Mercurial > hg > svgui
view layer/WaveformLayer.cpp @ 173:9c40dc10c88c
* Rename the existing Panner to Overview (big duh!)
* Fixes to the new Panner.
author | Chris Cannam |
---|---|
date | Thu, 19 Oct 2006 09:57:27 +0000 |
parents | 53b9c7656798 |
children | 42118892f428 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "WaveformLayer.h" #include "base/AudioLevel.h" #include "view/View.h" #include "base/Profiler.h" #include "base/RangeMapper.h" #include <QPainter> #include <QPixmap> #include <iostream> #include <cmath> //#define DEBUG_WAVEFORM_PAINT 1 using std::cerr; using std::endl; WaveformLayer::WaveformLayer() : Layer(), m_model(0), m_gain(1.0f), m_autoNormalize(false), m_colour(Qt::black), m_showMeans(true), m_greyscale(true), m_channelMode(SeparateChannels), m_channel(-1), m_scale(LinearScale), m_aggressive(false), m_cache(0), m_cacheValid(false) { } WaveformLayer::~WaveformLayer() { delete m_cache; } void WaveformLayer::setModel(const RangeSummarisableTimeValueModel *model) { bool channelsChanged = false; if (m_channel == -1) { if (!m_model) { if (model) { channelsChanged = true; } } else { if (model && m_model->getChannelCount() != model->getChannelCount()) { channelsChanged = true; } } } m_model = model; m_cacheValid = false; if (!m_model || !m_model->isOK()) return; connect(m_model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged())); connect(m_model, SIGNAL(modelChanged(size_t, size_t)), this, SIGNAL(modelChanged(size_t, size_t))); connect(m_model, SIGNAL(completionChanged()), this, SIGNAL(modelCompletionChanged())); emit modelReplaced(); if (channelsChanged) emit layerParametersChanged(); } Layer::PropertyList WaveformLayer::getProperties() const { PropertyList list; list.push_back("Colour"); list.push_back("Scale"); list.push_back("Gain"); list.push_back("Normalize Visible Area"); if (m_model && m_model->getChannelCount() > 1 && m_channel == -1) { list.push_back("Channels"); } return list; } QString WaveformLayer::getPropertyLabel(const PropertyName &name) const { if (name == "Colour") return tr("Colour"); if (name == "Scale") return tr("Scale"); if (name == "Gain") return tr("Gain"); if (name == "Normalize Visible Area") return tr("Normalize Visible Area"); if (name == "Channels") return tr("Channels"); return ""; } Layer::PropertyType WaveformLayer::getPropertyType(const PropertyName &name) const { if (name == "Gain") return RangeProperty; if (name == "Normalize Visible Area") return ToggleProperty; if (name == "Colour") return ValueProperty; if (name == "Channels") return ValueProperty; if (name == "Scale") return ValueProperty; return InvalidProperty; } QString WaveformLayer::getPropertyGroupName(const PropertyName &name) const { if (name == "Gain" || name == "Normalize Visible Area" || name == "Scale") return tr("Scale"); return QString(); } int WaveformLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max) const { int deft = 0; int garbage0, garbage1; if (!min) min = &garbage0; if (!max) max = &garbage1; if (name == "Gain") { *min = -50; *max = 50; deft = lrint(log10(m_gain) * 20.0); if (deft < *min) deft = *min; if (deft > *max) deft = *max; } else if (name == "Normalize Visible Area") { deft = (m_autoNormalize ? 