Mercurial > hg > svgui
view layer/Colour3DPlotRenderer.cpp @ 1079:7ebfb61b1701 spectrogram-minor-refactor
More filling in render & cache code
author | Chris Cannam |
---|---|
date | Thu, 30 Jun 2016 15:46:14 +0100 |
parents | 5144d7185fb5 |
children | 2e5945b87aca |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2016 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "Colour3DPlotRenderer.h" #include "RenderTimer.h" #include "data/model/DenseThreeDimensionalModel.h" #include "data/model/Dense3DModelPeakCache.h" #include "data/model/FFTModel.h" #include "LayerGeometryProvider.h" #include <vector> using namespace std; Colour3DPlotRenderer::RenderResult Colour3DPlotRenderer::render(QPainter &paint, QRect rect) { return render(paint, rect, false); } Colour3DPlotRenderer::RenderResult Colour3DPlotRenderer::renderTimeConstrained(QPainter &paint, QRect rect) { return render(paint, rect, true); } Colour3DPlotRenderer::RenderResult Colour3DPlotRenderer::render(QPainter &paint, QRect rect, bool timeConstrained) { LayerGeometryProvider *v = m_sources.geometryProvider; if (!v) { throw std::logic_error("no LayerGeometryProvider provided"); } sv_frame_t startFrame = v->getStartFrame(); int zoomLevel = v->getZoomLevel(); int x0 = v->getXForViewX(rect.x()); int x1 = v->getXForViewX(rect.x() + rect.width()); if (x0 < 0) x0 = 0; if (x1 > v->getPaintWidth()) x1 = v->getPaintWidth(); m_cache.resize(v->getPaintSize()); m_cache.setZoomLevel(v->getZoomLevel()); if (m_cache.isValid()) { // some part of the cache is valid if (v->getXForFrame(m_cache.getStartFrame()) == v->getXForFrame(startFrame) && m_cache.getValidLeft() <= x0 && m_cache.getValidRight() >= x1) { // cache is valid for the complete requested area paint.drawImage(rect, m_cache.getImage(), rect); return { rect, {} }; } else { // cache doesn't begin at the right frame or doesn't // contain the complete view, but might be scrollable or // partially usable m_cache.scrollTo(startFrame); // if we are not time-constrained, then we want to paint // the whole area in one go, and we're not going to // provide the more complex logic to handle that if there // are discontiguous areas involved. So if the only valid // part of cache is in the middle, just make the whole // thing invalid and start again. if (!timeConstrained) { if (m_cache.getValidLeft() > x0 && m_cache.getValidRight() < x1) { m_cache.invalidate(); } } } } bool rightToLeft = false; if (!m_cache.isValid() && timeConstrained) { // When rendering the whole thing in a context where we // might not be able to complete the work, start from // somewhere near the middle so that the region of // interest appears first //!!! (perhaps we should avoid doing this if past repaints //!!! have been fast enough to do the whole in one shot) if (x0 == 0 && x1 == v->getPaintWidth()) { x0 = int(x1 * 0.3); } } if (m_cache.isValid()) { // When rendering only a part of the cache, we need to make // sure that the part we're rendering is adjacent to (or // overlapping) a valid area of cache, if we have one. The // alternative is to ditch the valid area of cache and render // only the requested area, but that's risky because this can // happen when just waving the pointer over a small part of // the view -- if we lose the partly-built cache every time // the user does that, we'll never finish building it. int left = x0; int width = x1 - x0; bool isLeftOfValidArea = false; m_cache.adjustToTouchValidArea(left, width, isLeftOfValidArea); x0 = left; x1 = x0 + width; // That call also told us whether we should be painting // sub-regions of our target region in right-to-left order in // order to ensure contiguity rightToLeft = isLeftOfValidArea; } int repaintWidth = x1 - x0; QRect rendered = renderToCache(x0, repaintWidth, timeConstrained); QRect pr = rect & m_cache.getValidArea(); paint.drawImage(pr.x(), pr.y(), m_cache.getImage(), pr.x(), pr.y(), pr.width(), pr.height()); if (!timeConstrained && (pr != rect)) { //!!! on a first cut, there is a risk that this will happen //!!! when we are at start/end of model -- trap, report, and //!!! then fix throw