Mercurial > hg > svgui
view layer/SpectrogramLayer.cpp @ 589:7ebd5a21d74f sonification
Branch to handle audio feedback and metadata sonification interactively with the UI.
Piano keyboard audio feedback:
The midi pitch of a piano keyboard note is retrieved in SpectrogramLayer::processMouseEvent when a left click is made on the note in the Select tool mode (SpectrogramLayer with a log frequency scale). The same process should be applied to the Spectrum layer (log frequency scale) as well.
author | mathieub <mathieu.barthet@eecs.qmul.ac.uk> |
---|---|
date | Wed, 22 Jun 2011 00:04:21 +0100 |
parents | 4806715f7a19 |
children | 241929c5d57c |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2009 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "SpectrogramLayer.h" #include "view/View.h" #include "base/Profiler.h" #include "base/AudioLevel.h" #include "base/Window.h" #include "base/Pitch.h" #include "base/Preferences.h" #include "base/RangeMapper.h" #include "base/LogRange.h" #include "widgets/CommandHistory.h" #include "ColourMapper.h" #include "ImageRegionFinder.h" #include "data/model/Dense3DModelPeakCache.h" #include <QPainter> #include <QImage> #include <QPixmap> #include <QRect> #include <QTimer> #include <QApplication> #include <QMessageBox> #include <QMouseEvent> #include <QTextStream> #include <iostream> using std::cerr; using std::endl; #include <cassert> #include <cmath> #ifndef __GNUC__ #include <alloca.h> #endif //#define DEBUG_SPECTROGRAM_REPAINT 1 SpectrogramLayer::SpectrogramLayer(Configuration config) : m_model(0), m_channel(0), m_windowSize(1024), m_windowType(HanningWindow), m_windowHopLevel(2), m_zeroPadLevel(0), m_fftSize(1024), m_gain(1.0), m_initialGain(1.0), m_threshold(0.0), m_initialThreshold(0.0), m_colourRotation(0), m_initialRotation(0), m_minFrequency(10), m_maxFrequency(8000), m_initialMaxFrequency(8000), m_colourScale(dBColourScale), m_colourMap(0), m_frequencyScale(LinearFrequencyScale), m_binDisplay(AllBins), m_normalizeColumns(false), m_normalizeVisibleArea(false), m_lastEmittedZoomStep(-1), m_synchronous(false), m_lastPaintBlockWidth(0), m_updateTimer(0), m_candidateFillStartFrame(0), m_exiting(false), m_sliceableModel(0) { if (config == FullRangeDb) { m_initialMaxFrequency = 0; setMaxFrequency(0); } else if (config == MelodicRange) { setWindowSize(8192); setWindowHopLevel(4); m_initialMaxFrequency = 1500; setMaxFrequency(1500); setMinFrequency(40); setColourScale(LinearColourScale); setColourMap(ColourMapper::Sunset); setFrequencyScale(LogFrequencyScale); // setGain(20); } else if (config == MelodicPeaks) { setWindowSize(4096); setWindowHopLevel(5); m_initialMaxFrequency = 2000; setMaxFrequency(2000); setMinFrequency(40); setFrequencyScale(LogFrequencyScale); setColourScale(LinearColourScale); setBinDisplay(PeakFrequencies); setNormalizeColumns(true); } Preferences *prefs = Preferences::getInstance(); connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); setWindowType(prefs->getWindowType()); initialisePalette(); } SpectrogramLayer::~SpectrogramLayer() { delete m_updateTimer; m_updateTimer = 0; invalidateFFTModels(); } void SpectrogramLayer::setModel(const DenseTimeValueModel *model) { // std::cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << std::endl; if (model == m_model) return; m_model = model; invalidateFFTModels(); if (!m_model || !m_model->isOK()) return; connectSignals(m_model); connect(m_model, SIGNAL(modelChanged()), this, SLOT(cacheInvalid())); connect(m_model, SIGNAL(modelChanged(size_t, size_t)), this, SLOT(cacheInvalid(size_t, size_t))); emit modelReplaced(); } Layer::PropertyList SpectrogramLayer::getProperties() const { PropertyList list; list.push_back("Colour"); list.push_back("Colour Scale"); list.push_back("Window Size"); list.push_back("Window Increment"); list.push_back("Normalize Columns"); list.push_back("Normalize Visible Area"); list.push_back("Bin Display"); list.push_back("Threshold"); list.push_back("Gain"); list.push_back("Colour Rotation"); // list.push_back("Min Frequency"); // list.push_back("Max Frequency"); list.push_back("Frequency Scale"); //// list.push_back("Zero Padding"); return list; } QString SpectrogramLayer::getPropertyLabel(const PropertyName &name) const { if (name == "Colour") return tr("Colour"); if (name == "Colour Scale") return tr("Colour Scale"); if (name == "Window Size") return tr("Window Size"); if (name == "Window Increment") return tr("Window Overlap"); if (name == "Normalize Columns") return tr("Normalize Columns"); if (name == "Normalize Visible Area") return tr("Normalize Visible Area"); if (name == "Bin Display") return tr("Bin Display"); if (name == "Threshold") return tr("Threshold"); if (name == "Gain") return tr("Gain"); if (name == "Colour Rotation") return tr("Colour Rotation"); if (name == "Min Frequency") return tr("Min Frequency"); if (name == "Max Frequency") return tr("Max Frequency"); if (name == "Frequency Scale") return tr("Frequency Scale"); if (name == "Zero Padding") return tr("Smoothing"); return ""; } QString SpectrogramLayer::getPropertyIconName(const PropertyName &name) const { if (name == "Normalize Columns") return "normalise-columns"; if (name == "Normalize Visible Area") return "normalise"; return ""; } Layer::PropertyType SpectrogramLayer::getPropertyType(const PropertyName &name) const { if (name == "Gain") return RangeProperty; if (name == "Colour Rotation") return RangeProperty; if (name == "Normalize Columns") return ToggleProperty; if (name == "Normalize Visible Area") return ToggleProperty; if (name == "Threshold") return RangeProperty; if (name == "Zero Padding") return ToggleProperty; return ValueProperty; } QString SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const { if (name == "Bin Display" || name == "Frequency Scale") return tr("Bins"); if (name == "Window