1 : 0); } else if (name == "Colour") { *min = 0; *max = 5; if (m_colour == Qt::black) deft = 0; else if (m_colour == Qt::darkRed) deft = 1; else if (m_colour == Qt::darkBlue) deft = 2; else if (m_colour == Qt::darkGreen) deft = 3; else if (m_colour == QColor(200, 50, 255)) deft = 4; else if (m_colour == QColor(255, 150, 50)) deft = 5; } else if (name == "Channels") { *min = 0; *max = 2; if (m_channelMode == MixChannels) deft = 1; else if (m_channelMode == MergeChannels) deft = 2; else deft = 0; } else if (name == "Scale") { *min = 0; *max = 2; deft = (int)m_scale; } else { deft = Layer::getPropertyRangeAndValue(name, min, max); } return deft; } QString WaveformLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == "Colour") { switch (value) { default: case 0: return tr("Black"); case 1: return tr("Red"); case 2: return tr("Blue"); case 3: return tr("Green"); case 4: return tr("Purple"); case 5: return tr("Orange"); } } if (name == "Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Meter"); case 2: return tr("dB"); } } if (name == "Channels") { switch (value) { default: case 0: return tr("Separate"); case 1: return tr("Mean"); case 2: return tr("Butterfly"); } } return tr("<unknown>"); } RangeMapper * WaveformLayer::getNewPropertyRangeMapper(const PropertyName &name) const { if (name == "Gain") { return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); } return 0; } void WaveformLayer::setProperty(const PropertyName &name, int value) { if (name == "Gain") { setGain(pow(10, float(value)/20.0)); } else if (name == "Normalize Visible Area") { setAutoNormalize(value ? true : false); } else if (name == "Colour") { switch (value) { default: case 0: setBaseColour(Qt::black); break; case 1: setBaseColour(Qt::darkRed); break; case 2: setBaseColour(Qt::darkBlue); break; case 3: setBaseColour(Qt::darkGreen); break; case 4: setBaseColour(QColor(200, 50, 255)); break; case 5: setBaseColour(QColor(255, 150, 50)); break; } } else if (name == "Channels") { if (value == 1) setChannelMode(MixChannels); else if (value == 2) setChannelMode(MergeChannels); else setChannelMode(SeparateChannels); } else if (name == "Scale") { switch (value) { default: case 0: setScale(LinearScale); break; case 1: setScale(MeterScale); break; case 2: setScale(dBScale); break; } } } void WaveformLayer::setGain(float gain) { if (m_gain == gain) return; m_gain = gain; m_cacheValid = false; emit layerParametersChanged(); emit verticalZoomChanged(); } void WaveformLayer::setAutoNormalize(bool autoNormalize) { if (m_autoNormalize == autoNormalize) return; m_autoNormalize = autoNormalize; m_cacheValid = false; emit layerParametersChanged(); } void WaveformLayer::setBaseColour(QColor colour) { if (m_colour == colour) return; m_colour = colour; m_cacheValid = false; emit layerParametersChanged(); } void WaveformLayer::setShowMeans(bool showMeans) { if (m_showMeans == showMeans) return; m_showMeans = showMeans; m_cacheValid = false; emit layerParametersChanged(); } void WaveformLayer::setUseGreyscale(bool useGreyscale) { if (m_greyscale == useGreyscale) return; m_greyscale = useGreyscale; m_cacheValid = false; emit layerParametersChanged(); } void WaveformLayer::setChannelMode(ChannelMode channelMode) { if (m_channelMode == channelMode) return; m_channelMode = channelMode; m_cacheValid = false; emit layerParametersChanged(); } void WaveformLayer::setChannel(int channel) { // std::cerr << "WaveformLayer::setChannel(" << channel << ")" << std::endl; if (m_channel == channel) return; m_channel = channel; m_cacheValid = false; emit layerParametersChanged(); } void