + 1, y0 - y1 + 1); } } float SpectrogramLayer::getYForFrequency(View *v, float frequency) const { return v->getYForFrequency(frequency, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } float SpectrogramLayer::getFrequencyForY(View *v, int y) const { return v->getFrequencyForY(y, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } int SpectrogramLayer::getCompletion(View *v) const { if (m_updateTimer == 0) return 100; if (m_fftModels.find(v) == m_fftModels.end()) return 100; size_t completion = m_fftModels[v].first->getCompletion(); std::cerr << "SpectrogramLayer::getCompletion: completion = " << completion << std::endl; return completion; } bool SpectrogramLayer::getValueExtents(float &min, float &max, bool &logarithmic, QString &unit) const { //!!! // min = getEffectiveMinFrequency(); // max = getEffectiveMaxFrequency(); if (!m_model) return false; int sr = m_model->getSampleRate(); min = float(sr) / m_fftSize; max = float(sr) / 2; logarithmic = (m_frequencyScale == LogFrequencyScale); unit = "Hz"; return true; } bool SpectrogramLayer::getDisplayExtents(float &min, float &max) const { min = getEffectiveMinFrequency(); max = getEffectiveMaxFrequency(); return true; } bool SpectrogramLayer::setDisplayExtents(float min, float max) { if (!m_model) return false; if (min < 0) min = 0; if (max > m_model->getSampleRate()/2) max = m_model->getSampleRate()/2; size_t minf = lrintf(min); size_t maxf = lrintf(max); if (m_minFrequency == minf && m_maxFrequency == maxf) return true; invalidatePixmapCaches(); invalidateMagnitudes(); m_minFrequency = minf; m_maxFrequency = maxf; emit layerParametersChanged(); int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } return true; } bool SpectrogramLayer::snapToFeatureFrame(View *v, int &frame, size_t &resolution, SnapType snap) const { resolution = getWindowIncrement(); int left = (frame / resolution) * resolution; int right = left + resolution; switch (snap) { case SnapLeft: frame = left; break; case SnapRight: frame = right; break; case SnapNearest: case SnapNeighbouring: if (frame - left > right - frame) frame = right; else frame = left; break; } return true; } bool SpectrogramLayer::getCrosshairExtents(View *v, QPainter &paint, QPoint cursorPos, std::vector<QRect> &extents) const { QRect vertical(cursorPos.x() - 12, 0, 12, v->height()); extents.push_back(vertical); QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); extents.push_back(horizontal); return true; } void SpectrogramLayer::paintCrosshairs(View *v, QPainter &paint, QPoint cursorPos) const { paint.save(); paint.setPen(m_crosshairColour); paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->height()); float fundamental = getFrequencyForY(v, cursorPos.y()); int harmonic = 2; while (harmonic < 100) { float hy = lrintf(getYForFrequency(v, fundamental * harmonic)); if (hy < 0 || hy > v->height()) break; int len = 7; if (harmonic % 2 == 0) { if (harmonic % 4 == 0) { len = 12; } else { len = 10; } } paint.drawLine(cursorPos.x() - len, hy, cursorPos.x(), hy); ++harmonic; } paint.restore(); } QString SpectrogramLayer::getFeatureDescription(View *v, QPoint &pos) const { int x = pos.x(); int y = pos.y(); if (!m_model || !m_model->isOK()) return ""; float magMin = 0, magMax = 0; float phaseMin = 0, phaseMax = 0; float freqMin = 0, freqMax = 0; float adjFreqMin = 0, adjFreqMax = 0; QString pitchMin, pitchMax; RealTime rtMin, rtMax; bool haveValues = false; if (!getXBinSourceRange(v, x, rtMin, rtMax)) { return ""; } if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) { haveValues = true; } QString adjFreqText = "", adjPitchText = ""; if (m_binDisplay == PeakFrequencies) { if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, adjFreqMin, adjFreqMax)) { return ""; } if (adjFreqMin != adjFreqMax) { adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n") .arg(adjFreqMin).arg(adjFreqMax); } else { adjFreqText = tr("Peak Frequency:\t%1 Hz\n") .arg(adjFreqMin); } QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin); QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax); if (pmin != pmax) { adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax); } else { adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin); } } else { if (!getYBinSourceRange(v, y, freqMin, freqMax)) return ""; } QString text; if (rtMin != rtMax) { text += tr("Time:\t%1 - %2\n") .arg(rtMin.toText(true).c_str()) .arg(rtMax.toText(true).c_str()); } else { text += tr("Time:\t%1\n") .arg(rtMin.toText(true).c_str()); } if (freqMin != freqMax) { text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n") .arg(adjFreqText) .arg(freqMin) .arg(freqMax) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)) .arg(Pitch::getPitchLabelForFrequency(freqMax)); } else { text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n") .arg(adjFreqText) .arg(freqMin) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)); } if (haveValues) { float dbMin = AudioLevel::multiplier_to_dB(magMin); float dbMax = AudioLevel::multiplier_to_dB(magMax); QString dbMinString; QString dbMaxString; if (dbMin == AudioLevel::DB_FLOOR) { dbMinString = tr("-Inf"); } else { dbMinString = QString("%1").arg(lrintf(dbMin)); } if (dbMax == AudioLevel::DB_FLOOR) { dbMaxString = tr("-Inf"); } else { dbMaxString = QString("%1").arg(lrintf(dbMax)); } if (lrintf(dbMin) != lrintf(dbMax)) { text += tr("dB:\t%1 - %2").arg(lrintf(dbMin)).arg(lrintf(dbMax)); } else { text += tr("dB:\t%1").arg(lrintf(dbMin)); } if (phaseMin != phaseMax) { text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax); } else { text += tr("\nPhase:\t%1").arg(phaseMin); } } return text; } int SpectrogramLayer::getColourScaleWidth(QPainter &paint) const { int cw; cw = paint.fontMetrics().width("-80dB"); /*!!! switch (m_colourScale) { default: case LinearColourScale: cw = paint.fontMetrics().width(QString("0.00")); break; case MeterColourScale: case dBColourScale: case OtherColourScale: cw = std::max(paint.fontMetrics().width(tr("-Inf")), paint.fontMetrics().width(tr("-90"))); break; case PhaseColourScale: cw = paint.fontMetrics().width(QString("-") + QChar(0x3c0)); break; } */ return cw; } int SpectrogramLayer::getVerticalScaleWidth(View *v, QPainter &paint) const { if (!m_model || !m_model->isOK()) return 0; int cw = getColourScaleWidth(paint); int tw = paint.fontMetrics().width(QString("%1") .arg(m_maxFrequency > 0 ? m_maxFrequency - 1 : m_model->getSampleRate() / 2)); int fw = paint.fontMetrics().width(QString("43Hz")); if (tw < fw) tw = fw; int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); return cw + tickw + tw + 13; } void SpectrogramLayer::paintVerticalScale(View *v, QPainter &paint, QRect rect) const { if (!m_model || !m_model->isOK()) { return; } Profiler profiler("SpectrogramLayer::paintVerticalScale", true); //!!! cache this? int h = rect.height(), w = rect.width(); int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); size_t bins = m_fftSize / 2; int sr = m_model->getSampleRate(); if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (bins > m_fftSize / 2) bins = m_fftSize / 2; } int cw = getColourScaleWidth(paint); int cbw = paint.fontMetrics().width("dB"); int py = -1; int textHeight = paint.fontMetrics().height(); int toff = -textHeight + paint.fontMetrics().ascent() + 2; if (h > textHeight * 3 + 10) { int topLines = 2; if (m_colourScale == PhaseColourScale) topLines = 1; int ch = h - textHeight * (topLines + 1) - 8; // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); QString top, bottom; /*!!! switch (m_colourScale) { default: case LinearColourScale: top = (m_normalizeColumns ? "1.0" : "0.02"); bottom = (m_normalizeColumns ? "0.0" : "0.00"); break; case MeterColourScale: top = (m_normalizeColumns ? QString("0") : QString("%1").arg(int(AudioLevel::multiplier_to_dB(0.02)))); bottom = QString("%1"). arg(int(AudioLevel::multiplier_to_dB (AudioLevel::preview_to_multiplier(0, 255)))); break; case dBColourScale: case OtherColourScale: top = "0"; bottom = "-80"; break; case PhaseColourScale: top = QChar(0x3c0); bottom = "-" + top; break; } */ float min = m_viewMags[v].getMin(); float max = m_viewMags[v].getMax(); float dBmin = AudioLevel::multiplier_to_dB(min); float