Size" || name == "Window Increment" || name == "Zero Padding") return tr("Window"); if (name == "Colour" || name == "Threshold" || name == "Colour Rotation") return tr("Colour"); if (name == "Normalize Columns" || name == "Normalize Visible Area" || name == "Gain" || name == "Colour Scale") return tr("Scale"); return QString(); } int SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max, int *deflt) const { int val = 0; int garbage0, garbage1, garbage2; if (!min) min = &garbage0; if (!max) max = &garbage1; if (!deflt) deflt = &garbage2; if (name == "Gain") { *min = -50; *max = 50; *deflt = lrintf(log10(m_initialGain) * 20.0);; if (*deflt < *min) *deflt = *min; if (*deflt > *max) *deflt = *max; val = lrintf(log10(m_gain) * 20.0); if (val < *min) val = *min; if (val > *max) val = *max; } else if (name == "Threshold") { *min = -50; *max = 0; *deflt = lrintf(AudioLevel::multiplier_to_dB(m_initialThreshold)); if (*deflt < *min) *deflt = *min; if (*deflt > *max) *deflt = *max; val = lrintf(AudioLevel::multiplier_to_dB(m_threshold)); if (val < *min) val = *min; if (val > *max) val = *max; } else if (name == "Colour Rotation") { *min = 0; *max = 256; *deflt = m_initialRotation; val = m_colourRotation; } else if (name == "Colour Scale") { *min = 0; *max = 4; *deflt = int(dBColourScale); val = (int)m_colourScale; } else if (name == "Colour") { *min = 0; *max = ColourMapper::getColourMapCount() - 1; *deflt = 0; val = m_colourMap; } else if (name == "Window Size") { *min = 0; *max = 10; *deflt = 5; val = 0; int ws = m_windowSize; while (ws > 32) { ws >>= 1; val ++; } } else if (name == "Window Increment") { *min = 0; *max = 5; *deflt = 2; val = m_windowHopLevel; } else if (name == "Zero Padding") { *min = 0; *max = 1; *deflt = 0; val = m_zeroPadLevel > 0 ? 1 : 0; } else if (name == "Min Frequency") { *min = 0; *max = 9; *deflt = 1; switch (m_minFrequency) { case 0: default: val = 0; break; case 10: val = 1; break; case 20: val = 2; break; case 40: val = 3; break; case 100: val = 4; break; case 250: val = 5; break; case 500: val = 6; break; case 1000: val = 7; break; case 4000: val = 8; break; case 10000: val = 9; break; } } else if (name == "Max Frequency") { *min = 0; *max = 9; *deflt = 6; switch (m_maxFrequency) { case 500: val = 0; break; case 1000: val = 1; break; case 1500: val = 2; break; case 2000: val = 3; break; case 4000: val = 4; break; case 6000: val = 5; break; case 8000: val = 6; break; case 12000: val = 7; break; case 16000: val = 8; break; default: val = 9; break; } } else if (name == "Frequency Scale") { *min = 0; *max = 1; *deflt = int(LinearFrequencyScale); val = (int)m_frequencyScale; } else if (name == "Bin Display") { *min = 0; *max = 2; *deflt = int(AllBins); val = (int)m_binDisplay; } else if (name == "Normalize Columns") { *deflt = 0; val = (m_normalizeColumns ? 1 : 0); } else if (name == "Normalize Visible Area") { *deflt = 0; val = (m_normalizeVisibleArea ? 1 : 0); } else { val = Layer::getPropertyRangeAndValue(name, min, max, deflt); } return val; } QString SpectrogramLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == "Colour") { return ColourMapper::getColourMapName(value); } if (name == "Colour Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Meter"); case 2: return tr("dBV^2"); case 3: return tr("dBV"); case 4: return tr("Phase"); } } if (name == "Window Size") { return QString("%1").arg(32 << value); } if (name == "Window Increment") { switch (value) { default: case 0: return tr("None"); case 1: return tr("25 %"); case 2: return tr("50 %"); case 3: return tr("75 %"); case 4: return tr("87.5 %"); case 5: return tr("93.75 %"); } } if (name == "Zero Padding") { if (value == 0) return tr("None"); return QString("%1x").arg(value + 1); } if (name == "Min Frequency") { switch (value) { default: case 0: return tr("No min"); case 1: return tr("10 Hz"); case 2: return tr("20 Hz"); case 3: return tr("40 Hz"); case 4: return tr("100 Hz"); case 5: return tr("250 Hz"); case 6: return tr("500 Hz"); case 7: return tr("1 KHz"); case 8: return tr("4 KHz"); case 9: return tr("10 KHz"); } } if (name == "Max Frequency") { switch (value) { default: case 0: return tr("500 Hz"); case 1: return tr("1 KHz"); case 2: return tr("1.5 KHz"); case 3: return tr("2 KHz"); case 4: return tr("4 KHz"); case 5: return tr("6 KHz"); case 6: return tr("8 KHz"); case 7: return tr("12 KHz"); case 8: return tr("16 KHz"); case 9: return tr("No max"); } } if (name == "Frequency Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Log"); } } if (name == "Bin Display") { switch (value) { default: case 0: return tr("All Bins"); case 1: return tr("Peak Bins"); case 2: return tr("Frequencies"); } } return tr("<unknown>"); } RangeMapper * SpectrogramLayer::getNewPropertyRangeMapper(const PropertyName &name) const { if (name == "Gain") { return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); } if (name == "Threshold") { return new LinearRangeMapper(-50, 0, -50, 0, tr("dB")); } return 0; } void SpectrogramLayer::setProperty(const PropertyName &name, int value) { if (name == "Gain") { setGain(pow(10, float(value)/20.0)); } else if (name == "Threshold") { if (value == -50) setThreshold(0.0); else setThreshold(AudioLevel::dB_to_multiplier(value)); } else if (name == "Colour Rotation") { setColourRotation(value); } else if (name == "Colour") { setColourMap(value); } else if (name == "Window Size") { setWindowSize(32 << value); } else if (name == "Window Increment") { setWindowHopLevel(value); } else if (name == "Zero Padding") { setZeroPadLevel(value > 0.1 ? 