WaveformLayer::setScale(Scale scale) { if (m_scale == scale) return; m_scale = scale; m_cacheValid = false; emit layerParametersChanged(); } void WaveformLayer::setAggressiveCacheing(bool aggressive) { if (m_aggressive == aggressive) return; m_aggressive = aggressive; m_cacheValid = false; emit layerParametersChanged(); } int WaveformLayer::getCompletion(View *) const { int completion = 100; if (!m_model || !m_model->isOK()) return completion; if (m_model->isReady(&completion)) return 100; return completion; } bool WaveformLayer::getValueExtents(float &min, float &max, bool &log, QString &unit) const { if (m_scale == LinearScale) { min = 0.0; max = 1.0; unit = "V"; } else if (m_scale == MeterScale) { return false; //!!! } else { min = AudioLevel::multiplier_to_dB(0.0); max = AudioLevel::multiplier_to_dB(1.0); unit = "dB"; } return true; } int WaveformLayer::dBscale(float sample, int m) const { //!!! if (sample < 0.0) return -dBscale(-sample, m); if (sample < 0.0) return dBscale(-sample, m); float dB = AudioLevel::multiplier_to_dB(sample); if (dB < -50.0) return 0; if (dB > 0.0) return m; return int(((dB + 50.0) * m) / 50.0 + 0.1); } size_t WaveformLayer::getChannelArrangement(size_t &min, size_t &max, bool &merging, bool &mixing) const { if (!m_model || !m_model->isOK()) return 0; size_t channels = m_model->getChannelCount(); if (channels == 0) return 0; size_t rawChannels = channels; if (m_channel == -1) { min = 0; if (m_channelMode == MergeChannels || m_channelMode == MixChannels) { max = 0; channels = 1; } else { max = channels - 1; } } else { min = m_channel; max = m_channel; rawChannels = 1; channels = 1; } merging = (m_channelMode == MergeChannels && rawChannels > 1); mixing = (m_channelMode == MixChannels && rawChannels > 1); // std::cerr << "WaveformLayer::getChannelArrangement: min " << min << ", max " << max << ", merging " << merging << ", channels " << channels << std::endl; return channels; } bool WaveformLayer::isLayerScrollable(const View *) const { return !m_autoNormalize; } static float meterdbs[] = { -40, -30, -20, -15, -10, -5, -3, -2, -1, -0.5, 0 }; void WaveformLayer::paint(View *v, QPainter &viewPainter, QRect rect) const { if (!m_model || !m_model->isOK()) { return; } long startFrame = v->getStartFrame(); int zoomLevel = v->getZoomLevel(); #ifdef DEBUG_WAVEFORM_PAINT Profiler profiler("WaveformLayer::paint", true); std::cerr << "WaveformLayer::paint (" << rect.x() << "," << rect.y() << ") [" << rect.width() << "x" << rect.height() << "]: zoom " << zoomLevel << ", start " << startFrame << std::endl; #endif size_t channels = 0, minChannel = 0, maxChannel = 0; bool mergingChannels = false, mixingChannels = false; channels = getChannelArrangement(minChannel, maxChannel, mergingChannels, mixingChannels); if (channels == 0) return; int w = v->width(); int h = v->height(); bool ready = m_model->isReady(); QPainter *paint; if (m_aggressive) { if (m_cacheValid && (zoomLevel != m_cacheZoomLevel)) { m_cacheValid = false; } if (m_cacheValid) { viewPainter.drawPixmap(rect, *m_cache, rect); return; } if (!m_cache || m_cache->width() != w || m_cache->height() != h) { delete m_cache; m_cache = new QPixmap(w, h); } paint = new QPainter(m_cache); paint->setPen(Qt::NoPen); paint->setBrush(v->palette().background()); paint->drawRect(rect); paint->setPen(Qt::black); paint->setBrush(Qt::NoBrush); } else { paint = &viewPainter; } paint->setRenderHint(QPainter::Antialiasing, false); int x0 = 0, x1 = w - 1; int y0 = 0, y1 = h - 1; x0 = rect.left(); x1 = rect.right(); y0 = rect.top(); y1 = rect.bottom(); if (x0 > 0) --x0; if (x1 < v->width()) ++x1; long frame0 = v->getFrameForX(x0); long frame1 = v->getFrameForX(x1 + 1); #ifdef DEBUG_WAVEFORM_PAINT std::cerr << "Painting waveform from " << frame0 << " to " << frame1 << " (" << (x1-x0+1) << " pixels at zoom " << zoomLevel << ")" << std::endl; #endif RangeSummarisableTimeValueModel::RangeBlock ranges; RangeSummarisableTimeValueModel::RangeBlock otherChannelRanges; RangeSummarisableTimeValueModel::Range range; QColor greys[3]; if (m_colour == Qt::black) { for (int i = 0; i < 3; ++i) { // 0 lightest, 2 darkest int level = 192 - 64 * i; greys[i] = QColor(level, level, level); } } else { int hue, sat, val; m_colour.getHsv(&hue, &sat, &val); for (int i = 0; i < 3; ++i) { // 0 lightest, 2 darkest if (v->hasLightBackground()) { greys[i] = QColor::fromHsv(hue, sat * (i + 1) / 4, val); } else { greys[i] = QColor::fromHsv(hue, sat * (3 - i) / 4, val); } } } QColor midColour = m_colour; if (midColour == Qt::black) { midColour = Qt::gray; } else if (v->hasLightBackground()) { midColour = midColour.light(150); } else { midColour = midColour.light(50); } while (m_effectiveGains.size() <= maxChannel) { m_effectiveGains.push_back(m_gain); } for (size_t ch = minChannel; ch <= maxChannel; ++ch) { int prevRangeBottom = -1, prevRangeTop = -1; QColor prevRangeBottomColour = m_colour, prevRangeTopColour = m_colour; m_effectiveGains[ch] = m_gain; if (m_autoNormalize) { RangeSummarisableTimeValueModel::Range range = m_model->getRange(ch, startFrame < 0 ? 0 : startFrame, v->getEndFrame()); if (mergingChannels || mixingChannels) { RangeSummarisableTimeValueModel::Range otherRange = m_model->getRange(1, startFrame < 0 ? 0 : startFrame, v->getEndFrame()); range.max = std::max(range.max, otherRange.max); range.min = std::min(range.min, otherRange.min); range.absmean = std::min(range.absmean, otherRange.absmean); } m_effectiveGains[ch] = 1.0 / std::max(fabsf(range.max), fabsf(range.min)); } float gain = m_effectiveGains[ch]; int m = (h / channels) / 2; int my = m + (((ch - minChannel) * h) / channels); // std::cerr << "ch = " << ch << ", channels = " << channels << ", m = " << m << ", my = " << my << ", h = " << h << std::endl; if (my - m > y1 || my + m < y0) continue; if ((m_scale == dBScale || m_scale == MeterScale) && m_channelMode != MergeChannels) { m = (h / channels); my = m + (((ch - minChannel) * h) / channels); } paint->setPen(greys[0]); paint->drawLine(x0, my, x1, my); int n = 10; int py = -1; if (v->hasLightBackground()) { paint->setPen(QColor(240, 240, 240)); for (int i = 1; i < n; ++i) { float val = 0.0, nval = 0.0; switch (m_scale) { case LinearScale: val = (i * gain) / n; if (i > 0) nval = -val; break; case MeterScale: val = AudioLevel::dB_to_multiplier(meterdbs[i]) * gain; break; case dBScale: val = AudioLevel::dB_to_multiplier(-(10*n) + i * 10) * gain; break; } if (val < -1.0 || val > 1.0) continue; int y = getYForValue(v, m_scale, val, ch, minChannel, maxChannel); if (py >= 0 && abs(y - py) < 10) continue; else py = y; int ny = y; if (nval != 0.0) { ny = getYForValue(v, m_scale, nval, ch, minChannel, maxChannel); } paint->drawLine(x0, y, x1, y); if (ny != y) { paint->drawLine(x0, ny, x1, ny); } } } if (frame1 <= 0) continue; size_t modelZoomLevel = zoomLevel; ranges = m_model->getRanges (ch, frame0 < 0 ? 