dBmax = AudioLevel::multiplier_to_dB(max); if (dBmax < -60.f) dBmax = -60.f; else top = QString("%1").arg(lrintf(dBmax)); if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; bottom = QString("%1").arg(lrintf(dBmin)); //!!! & phase etc if (m_colourScale != PhaseColourScale) { paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, 2 + textHeight + toff, "dBFS"); } // paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2, paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), 2 + textHeight * topLines + toff + textHeight/2, top); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), h + toff - 3 - textHeight/2, bottom); paint.save(); paint.setBrush(Qt::NoBrush); int lasty = 0; int lastdb = 0; for (int i = 0; i < ch; ++i) { float dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); int idb = int(dBval); float value = AudioLevel::dB_to_multiplier(dBval); int colour = getDisplayValue(v, value * m_gain); /* float value = min + (((max - min) * i) / (ch - 1)); if (value < m_threshold) value = 0.f; int colour = getDisplayValue(v, value * m_gain); */ /* int colour = (i * 255) / ch + 1; */ paint.setPen(m_colourMap.getColour(colour)); int y = textHeight * topLines + 4 + ch - i; paint.drawLine(5 + cw - cbw, y, cw + 2, y); // paint.drawLine(5, 4 + textHeight + ch - i, // cw + 2, 4 + textHeight + ch - i); if (i == 0) { lasty = y; lastdb = idb; } else if (i < ch - paint.fontMetrics().ascent() && idb != lastdb && ((abs(y - lasty) > textHeight && idb % 10 == 0) || (abs(y - lasty) > paint.fontMetrics().ascent() && idb % 5 == 0))) { paint.setPen(Qt::black); QString text = QString("%1").arg(idb); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), y + toff + textHeight/2, text); paint.setPen(Qt::white); paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); lasty = y; lastdb = idb; } } paint.restore(); } paint.drawLine(cw + 7, 0, cw + 7, h); int bin = -1; for (int y = 0; y < v->height(); ++y) { float q0, q1; if (!getYBinRange(v, v->height() - y, q0, q1)) continue; int vy; if (int(q0) > bin) { vy = y; bin = int(q0); } else { continue; } int freq = (sr * bin) / m_fftSize; if (py >= 0 && (vy - py) < textHeight - 1) { if (m_frequencyScale == LinearFrequencyScale) { paint.drawLine(w - tickw, h - vy, w, h - vy); } continue; } QString text = QString("%1").arg(freq); if (bin == 1) text = QString("%1Hz").arg(freq); // bin 0 is DC paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); if (h - vy - textHeight >= -2) { int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw); paint.drawText(tx, h - vy + toff, text); } py = vy; } if (m_frequencyScale == LogFrequencyScale) { paint.drawLine(w - pkw - 1, 0, w - pkw - 1, h); int sr = m_model->getSampleRate(); float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); int py = h, ppy = h; paint.setBrush(paint.pen().color()); for (int i = 0; i < 128; ++i) { float f = Pitch::getFrequencyForPitch(i); int y = lrintf(v->getYForFrequency(f, minf, maxf, true)); if (y < -2) break; if (y > h + 2) { continue; } int n = (i % 12); if (n == 1) { // C# -- fill the C from here if (ppy - y > 2) { paint.fillRect(w - pkw, // y - (py - y) / 2 - (py - y) / 4, y, pkw, (py + ppy) / 2 - y, // py - y + 1, Qt::gray); } } if (n == 1 || n == 3 || n == 6 || n == 8 || n == 10) { // black notes paint.drawLine(w - pkw, y, w, y); int rh = ((py - y) / 4) * 2; if (rh < 2) rh = 2; paint.drawRect(w - pkw, y - (py-y)/4, pkw/2, rh); } else if (n == 0 || n == 5) { // C, F if (py < h) { paint.drawLine(w - pkw, (y + py) / 2, w, (y + py) / 2); } } ppy = py; py = y; } } } int SpectrogramLayer::getVerticalZoomSteps(int &defaultStep) const { // Vertical zoom step 0 shows the entire range from DC -> Nyquist // frequency. Step 1 shows 2^(1/4) of the range of step 0, and so // on until the visible range is smaller than the frequency step // between bins at the current fft size. if (!m_model) return 0; float min, max; int sr = m_model->getSampleRate(); min = float(sr) / m_fftSize; max = float(sr) / 2; float dist = max - min; int n = 0; defaultStep = 0; bool haveDefault = false; float