3 : 0); } else if (name == "Min Frequency") { switch (value) { default: case 0: setMinFrequency(0); break; case 1: setMinFrequency(10); break; case 2: setMinFrequency(20); break; case 3: setMinFrequency(40); break; case 4: setMinFrequency(100); break; case 5: setMinFrequency(250); break; case 6: setMinFrequency(500); break; case 7: setMinFrequency(1000); break; case 8: setMinFrequency(4000); break; case 9: setMinFrequency(10000); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Max Frequency") { switch (value) { case 0: setMaxFrequency(500); break; case 1: setMaxFrequency(1000); break; case 2: setMaxFrequency(1500); break; case 3: setMaxFrequency(2000); break; case 4: setMaxFrequency(4000); break; case 5: setMaxFrequency(6000); break; case 6: setMaxFrequency(8000); break; case 7: setMaxFrequency(12000); break; case 8: setMaxFrequency(16000); break; default: case 9: setMaxFrequency(0); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Colour Scale") { switch (value) { default: case 0: setColourScale(LinearColourScale); break; case 1: setColourScale(MeterColourScale); break; case 2: setColourScale(dBSquaredColourScale); break; case 3: setColourScale(dBColourScale); break; case 4: setColourScale(PhaseColourScale); break; } } else if (name == "Frequency Scale") { switch (value) { default: case 0: setFrequencyScale(LinearFrequencyScale); break; case 1: setFrequencyScale(LogFrequencyScale); break; } } else if (name == "Bin Display") { switch (value) { default: case 0: setBinDisplay(AllBins); break; case 1: setBinDisplay(PeakBins); break; case 2: setBinDisplay(PeakFrequencies); break; } } else if (name == "Normalize Columns") { setNormalizeColumns(value ? true : false); } else if (name == "Normalize Visible Area") { setNormalizeVisibleArea(value ? true : false); } } void SpectrogramLayer::invalidateImageCaches() { for (ViewImageCache::iterator i = m_imageCaches.begin(); i != m_imageCaches.end(); ++i) { i->second.validArea = QRect(); } } void SpectrogramLayer::invalidateImageCaches(size_t startFrame, size_t endFrame) { for (ViewImageCache::iterator i = m_imageCaches.begin(); i != m_imageCaches.end(); ++i) { //!!! when are views removed from the map? on setLayerDormant? const View *v = i->first; #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::invalidateImageCaches(" << startFrame << ", " << endFrame << "): view range is " << v->getStartFrame() << ", " << v->getEndFrame() << endl; std::cerr << "Valid area was: " << i->second.validArea.x() << ", " << i->second.validArea.y() << " " << i->second.validArea.width() << "x" << i->second.validArea.height() << std::endl; #endif if (long(startFrame) > v->getStartFrame()) { if (startFrame >= v->getEndFrame()) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Modified start frame is off right of view" << std::endl; #endif return; } int x = v->getXForFrame(startFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "clipping from 0 to " << x-1 << endl; #endif if (x > 1) { i->second.validArea &= QRect(0, 0, x-1, v->height()); } else { i->second.validArea = QRect(); } } else { if (long(endFrame) < v->getStartFrame()) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Modified end frame is off left of view" << std::endl; #endif return; } int x = v->getXForFrame(endFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "clipping from " << x+1 << " to " << v->width() << endl; #endif if (x < v->width()) { i->second.validArea &= QRect(x+1, 0, v->width()-(x+1), v->height()); } else { i->second.validArea = QRect(); } } #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Valid area is now: " << i->second.validArea.x() << ", " << i->second.validArea.y() << " " << i->second.validArea.width() << "x" << i->second.validArea.height() << std::endl; #endif } } void SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) { SVDEBUG << "SpectrogramLayer::preferenceChanged(" << name << ")" << endl; if (name == "Window Type") { setWindowType(Preferences::getInstance()->getWindowType()); return; } if (name == "Spectrogram Y Smoothing") { invalidateImageCaches(); invalidateMagnitudes(); emit layerParametersChanged(); } if (name == "Spectrogram X Smoothing") { invalidateImageCaches(); invalidateMagnitudes(); emit layerParametersChanged(); } if (name == "Tuning Frequency") { emit layerParametersChanged(); } } void SpectrogramLayer::setChannel(int ch) { if (m_channel == ch) return; invalidateImageCaches(); m_channel = ch; invalidateFFTModels(); emit layerParametersChanged(); } int SpectrogramLayer::getChannel() const { return m_channel; } void SpectrogramLayer::setWindowSize(size_t ws) { if (m_windowSize == ws) return; invalidateImageCaches(); m_windowSize = ws; m_fftSize = ws * (m_zeroPadLevel + 1); invalidateFFTModels(); emit layerParametersChanged(); } size_t SpectrogramLayer::getWindowSize() const { return m_windowSize; } void SpectrogramLayer::setWindowHopLevel(size_t v) { if (m_windowHopLevel == v) return; invalidateImageCaches(); m_windowHopLevel = v; invalidateFFTModels(); emit layerParametersChanged(); // fillCache(); } size_t SpectrogramLayer::getWindowHopLevel() const { return m_windowHopLevel; } void SpectrogramLayer::setZeroPadLevel(size_t v) { if (m_zeroPadLevel == v) return; invalidateImageCaches(); m_zeroPadLevel = v; m_fftSize = m_windowSize * (v + 1); invalidateFFTModels(); emit layerParametersChanged(); } size_t SpectrogramLayer::getZeroPadLevel() const { return m_zeroPadLevel; } void SpectrogramLayer::setWindowType(WindowType w) { if (m_windowType == w) return; invalidateImageCaches(); m_windowType = w; invalidateFFTModels(); emit layerParametersChanged(); } WindowType SpectrogramLayer::getWindowType() const { return m_windowType; } void SpectrogramLayer::setGain(float gain) { // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " // << m_gain << ")" << endl; if (m_gain == gain) return; invalidateImageCaches(); m_gain = gain; emit layerParametersChanged(); } float SpectrogramLayer::getGain() const { return m_gain; } void SpectrogramLayer::setThreshold(float threshold) { if (m_threshold == threshold) return; invalidateImageCaches(); m_threshold = threshold; emit