0 : frame0, frame1, modelZoomLevel); if (mergingChannels || mixingChannels) { if (m_model->getChannelCount() > 1) { otherChannelRanges = m_model->getRanges (1, frame0 < 0 ? 0 : frame0, frame1, modelZoomLevel); } else { otherChannelRanges = ranges; } } for (int x = x0; x <= x1; ++x) { range = RangeSummarisableTimeValueModel::Range(); size_t index = x - x0; size_t maxIndex = index; if (frame0 < 0) { if (index < size_t(-frame0 / zoomLevel)) { continue; } else { index -= -frame0 / zoomLevel; maxIndex = index; } } if (int(modelZoomLevel) != zoomLevel) { index = size_t((double(index) * zoomLevel) / modelZoomLevel); if (int(modelZoomLevel) < zoomLevel) { // Peaks may be missed! The model should avoid // this by rounding zoom levels up rather than // down, but we'd better cope in case it doesn't maxIndex = index; } else { maxIndex = size_t((double(index + 1) * zoomLevel) / modelZoomLevel) - 1; } } if (index < ranges.size()) { range = ranges[index]; if (maxIndex > index && maxIndex < ranges.size()) { range.max = std::max(range.max, ranges[maxIndex].max); range.min = std::min(range.min, ranges[maxIndex].min); range.absmean = (range.absmean + ranges[maxIndex].absmean) / 2; } } else { continue; } int rangeBottom = 0, rangeTop = 0, meanBottom = 0, meanTop = 0; if (mergingChannels) { if (index < otherChannelRanges.size()) { range.max = fabsf(range.max); range.min = -fabsf(otherChannelRanges[index].max); range.absmean = (range.absmean + otherChannelRanges[index].absmean) / 2; if (maxIndex > index && maxIndex < ranges.size()) { // let's not concern ourselves about the mean range.min = std::min (range.min, -fabsf(otherChannelRanges[maxIndex].max)); } } } else if (mixingChannels) { if (index < otherChannelRanges.size()) { range.max = (range.max + otherChannelRanges[index].max) / 2; range.min = (range.min + otherChannelRanges[index].min) / 2; range.absmean = (range.absmean + otherChannelRanges[index].absmean) / 2; } } int greyLevels = 1; if (m_greyscale && (m_scale == LinearScale)) greyLevels = 4; switch (m_scale) { case LinearScale: rangeBottom = int( m * greyLevels * range.min * gain); rangeTop = int( m * greyLevels * range.max * gain); meanBottom = int(-m * range.absmean * gain); meanTop = int( m * range.absmean * gain); break; case dBScale: if (!mergingChannels) { int db0 = dBscale(range.min * gain, m); int db1 = dBscale(range.max * gain, m); rangeTop = std::max(db0, db1); meanTop = std::min(db0, db1); if (mixingChannels) rangeBottom = meanTop; else rangeBottom = dBscale(range.absmean * gain, m); meanBottom = rangeBottom; } else { rangeBottom = -dBscale(range.min * gain, m * greyLevels); rangeTop = dBscale(range.max * gain, m * greyLevels); meanBottom = -dBscale(range.absmean * gain, m); meanTop = dBscale(range.absmean * gain, m); } break; case MeterScale: if (!mergingChannels) { int r0 = abs(AudioLevel::multiplier_to_preview(range.min * gain, m)); int r1 = abs(AudioLevel::multiplier_to_preview(range.max * gain, m)); rangeTop = std::max(r0, r1); meanTop = std::min(r0, r1); if (mixingChannels) rangeBottom = meanTop; else rangeBottom = AudioLevel::multiplier_to_preview(range.absmean * gain, m); meanBottom = rangeBottom; } else { rangeBottom = AudioLevel::multiplier_to_preview(range.min * gain, m * greyLevels); rangeTop = AudioLevel::multiplier_to_preview(range.max * gain, m * greyLevels); meanBottom = -AudioLevel::multiplier_to_preview(range.absmean * gain, m); meanTop = AudioLevel::multiplier_to_preview(range.absmean * gain, m); } break; } rangeBottom = my * greyLevels - rangeBottom; rangeTop = my * greyLevels - rangeTop; meanBottom = my - meanBottom; meanTop = my - meanTop; int topFill = (rangeTop % greyLevels); if (topFill > 0) topFill = greyLevels - topFill; int bottomFill = (rangeBottom % greyLevels); rangeTop = rangeTop / greyLevels; rangeBottom = rangeBottom / greyLevels; bool clipped = false; if (rangeTop < my - m) { rangeTop = my - m; } if (rangeTop > my + m) { rangeTop = my + m; } if (rangeBottom < my - m) { rangeBottom = my - m; } if (rangeBottom > my + m) { rangeBottom = my + m; } if (range.max <= -1.0 || range.max >= 1.0) clipped = true; if (meanBottom > rangeBottom) meanBottom = rangeBottom; if (meanTop < rangeTop) meanTop = rangeTop; bool drawMean = m_showMeans; if (meanTop == rangeTop) { if (meanTop < meanBottom) ++meanTop; else drawMean = false; } if (meanBottom == rangeBottom && m_scale == LinearScale) { if (meanBottom > meanTop) --meanBottom; else drawMean = false; } if (x != x0 && prevRangeBottom != -1) { if (prevRangeBottom > rangeBottom && prevRangeTop > rangeBottom) { // paint->setPen(midColour); paint->setPen(m_colour); paint->drawLine(x-1, prevRangeTop, x, rangeBottom); paint->setPen(prevRangeTopColour); paint->drawPoint(x-1, prevRangeTop); } else if (prevRangeBottom < rangeTop && prevRangeTop < rangeTop) { // paint->setPen(midColour); paint->setPen(m_colour); paint->drawLine(x-1, prevRangeBottom, x, rangeTop); paint->setPen(prevRangeBottomColour); paint->drawPoint(x-1, prevRangeBottom); } } if (ready) { if (clipped /*!!! || range.min * gain <= -1.0 || range.max * gain >= 1.0 */) { paint->setPen(Qt::red); } else { paint->setPen(m_colour); } } else { paint->setPen(midColour); } paint->drawLine(x, rangeBottom, x, rangeTop); prevRangeTopColour = m_colour; prevRangeBottomColour = m_colour; if (m_greyscale && (m_scale == LinearScale) && ready) { if (!clipped) { if (rangeTop < rangeBottom) { if (topFill > 0 && (!drawMean || (rangeTop < meanTop - 1))) { paint->setPen(greys[topFill - 1]); paint->drawPoint(x, rangeTop); prevRangeTopColour = greys[topFill - 1]; } if (bottomFill > 0 && (!drawMean || (rangeBottom > meanBottom + 1))) { paint->setPen(greys[bottomFill - 1]); paint->drawPoint(x, rangeBottom); prevRangeBottomColour = greys[bottomFill - 1]; } } } } if (drawMean) { paint->setPen(midColour); paint->drawLine(x, meanBottom, x, meanTop); } prevRangeBottom = rangeBottom; prevRangeTop = rangeTop; } } if (m_aggressive) { if (ready && rect == v->rect()) { m_cacheValid = true; m_cacheZoomLevel = zoomLevel; } paint->end(); delete paint; viewPainter.drawPixmap(rect, *m_cache, rect); } } QString WaveformLayer::getFeatureDescription(View *v, QPoint &pos) const { int x = pos.x(); if (!m_model || !m_model->isOK()) return ""; long f0 = v->getFrameForX(x); long f1 = v->getFrameForX(x + 1); if (f0 < 0) f0 = 0; if (f1 <= f0) return ""; QString text; RealTime rt0 = RealTime::frame2RealTime(f0, m_model->getSampleRate()); RealTime rt1 = RealTime::frame2RealTime(f1, m_model->getSampleRate()); if (f1 != f0 + 1 && (rt0.sec != rt1.sec || rt0.msec() != rt1.msec())) { text += tr("Time:\t%1 - %2") .arg(rt0.toText(true).c_str()) .arg(rt1.toText(true).c_str()); } else { text += tr("Time:\t%1") .arg(rt0.toText(true).c_str()); } size_t channels = 0, minChannel = 0, maxChannel = 0; bool mergingChannels = false, mixingChannels = false; channels = getChannelArrangement(minChannel, maxChannel, mergingChannels, mixingChannels); if (channels == 0) return ""; for (size_t ch = minChannel; ch <= maxChannel; ++ch) { size_t blockSize = v->getZoomLevel(); RangeSummarisableTimeValueModel::RangeBlock ranges = m_model->getRanges(ch, f0, f1, blockSize); if (ranges.empty()) continue; RangeSummarisableTimeValueModel::Range range = ranges[0]; QString label = tr("Level:"); if (minChannel != maxChannel) { if (ch == 0) label = tr("Left:"); else if (ch == 1) label = tr("Right:"); else label = tr("Channel %1").arg(ch + 1); } bool singleValue = false; float min, max; if (fabs(range.min) < 0.01) { min = range.min; max = range.max; singleValue = (min == max); } else { int imin = int(range.min * 1000); int imax = int(range.max * 1000); singleValue = (imin == imax); min = float(imin)/1000; max = float(imax)/1000; } int db = int(AudioLevel::multiplier_to_dB(std::max(fabsf(range.min), fabsf(range.max))) * 100); if (!singleValue) { text += tr("\n%1\t%2 - %3 (%4 dB peak)") .arg(label).arg(min).arg(max).arg(float(db)/100); } else { text += tr("\n%1\t%2 (%3 dB peak)") .arg(label).arg(min).arg(float(db)/100); } } return text; } int WaveformLayer::getYForValue(View *v, Scale scale, float value, size_t channel, size_t minChannel, size_t maxChannel) const { if (maxChannel < minChannel || channel < minChannel) return 0; int w = v->width(); int h = v->height(); int channels = maxChannel - minChannel + 1; int m = (h / channels) / 2; int my = m + (((channel - minChannel) * h) / channels); if ((m_scale == dBScale || m_scale == MeterScale) && m_channelMode != MergeChannels) { m = (h / channels); my = m + (((channel - minChannel) * h) / channels); } int vy = 0; switch (scale) { case LinearScale: vy = int(m * value); break; case MeterScale: vy = AudioLevel::multiplier_to_preview(value, m); break; case dBScale: vy = dBscale(value, m); break; } return my - vy; } int WaveformLayer::getVerticalScaleWidth(View *v, QPainter &paint) const { if (m_scale == LinearScale) { return paint.fontMetrics().width("0.0") + 13; } else { return std::max(paint.fontMetrics().width(tr("0dB")), paint.fontMetrics().width(tr("-Inf"))) + 13; } } void WaveformLayer::paintVerticalScale(View *v, QPainter &paint, QRect rect) const { if (!m_model || !m_model->isOK()) { return; } size_t channels = 0, minChannel = 0, maxChannel = 0; bool mergingChannels = false, mixingChannels = false; channels = getChannelArrangement(minChannel, maxChannel, mergingChannels, mixingChannels); if (channels == 0) return; int h = rect.height(), w = rect.width(); int textHeight = paint.fontMetrics().height(); int toff = -textHeight/2 + paint.fontMetrics().ascent() + 1; float gain = m_gain; for (size_t ch = minChannel; ch <= maxChannel; ++ch) { int lastLabelledY = -1; if (ch < m_effectiveGains.size()) gain = m_effectiveGains[ch]; int n = 10; for (int i = 0; i <= n; ++i) { float val = 0.0, nval = 0.0; QString text = ""; switch (m_scale) { case LinearScale: val = (i * gain) / n; text = QString("%1").arg(float(i) / n); if (i == 0) text = "0.0"; else { nval = -val; if (i == n) text = "1.0"; } break; case MeterScale: val = AudioLevel::dB_to_multiplier(meterdbs[i]) * gain; text = QString("%1").arg(meterdbs[i]); if (i == n) text = tr("0dB"); if (i == 0) { text = tr("-Inf"); val = 0.0; } break; case dBScale: val = AudioLevel::dB_to_multiplier(-(10*n) + i * 10) * gain; text = QString("%1").arg(-(10*n) + i * 10); if (i == n) text = tr("0dB"); if (i == 0) { text = tr("-Inf"); val = 0.0; } break; } if (val < -1.0 || val > 1.0) continue; int y = getYForValue(v, m_scale, val, ch, minChannel, maxChannel); int ny = y; if (nval != 0.0) { ny = getYForValue(v, m_scale, nval, ch, minChannel, maxChannel); } bool spaceForLabel = (i == 0 || abs(y - lastLabelledY) >= textHeight - 1); if (spaceForLabel) { int tx = 3; if (m_scale != LinearScale) { tx = w - 10 - paint.fontMetrics().width(text); } int ty = y; if (ty < paint.fontMetrics().ascent()) { ty = paint.fontMetrics().ascent(); } else if (ty > h - paint.fontMetrics().descent()) { ty = h - paint.fontMetrics().descent(); } else { ty += toff; } paint.drawText(tx, ty, text); lastLabelledY = ty - toff; if (ny != y) { ty = ny; if (ty < paint.fontMetrics().ascent()) { ty = paint.fontMetrics().ascent(); } else if (ty > h - paint.fontMetrics().descent()) { ty = h - paint.fontMetrics().descent(); } else { ty += toff; } paint.drawText(tx, ty, text); } paint.drawLine(w - 7, y, w, y); if (ny != y) paint.drawLine(w - 7, ny, w, ny); } else { paint.drawLine(w - 4, y, w, y); if (ny != y) paint.drawLine(w - 4, ny, w, ny); } } } } QString WaveformLayer::toXmlString(QString indent, QString extraAttributes) const { QString s; s += QString("gain=\"%1\" " "colour=\"%2\" " "showMeans=\"%3\" " "greyscale=\"%4\" " "channelMode=\"%5\" " "channel=\"%6\" " "scale=\"%7\" " "aggressive=\"%8\" " "autoNormalize=\"%9\"") .arg(m_gain) .arg(encodeColour(m_colour)) .arg(m_showMeans) .arg(m_greyscale) .arg(m_channelMode) .arg(m_channel) .arg(m_scale) .arg(m_aggressive) .arg(m_autoNormalize); return Layer::toXmlString(indent, extraAttributes + " " + s); } void WaveformLayer::setProperties(const QXmlAttributes &attributes) { bool ok = false; float gain = attributes.value("gain").toFloat(&ok); if (ok) setGain(gain); QString colourSpec = attributes.value("colour"); if (colourSpec != "") { QColor colour(colourSpec); if (colour.isValid()) { setBaseColour(QColor(colourSpec)); } } bool showMeans = (attributes.value("showMeans") == "1" || attributes.value("showMeans") == "true"); setShowMeans(showMeans); bool greyscale = (attributes.value("greyscale") == "1" || attributes.value("greyscale") == "true"); setUseGreyscale(greyscale); ChannelMode channelMode = (ChannelMode) attributes.value("channelMode").toInt(&ok); if (ok) setChannelMode(channelMode); int channel = attributes.value("channel").toInt(&ok); if (ok) setChannel(channel); Scale scale = (Scale) attributes.value("scale").toInt(&ok); if (ok) setScale(scale); bool aggressive = (attributes.value("aggressive") == "1" || attributes.value("aggressive") == "true"); setUseGreyscale(aggressive); bool autoNormalize = (attributes.value("autoNormalize") == "1" || attributes.value("autoNormalize") == "true"); setAutoNormalize(autoNormalize); } int WaveformLayer::getVerticalZoomSteps(int &defaultStep) const { defaultStep = 50; return 100; } int WaveformLayer::getCurrentVerticalZoomStep() const { int val = lrint(log10(m_gain) * 20.0) + 50; if (val < 0) val = 0; if (val > 100) val = 100; return val; } void WaveformLayer::setVerticalZoomStep(int step) { setGain(pow(10, float(step - 50) / 20.0)); }