std::logic_error("internal error: failed to render entire requested rect even when not time-constrained"); } return { pr, {} }; //!!! todo: timing/incomplete paint //!!! todo: peak frequency style //!!! todo: transparent style from Colour3DPlot //!!! todo: bin boundary alignment when in BinResolution //!!! todo: view magnitudes / normalise visible area //!!! todo: alter documentation for view mag stuff (cached paints //!!! do not update MagnitudeRange) //!!! todo, here or in caller: illuminateLocalFeatures //!!! fft model scaling? //!!! should we own the Dense3DModelPeakCache here? or should it persist } QRect Colour3DPlotRenderer::renderToCache(int x0, int repaintWidth, bool timeConstrained) { // Draw to the draw buffer, and then scale-copy from there. DenseThreeDimensionalModel *model = m_sources.source; if (!model || !model->isOK() || !model->isReady()) { throw std::logic_error("no source model provided, or model not ready"); } LayerGeometryProvider *v = m_sources.geometryProvider; // already checked // The draw buffer contains a fragment at either our pixel // resolution (if there is more than one time-bin per pixel) or // time-bin resolution (if a time-bin spans more than one pixel). // We need to ensure that it starts and ends at points where a // time-bin boundary occurs at an exact pixel boundary, and with a // certain amount of overlap across existing pixels so that we can // scale and draw from it without smoothing errors at the edges. // If (getFrameForX(x) / increment) * increment == // getFrameForX(x), then x is a time-bin boundary. We want two // such boundaries at either side of the draw buffer -- one which // we draw up to, and one which we subsequently crop at. bool bufferIsBinResolution = false; int binResolution = model->getResolution(); int zoomLevel = v->getZoomLevel(); if (binResolution > zoomLevel) bufferIsBinResolution = true; sv_frame_t leftBoundaryFrame = -1, leftCropFrame = -1; sv_frame_t rightBoundaryFrame = -1, rightCropFrame = -1; int drawWidth; if (bufferIsBinResolution) { for (int x = x0; ; --x) { sv_frame_t f = v->getFrameForX(x); if ((f / binResolution) * binResolution == f) { if (leftCropFrame == -1) leftCropFrame = f; else if (x < x0 - 2) { leftBoundaryFrame = f; break; } } } for (int x = x0 + repaintWidth; ; ++x) { sv_frame_t f = v->getFrameForX(x); if ((f / binResolution) * binResolution == f) { if (rightCropFrame == -1) rightCropFrame = f; else if (x > x0 + repaintWidth + 2) { rightBoundaryFrame = f; break; } } } drawWidth = int((rightBoundaryFrame - leftBoundaryFrame) / binResolution); } else { drawWidth = repaintWidth; } // We always paint the full height. Smaller heights can be used // when painting direct from cache (outside this function), but we // want to ensure the cache is coherent without having to worry // about vertical matching of required and valid areas as well as // horizontal. That's why this function didn't take any y/height // parameters. int h = v->getPaintHeight(); clearDrawBuffer(drawWidth, h); vector<int> binforx(drawWidth); vector<double> binfory(h); bool usePeaksCache = false; int binsPerPeak = 1; if (bufferIsBinResolution) { for (int x = 0; x < drawWidth; ++x) { binforx[x] = int(leftBoundaryFrame / binResolution) + x; } } else { for (int x = 0; x < drawWidth; ++x) { sv_frame_t f0 = v->getFrameForX(x); double s0 = double(f0 - model->getStartFrame()) / binResolution; binforx[x] = int(s0 + 0.0001); } if (m_sources.peaks) { // peaks cache exists binsPerPeak = m_sources.peaks->getColumnsPerPeak(); usePeaksCache = (binResolution * binsPerPeak) < zoomLevel; if (m_params.colourScale.getScale() == ColourScale::PhaseColourScale) { usePeaksCache = false; } } } int attainedDrawWidth = drawWidth; //!!! todo: all } void Colour3DPlotRenderer::clearDrawBuffer(int w, int h) { if (m_drawBuffer.width() < w || m_drawBuffer.height() != h) { m_drawBuffer = QImage(w, h, QImage::Format_Indexed8); for (int pixel = 0; pixel < 256; ++pixel) { //!!! todo: colour rotation (here 0) m_drawBuffer.setColor ((unsigned char)pixel, m_params.colourScale.getColourForPixel(pixel, 0).rgb()); } } m_drawBuffer.fill(0); }