layerParametersChanged(); } float SpectrogramLayer::getThreshold() const { return m_threshold; } void SpectrogramLayer::setMinFrequency(size_t mf) { if (m_minFrequency == mf) return; // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; invalidateImageCaches(); invalidateMagnitudes(); m_minFrequency = mf; emit layerParametersChanged(); } size_t SpectrogramLayer::getMinFrequency() const { return m_minFrequency; } void SpectrogramLayer::setMaxFrequency(size_t mf) { if (m_maxFrequency == mf) return; // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; invalidateImageCaches(); invalidateMagnitudes(); m_maxFrequency = mf; emit layerParametersChanged(); } size_t SpectrogramLayer::getMaxFrequency() const { return m_maxFrequency; } void SpectrogramLayer::setColourRotation(int r) { invalidateImageCaches(); if (r < 0) r = 0; if (r > 256) r = 256; int distance = r - m_colourRotation; if (distance != 0) { rotatePalette(-distance); m_colourRotation = r; } emit layerParametersChanged(); } void SpectrogramLayer::setColourScale(ColourScale colourScale) { if (m_colourScale == colourScale) return; invalidateImageCaches(); m_colourScale = colourScale; emit layerParametersChanged(); } SpectrogramLayer::ColourScale SpectrogramLayer::getColourScale() const { return m_colourScale; } void SpectrogramLayer::setColourMap(int map) { if (m_colourMap == map) return; invalidateImageCaches(); m_colourMap = map; initialisePalette(); emit layerParametersChanged(); } int SpectrogramLayer::getColourMap() const { return m_colourMap; } void SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale) { if (m_frequencyScale == frequencyScale) return; invalidateImageCaches(); m_frequencyScale = frequencyScale; emit layerParametersChanged(); } SpectrogramLayer::FrequencyScale SpectrogramLayer::getFrequencyScale() const { return m_frequencyScale; } void SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) { if (m_binDisplay == binDisplay) return; invalidateImageCaches(); m_binDisplay = binDisplay; emit layerParametersChanged(); } SpectrogramLayer::BinDisplay SpectrogramLayer::getBinDisplay() const { return m_binDisplay; } void SpectrogramLayer::setNormalizeColumns(bool n) { if (m_normalizeColumns == n) return; invalidateImageCaches(); invalidateMagnitudes(); m_normalizeColumns = n; emit layerParametersChanged(); } bool SpectrogramLayer::getNormalizeColumns() const { return m_normalizeColumns; } void SpectrogramLayer::setNormalizeVisibleArea(bool n) { SVDEBUG << "SpectrogramLayer::setNormalizeVisibleArea(" << n << ") (from " << m_normalizeVisibleArea << ")" << endl; if (m_normalizeVisibleArea == n) return; invalidateImageCaches(); invalidateMagnitudes(); m_normalizeVisibleArea = n; emit layerParametersChanged(); } bool SpectrogramLayer::getNormalizeVisibleArea() const { return m_normalizeVisibleArea; } void SpectrogramLayer::setLayerDormant(const View *v, bool dormant) { if (dormant) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::setLayerDormant(" << dormant << ")" << endl; #endif if (isLayerDormant(v)) { return; } Layer::setLayerDormant(v, true); invalidateImageCaches(); m_imageCaches.erase(v); if (m_fftModels.find(v) != m_fftModels.end()) { if (m_sliceableModel == m_fftModels[v].first) { bool replaced = false; for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { if (i->second.first != m_sliceableModel) { emit sliceableModelReplaced(m_sliceableModel, i->second.first); replaced = true; break; } } if (!replaced) emit sliceableModelReplaced(m_sliceableModel, 0); } delete m_fftModels[v].first; m_fftModels.erase(v); delete m_peakCaches[v]; m_peakCaches.erase(v); } } else { Layer::setLayerDormant(v, false); } } void SpectrogramLayer::cacheInvalid() { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::cacheInvalid()" << endl; #endif invalidateImageCaches(); invalidateMagnitudes(); } void SpectrogramLayer::cacheInvalid(size_t from, size_t to) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::cacheInvalid(" << from << ", " << to << ")" << endl; #endif invalidateImageCaches(from, to); invalidateMagnitudes(); } void SpectrogramLayer::fillTimerTimedOut() { if (!m_model) return; bool allDone = true; #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::fillTimerTimedOut: have " << m_fftModels.size() << " FFT models associated with views" << endl; #endif for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { const FFTModel *model = i->second.first; size_t lastFill = i->second.second; if (model) { size_t fill = model->getFillExtent(); #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::fillTimerTimedOut: extent for " << model << ": " << fill << ", last " << lastFill << ", total " << m_model->getEndFrame() << endl; #endif if (fill >= lastFill) { if (fill >= m_model->getEndFrame() && lastFill > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "complete!" << std::endl; #endif invalidateImageCaches(); i->second.second = -1; emit modelChanged(); } else if (fill > lastFill) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: emitting modelChanged(" << lastFill << "," << fill << ")" << std::endl; #endif invalidateImageCaches(lastFill, fill); i->second.second = fill; emit modelChanged(lastFill, fill); } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: going backwards, emitting modelChanged(" << m_model->getStartFrame() << "," << m_model->getEndFrame() << ")" << std::endl; #endif invalidateImageCaches(); i->second.second = fill; emit modelChanged(m_model->getStartFrame(), m_model->getEndFrame()); } if (i->second.second >= 0) { allDone = false; } } } if (allDone) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: all complete!" << std::endl; #endif delete m_updateTimer; m_updateTimer = 0; } } bool SpectrogramLayer::hasLightBackground() const { return ColourMapper(m_colourMap, 1.f, 255.f).hasLightBackground(); } void SpectrogramLayer::initialisePalette() { int