s2 = sqrtf(sqrtf(2)); while (dist > min) { if (!haveDefault && max <= m_initialMaxFrequency) { defaultStep = n; haveDefault = true; } ++n; dist /= s2; max = min + dist; } return n; } int SpectrogramLayer::getCurrentVerticalZoomStep() const { if (!m_model) return 0; float dmin, dmax; getDisplayExtents(dmin, dmax); float mmin, mmax; int sr = m_model->getSampleRate(); mmin = float(sr) / m_fftSize; mmax = float(sr) / 2; float mdist = mmax - mmin; float ddist = dmax - dmin; int n = 0; int discard = 0; int m = getVerticalZoomSteps(discard); float s2 = sqrtf(sqrtf(2)); while (mdist > ddist) { if (++n > m) break; mdist /= s2; } return n; } void SpectrogramLayer::setVerticalZoomStep(int step) { //!!! does not do the right thing for log scale float dmin, dmax; getDisplayExtents(dmin, dmax); float mmin, mmax; int sr = m_model->getSampleRate(); mmin = float(sr) / m_fftSize; mmax = float(sr) / 2; float ddist = mmax - mmin; int n = 0; float s2 = sqrtf(sqrtf(2)); while (n < step) { ddist /= s2; ++n; } float dmid = (dmax + dmin) / 2; float newmin = dmid - ddist / 2; float newmax = dmid + ddist / 2; if (newmin < mmin) newmin = mmin; if (newmax > mmax) newmax = mmax; setMinFrequency(newmin); setMaxFrequency(newmax); } QString SpectrogramLayer::toXmlString(QString indent, QString extraAttributes) const { QString s; s += QString("channel=\"%1\" " "windowSize=\"%2\" " "windowHopLevel=\"%3\" " "gain=\"%4\" " "threshold=\"%5\" ") .arg(m_channel) .arg(m_windowSize) .arg(m_windowHopLevel) .arg(m_gain) .arg(m_threshold); s += QString("minFrequency=\"%1\" " "maxFrequency=\"%2\" " "colourScale=\"%3\" " "colourScheme=\"%4\" " "colourRotation=\"%5\" " "frequencyScale=\"%6\" " "binDisplay=\"%7\" " "normalizeColumns=\"%8\" " "normalizeVisibleArea=\"%9\"") .arg(m_minFrequency) .arg(m_maxFrequency) .arg(m_colourScale) .arg(m_colourScheme) .arg(m_colourRotation) .arg(m_frequencyScale) .arg(m_binDisplay) .arg(m_normalizeColumns ? "true" : "false") .arg(m_normalizeVisibleArea ? "true" : "false"); return Layer::toXmlString(indent, extraAttributes + " " + s); } void SpectrogramLayer::setProperties(const QXmlAttributes &attributes) { bool ok = false; int channel = attributes.value("channel").toInt(&ok); if (ok) setChannel(channel); size_t windowSize = attributes.value("windowSize").toUInt(&ok); if (ok) setWindowSize(windowSize); size_t windowHopLevel = attributes.value("windowHopLevel").toUInt(&ok); if (ok) setWindowHopLevel(windowHopLevel); else { size_t windowOverlap = attributes.value("windowOverlap").toUInt(&ok); // a percentage value if (ok) { if (windowOverlap == 0) setWindowHopLevel(0); else if (windowOverlap == 25) setWindowHopLevel(1); else if (windowOverlap == 50) setWindowHopLevel(2); else if (windowOverlap == 75) setWindowHopLevel(3); else if (windowOverlap == 90) setWindowHopLevel(4); } } float gain = attributes.value("gain").toFloat(&ok); if (ok) setGain(gain); float threshold = attributes.value("threshold").toFloat(&ok); if (ok) setThreshold(threshold); size_t minFrequency = attributes.value("minFrequency").toUInt(&ok); if (ok) setMinFrequency(minFrequency); size_t maxFrequency = attributes.value("maxFrequency").toUInt(&ok); if (ok) setMaxFrequency(maxFrequency); ColourScale colourScale = (ColourScale) attributes.value("colourScale").toInt(&ok); if (ok) setColourScale(colourScale); ColourScheme colourScheme = (ColourScheme) attributes.value("colourScheme").toInt(&ok); if (ok) setColourScheme(colourScheme); int colourRotation = attributes.value("colourRotation").toInt(&ok); if (ok) setColourRotation(colourRotation); FrequencyScale frequencyScale = (FrequencyScale) attributes.value("frequencyScale").toInt(&ok); if (ok) setFrequencyScale(frequencyScale); BinDisplay binDisplay = (BinDisplay) attributes.value("binDisplay").toInt(&ok); if (ok) setBinDisplay(binDisplay); bool normalizeColumns = (attributes.value("normalizeColumns").trimmed() == "true"); setNormalizeColumns(normalizeColumns); bool normalizeVisibleArea = (attributes.value("normalizeVisibleArea").trimmed() == "true"); setNormalizeVisibleArea(normalizeVisibleArea); }