formerRotation = m_colourRotation; if (m_colourMap == (int)ColourMapper::BlackOnWhite) { m_palette.setColour(NO_VALUE, Qt::white); } else { m_palette.setColour(NO_VALUE, Qt::black); } ColourMapper mapper(m_colourMap, 1.f, 255.f); for (int pixel = 1; pixel < 256; ++pixel) { m_palette.setColour(pixel, mapper.map(pixel)); } m_crosshairColour = mapper.getContrastingColour(); m_colourRotation = 0; rotatePalette(m_colourRotation - formerRotation); m_colourRotation = formerRotation; m_drawBuffer = QImage(); } void SpectrogramLayer::rotatePalette(int distance) { QColor newPixels[256]; newPixels[NO_VALUE] = m_palette.getColour(NO_VALUE); for (int pixel = 1; pixel < 256; ++pixel) { int target = pixel + distance; while (target < 1) target += 255; while (target > 255) target -= 255; newPixels[target] = m_palette.getColour(pixel); } for (int pixel = 0; pixel < 256; ++pixel) { m_palette.setColour(pixel, newPixels[pixel]); } m_drawBuffer = QImage(); } unsigned char SpectrogramLayer::getDisplayValue(View *v, float input) const { int value; float min = 0.f; float max = 1.f; if (m_normalizeVisibleArea) { min = m_viewMags[v].getMin(); max = m_viewMags[v].getMax(); } else if (!m_normalizeColumns) { if (m_colourScale == LinearColourScale //|| // m_colourScale == MeterColourScale) { ) { max = 0.1f; } } float thresh = -80.f; if (max == 0.f) max = 1.f; if (max == min) min = max - 0.0001f; switch (m_colourScale) { default: case LinearColourScale: value = int(((input - min) / (max - min)) * 255.f) + 1; break; case MeterColourScale: value = AudioLevel::multiplier_to_preview ((input - min) / (max - min), 254) + 1; break; case dBSquaredColourScale: input = ((input - min) * (input - min)) / ((max - min) * (max - min)); if (input > 0.f) { input = 10.f * log10f(input); } else { input = thresh; } if (min > 0.f) { thresh = 10.f * log10f(min * min); if (thresh < -80.f) thresh = -80.f; } input = (input - thresh) / (-thresh); if (input < 0.f) input = 0.f; if (input > 1.f) input = 1.f; value = int(input * 255.f) + 1; break; case dBColourScale: //!!! experiment with normalizing the visible area this way. //In any case, we need to have some indication of what the dB //scale is relative to. input = (input - min) / (max - min); if (input > 0.f) { input = 10.f * log10f(input); } else { input = thresh; } if (min > 0.f) { thresh = 10.f * log10f(min); if (thresh < -80.f) thresh = -80.f; } input = (input - thresh) / (-thresh); if (input < 0.f) input = 0.f; if (input > 1.f) input = 1.f; value = int(input * 255.f) + 1; break; case PhaseColourScale: value = int((input * 127.0 / M_PI) + 128); break; } if (value > UCHAR_MAX) value = UCHAR_MAX; if (value < 0) value = 0; return value; } float SpectrogramLayer::getInputForDisplayValue(unsigned char uc) const { //!!! unused int value = uc; float input; //!!! incorrect for normalizing visible area (and also out of date) switch (m_colourScale) { default: case LinearColourScale: input = float(value - 1) / 255.0 / (m_normalizeColumns ? 1 : 50); break; case MeterColourScale: input = AudioLevel::preview_to_multiplier(value - 1, 255) / (m_normalizeColumns ? 1.0 : 50.0); break; case dBSquaredColourScale: input = float(value - 1) / 255.0; input = (input * 80.0) - 80.0; input = powf(10.0, input) / 20.0; value = int(input); break; case dBColourScale: input = float(value - 1) / 255.0; input = (input * 80.0) - 80.0; input = powf(10.0, input) / 20.0; value = int(input); break; case PhaseColourScale: input = float(value - 128) * M_PI / 127.0; break; } return input; } float SpectrogramLayer::getEffectiveMinFrequency() const { int sr = m_model->getSampleRate(); float minf = float(sr) / m_fftSize; if (m_minFrequency > 0.0) { size_t minbin = size_t((double(m_minFrequency) * m_fftSize) / sr + 0.01); if (minbin < 1) minbin = 1; minf = minbin * sr / m_fftSize; } return minf; } float SpectrogramLayer::getEffectiveMaxFrequency() const { int sr = m_model->getSampleRate(); float maxf = float(sr) / 2; if (m_maxFrequency > 0.0) { size_t maxbin = size_t((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; maxf = maxbin * sr / m_fftSize; } return maxf; } bool SpectrogramLayer::getYBinRange(View *v, int y, float &q0, float &q1) const { Profiler profiler("SpectrogramLayer::getYBinRange"); int h = v->height(); if (y < 0 || y >= h) return false; int sr = m_model->getSampleRate(); float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); // Now map these on to ("proportions of") actual bins, using raw // FFT size (unsmoothed) q0 = (q0 * m_fftSize) / sr; q1 = (q1 * m_fftSize) / sr; return true; } bool SpectrogramLayer::getSmoothedYBinRange(View *v, int y, float &q0, float &q1) const { Profiler profiler("SpectrogramLayer::getSmoothedYBinRange"); int h = v->height(); if (y < 0 || y >= h) return false; int sr = m_model->getSampleRate(); float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); // Now map these on to ("proportions of") actual bins, using raw // FFT size (unsmoothed) q0 = (q0 * getFFTSize(v)) / sr; q1 = (q1 * getFFTSize(v)) / sr; return true; } bool SpectrogramLayer::getXBinRange(View *v, int x, float &s0, float &s1) const { size_t modelStart = m_model->getStartFrame(); size_t modelEnd = m_model->getEndFrame(); // Each pixel column covers an exact range of sample frames: int f0 = v->getFrameForX(x) - modelStart; int f1 = v->getFrameForX(x + 1) - modelStart - 1; if (f1 < int(modelStart) || f0 > int(modelEnd)) { return false; } // And that range may be drawn from a possibly non-integral // range of spectrogram windows: size_t windowIncrement = getWindowIncrement(); s0 = float(f0) / windowIncrement; s1 = float(f1) / windowIncrement; return true; } bool SpectrogramLayer::getXBinSourceRange(View *v, int x, RealTime &min, RealTime &max) const { float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int windowIncrement = getWindowIncrement(); int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2; int w1 = s1i * windowIncrement + windowIncrement + (m_windowSize - windowIncrement)/2 - 1; min = RealTime::frame2RealTime(w0, m_model->getSampleRate()); max = RealTime::frame2RealTime(w1, m_model->getSampleRate()); return true; } bool SpectrogramLayer::getYBinSourceRange(View *v, int y, float &freqMin, float &freqMax) const { float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int sr = m_model->getSampleRate(); for (int q = q0i; q <= q1i; ++q) { if (q == q0i) freqMin = (sr * q) / m_fftSize; if (q == q1i) freqMax = (sr * (q+1)) / m_fftSize; } return true; } bool SpectrogramLayer::getAdjustedYBinSourceRange(View *v, int x, int y, float &freqMin, float &freqMax, float &adjFreqMin, float &adjFreqMax) const { if (!m_model || !m_model->isOK() || !m_model->isReady()) { return false; } FFTModel *fft = getFFTModel(v); if (!fft) return false; float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int q0i = int(q0 + 0.001); int q1i = int(q1); int sr = m_model->getSampleRate(); size_t windowSize = m_windowSize; size_t windowIncrement = getWindowIncrement(); bool haveAdj = false; bool peaksOnly = (m_binDisplay == PeakBins || m_binDisplay == PeakFrequencies); for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (!fft->isColumnAvailable(s)) continue; float binfreq = (sr * q) / m_windowSize; if (q == q0i) freqMin = binfreq; if (q == q1i) freqMax = binfreq; if (peaksOnly && !fft->isLocalPeak(s, q)) continue; if (!fft->isOverThreshold(s, q, m_threshold * (m_fftSize/2))) continue; float freq = binfreq; bool steady = false; if (s < int(fft->getWidth()) - 1) { fft->estimateStableFrequency(s, q, freq); if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq; if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq; haveAdj = true; } } } if (!haveAdj) { adjFreqMin = adjFreqMax = 0.0; } return haveAdj; } bool SpectrogramLayer::getXYBinSourceRange(View *v, int x, int y, float &min, float &max, float &phaseMin, float &phaseMax) const { if (!m_model || !m_model->isOK() || !m_model->isReady()) { return false; } float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int s0i = int(s0 + 0.001); int s1i = int(s1); bool rv = false; size_t zp = getZeroPadLevel(v); q0i *= zp + 1; q1i *= zp + 1; FFTModel *fft = getFFTModel(v); if (fft) { int cw = fft->getWidth(); int ch = fft->getHeight(); min = 0.0; max = 0.0; phaseMin = 0.0; phaseMax = 0.0; bool have = false; for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (s >= 0 && q >= 0 && s < cw && q < ch) { if (!fft->isColumnAvailable(s)) continue; float value; value = fft->getPhaseAt(s, q); if (!have || value < phaseMin) { phaseMin = value; } if (!have || value > phaseMax) { phaseMax = value; } value = fft->getMagnitudeAt(s, q) / (m_fftSize/2); if (!have || value < min) { min = value; } if (!have || value > max) { max = value; } have = true; } } } if (have) { rv = true; } } return rv; } size_t SpectrogramLayer::getZeroPadLevel(const View *v) const { //!!! tidy all this stuff if (m_binDisplay != AllBins) return 0; Preferences::SpectrogramSmoothing smoothing = Preferences::getInstance()->getSpectrogramSmoothing(); if (smoothing == Preferences::NoSpectrogramSmoothing || smoothing == Preferences::SpectrogramInterpolated) return 0; if (m_frequencyScale == LogFrequencyScale) return 3; int sr = m_model->getSampleRate(); size_t maxbin = m_fftSize / 2; if (m_maxFrequency > 0) { maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; } size_t minbin = 1; if (m_minFrequency > 0) { minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.1); if (minbin < 1) minbin = 1; if (minbin >= maxbin) minbin = maxbin - 1; } float perPixel = float(v->height()) / float((maxbin - minbin) / (m_zeroPadLevel + 1)); if (perPixel > 2.8) { return 3; // 4x oversampling } else if (perPixel > 1.5) { return 1; // 2x } else { return 0; // 1x } } size_t SpectrogramLayer::getFFTSize(const View *v) const { return m_fftSize * (getZeroPadLevel(v) + 1); } FFTModel * SpectrogramLayer::getFFTModel(const View *v) const { if (!m_model) return 0; size_t fftSize = getFFTSize(v); if (m_fftModels.find(v) != m_fftModels.end()) { if (m_fftModels[v].first == 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::getFFTModel(" << v << "): Found null model" << endl; #endif return 0; } if (m_fftModels[v].first->getHeight() != fftSize / 2 + 1) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::getFFTModel(" << v << "): Found a model with the wrong height (" << m_fftModels[v].first->getHeight() << ", wanted " << (fftSize / 2 + 1) << ")" << endl; #endif delete m_fftModels[v].first; m_fftModels.erase(v); delete m_peakCaches[v]; m_peakCaches.erase(v); } else { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::getFFTModel(" << v << "): Found a good model of height " << m_fftModels[v].first->getHeight() << endl; #endif return m_fftModels[v].first; } } if (m_fftModels.find(v) == m_fftModels.end()) { FFTModel *model = new FFTModel(m_model, m_channel, m_windowType, m_windowSize, getWindowIncrement(), fftSize, true, // polar StorageAdviser::SpeedCritical, m_candidateFillStartFrame); if (!model->isOK()) { QMessageBox::critical (0, tr("FFT cache failed"), tr("Failed to create the FFT model for this spectrogram.\n" "There may be insufficient memory or disc space to continue.")); delete model; m_fftModels[v] = FFTFillPair(0, 0); return 0; } if (!m_sliceableModel) { #ifdef DEBUG_SPECTROGRAM std::cerr << "SpectrogramLayer: emitting sliceableModelReplaced(0, " << model << ")" << std::endl; #endif ((SpectrogramLayer *)this)->sliceableModelReplaced(0, model); m_sliceableModel = model; } m_fftModels[v] = FFTFillPair(model, 0); model->resume(); delete m_updateTimer; m_updateTimer = new QTimer((SpectrogramLayer *)this); connect(m_updateTimer, SIGNAL(timeout()), this, SLOT(fillTimerTimedOut())); m_updateTimer->start(200); } return m_fftModels[v].first; } Dense3DModelPeakCache * SpectrogramLayer::getPeakCache(const View *v) const { if (!m_peakCaches[v]) { FFTModel *f = getFFTModel(v); if (!f) return 0; m_peakCaches[v] = new Dense3DModelPeakCache(f, 8); } return m_peakCaches[v]; } const Model * SpectrogramLayer::getSliceableModel() const { if (m_sliceableModel) return m_sliceableModel; if (m_fftModels.empty()) return 0; m_sliceableModel = m_fftModels.begin()->second.first; return m_sliceableModel; } void SpectrogramLayer::invalidateFFTModels() { for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { delete i->second.first; } for (PeakCacheMap::iterator i = m_peakCaches.begin(); i != m_peakCaches.end(); ++i) { delete i->second; } m_fftModels.clear(); m_peakCaches.clear(); if (m_sliceableModel) { std::cerr << "SpectrogramLayer: emitting sliceableModelReplaced(" << m_sliceableModel << ", 0)" << std::endl; emit sliceableModelReplaced(m_sliceableModel, 0); m_sliceableModel = 0; } } void SpectrogramLayer::invalidateMagnitudes() { m_viewMags.clear(); for (std::vector<MagnitudeRange>::iterator i = m_columnMags.begin(); i != m_columnMags.end(); ++i) { *i = MagnitudeRange(); } } bool SpectrogramLayer::updateViewMagnitudes(View *v) const { MagnitudeRange mag; int x0 = 0, x1 = v->width(); float s00 = 0, s01 = 0, s10 = 0, s11 = 0; if (!getXBinRange(v, x0, s00, s01)) { s00 = s01 = m_model->getStartFrame() / getWindowIncrement(); } if (!getXBinRange(v, x1, s10, s11)) { s10 = s11 = m_model->getEndFrame() / getWindowIncrement(); } int s0 = int(std::min(s00, s10) + 0.0001); int s1 = int(std::max(s01, s11) + 0.0001); // SVDEBUG << "SpectrogramLayer::updateViewMagnitudes: x0 = " << x0 << ", x1 = " << x1 << ", s00 = " << s00 << ", s11 = " << s11 << " s0 = " << s0 << ", s1 = " << s1 << endl; if (int(m_columnMags.size()) <= s1) { m_columnMags.resize(s1 + 1); } for (int s = s0; s <= s1; ++s) { if (m_columnMags[s].isSet()) { mag.sample(m_columnMags[s]); } } #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::updateViewMagnitudes returning from cols " << s0 << " -> " << s1 << " inclusive" << endl; #endif if (!mag.isSet()) return false; if (mag == m_viewMags[v]) return false; m_viewMags[v] = mag; return true; } void SpectrogramLayer::setSynchronousPainting(bool synchronous) { m_synchronous = synchronous; } void SpectrogramLayer::paint(View *v, QPainter &paint, QRect rect) const { // What a lovely, old-fashioned function this is. // It's practically FORTRAN 77 in its clarity and linearity. Profiler profiler("SpectrogramLayer::paint", false); #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << ", m_updateTimer " << m_updateTimer << endl; std::cerr << "rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << std::endl; #endif long startFrame = v->getStartFrame(); if (startFrame < 0) m_candidateFillStartFrame = 0; else m_candidateFillStartFrame = startFrame; if (!m_model || !m_model->isOK() || !m_model->isReady()) { return; } if (isLayerDormant(v)) { SVDEBUG << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << endl; } // Need to do this even if !isLayerDormant, as that could mean v // is not in the dormancy map at all -- we need it to be present // and accountable for when determining whether we need the cache // in the cache-fill thread above. //!!! no longer use cache-fill thread const_cast<SpectrogramLayer *>(this)->Layer::setLayerDormant(v, false); size_t fftSize = getFFTSize(v); /* FFTModel *fft = getFFTModel(v); if (!fft) { std::cerr << "ERROR: SpectrogramLayer::paint(): No FFT model, returning" << std::endl; return; } */ ImageCache &cache = m_imageCaches[v]; #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::paint(): image cache valid area " << cache. validArea.x() << ", " << cache.validArea.y() << ", " << cache.validArea.width() << "x" << cache.validArea.height() << endl; #endif #ifdef DEBUG_SPECTROGRAM_REPAINT bool stillCacheing = (m_updateTimer != 0); SVDEBUG << "SpectrogramLayer::paint(): Still cacheing = " << stillCacheing << endl; #endif int zoomLevel = v->getZoomLevel(); int x0 = 0; int x1 = v->width(); bool recreateWholeImageCache = true; x0 = rect.left(); x1 = rect.right() + 1; /* float xPixelRatio = float(fft->getResolution()) / float(zoomLevel); std::cerr << "xPixelRatio = " << xPixelRatio << std::endl; if (xPixelRatio < 1.f) xPixelRatio = 1.f; */ if (cache.validArea.width() > 0) { int cw = cache.image.width(); int ch = cache.image.height(); if (int(cache.zoomLevel) == zoomLevel && cw == v->width() && ch == v->height()) { if (v->getXForFrame(cache.startFrame) == v->getXForFrame(startFrame) && cache.validArea.x() <= x0 && cache.validArea.x() + cache.validArea.width() >= x1) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: image cache good" << std::endl; #endif paint.drawImage(rect, cache.image, rect); //!!! // paint.drawImage(v->rect(), cache.image, // QRect(QPoint(0, 0), cache.image.size())); illuminateLocalFeatures(v, paint); return; } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: image cache partially OK" << std::endl; #endif recreateWholeImageCache = false; int dx = v->getXForFrame(cache.startFrame) - v->getXForFrame(startFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: dx = " << dx << " (image cache " << cw << "x" << ch << ")" << std::endl; #endif if (dx != 0 && dx > -cw && dx < cw) { int dxp = dx; if (dxp < 0) dxp = -dxp; int copy = (cw - dxp) * sizeof(QRgb); for (int y = 0; y < ch; ++y) { QRgb *line = (QRgb *)cache.image.scanLine(y); if (dx < 0) { memmove(line, line + dxp, copy); } else { memmove(line + dxp, line, copy); } } int px = cache.validArea.x(); int pw = cache.validArea.width(); if (dx < 0) { x0 = cw + dx; x1 = cw; px += dx; if (px < 0) { pw += px; px = 0; if (pw < 0) pw = 0; } } else { x0 = 0; x1 = dx; px += dx; if (px + pw > cw) { pw = int(cw) - px; if (pw < 0) pw = 0; } } cache.validArea = QRect(px, cache.validArea.y(), pw, cache.validArea.height()); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "valid area now " << px << "," << cache.validArea.y() << " " << pw << "x" << cache.validArea.height() << std::endl; #endif /* paint.drawImage(rect & cache.validArea, cache.image, rect & cache.validArea); */ } else if (dx != 0) { // we scrolled too far to be of use #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "dx == " << dx << ": scrolled too far for cache to be useful" << std::endl; #endif cache.validArea = QRect(); recreateWholeImageCache = true; } } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: image cache useless" << std::endl; if (int(cache.zoomLevel) != zoomLevel) { std::cerr << "(cache zoomLevel " << cache.zoomLevel << " != " << zoomLevel << ")" << std::endl; } if (cw != v->width()) { std::cerr << "(cache width " << cw << " != " << v->width(); } if (ch != v->height()) { std::cerr << "(cache height " << ch << " != " << v->height(); } #endif cache.validArea = QRect(); // recreateWholeImageCache = true; } } if (updateViewMagnitudes(v)) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: magnitude range changed to [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; #endif if (m_normalizeVisibleArea) { cache.validArea = QRect(); recreateWholeImageCache = true; } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "No change in magnitude range [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; #endif } if (recreateWholeImageCache) { x0 = 0; x1 = v->width(); } struct timeval tv; (void)gettimeofday(&tv, 0); RealTime mainPaintStart = RealTime::fromTimeval(tv); int paintBlockWidth = m_lastPaintBlockWidth; if (m_synchronous) { if (paintBlockWidth < x1 - x0) { // always paint full width paintBlockWidth = x1 - x0; } } else { if (paintBlockWidth == 0) { paintBlockWidth = (300000 / zoomLevel); } else { RealTime lastTime = m_lastPaintTime; while (lastTime > RealTime::fromMilliseconds(200) && paintBlockWidth > 50) { paintBlockWidth /= 2; lastTime = lastTime / 2; } while (lastTime < RealTime::fromMilliseconds(90) && paintBlockWidth < 1500) { paintBlockWidth *= 2; lastTime = lastTime * 2; } } if (paintBlockWidth < 20) paintBlockWidth = 20; } #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "[" << this << "]: last paint width: " << m_lastPaintBlockWidth << ", last paint time: " << m_lastPaintTime << ", new paint width: " << paintBlockWidth << std::endl; #endif // We always paint the full height when refreshing the cache. // Smaller heights can be used when painting direct from cache // (further up in this function), but we want to ensure the cache // is coherent without having to worry about vertical matching of // required and valid areas as well as horizontal. int h = v->height(); if (cache.validArea.width() > 0) { // If part of the cache is known to be valid, select a strip // immediately to left or right of the valid part //!!! this really needs to be coordinated with the selection //!!! of m_drawBuffer boundaries in the bufferBinResolution //!!! case below int vx0 = 0, vx1 = 0; vx0 = cache.validArea.x(); vx1 = cache.validArea.x() + cache.validArea.width(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "x0 " << x0 << ", x1 " << x1 << ", vx0 " << vx0 << ", vx1 " << vx1 << ", paintBlockWidth " << paintBlockWidth << std::endl; #endif if (x0 < vx0) { if (x0 + paintBlockWidth < vx0) { x0 = vx0 - paintBlockWidth; } x1 = vx0; } else if (x0 >= vx1) { x0 = vx1; if (x1 > x0 + paintBlockWidth) { x1 = x0 + paintBlockWidth; } } else { // x0 is within the valid area if (x1 > vx1) { x0 = vx1; if (x0 + paintBlockWidth < x1) { x1 = x0 + paintBlockWidth; } } else { x1 = x0; // it's all valid, paint nothing } } cache.validArea = QRect (std::min(vx0, x0), cache.validArea.y(), std::max(vx1 - std::min(vx0, x0), x1 - std::min(vx0, x0)), cache.validArea.height()); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Valid area becomes " << cache.validArea.x() << ", " << cache.validArea.y() << ", " << cache.validArea.width() << "x" << cache.validArea.height() << std::endl; #endif } else { if (x1 > x0 + paintBlockWidth) { int sfx = x1; if (startFrame < 0) sfx = v->getXForFrame(0); if (sfx >= x0 && sfx + paintBlockWidth <= x1) { x0 = sfx; x1 = x0 + paintBlockWidth; } else { int mid = (x1 + x0) / 2; x0 = mid - paintBlockWidth/2; x1 = x0 + paintBlockWidth; } } #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Valid area becomes " << x0 << ", 0, " << (x1-x0) << "x" << h << std::endl; #endif cache.validArea = QRect(x0, 0, x1 - x0, h); } /* if (xPixelRatio != 1.f) { x0 = int((int(x0 / xPixelRatio) - 4) * xPixelRatio + 0.0001); x1 = int((int(x1 / xPixelRatio) + 4) * xPixelRatio + 0.0001); } */ int w = x1 - x0; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << std::endl; #endif int sr = m_model->getSampleRate(); // Set minFreq and maxFreq to the frequency extents of the possibly // zero-padded visible bin range, and displayMinFreq and displayMaxFreq // to the actual scale frequency extents (presumably not zero padded). // If we are zero padding, we want to use the zero-padded // equivalents of the bins that we would be using if not zero // padded, to avoid spaces at the top and bottom of the display. // Note fftSize is the actual zero-padded fft size, m_fftSize the // nominal fft size. size_t maxbin = m_fftSize / 2; if (m_maxFrequency > 0) { maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.001); if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; } size_t minbin = 1; if (m_minFrequency > 0) { minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.001); // std::cerr << "m_minFrequency = " << m_minFrequency << " -> minbin = " << minbin << std::endl; if (minbin < 1) minbin = 1; if (minbin >= maxbin) minbin = maxbin - 1; } int zpl = getZeroPadLevel(v) + 1; minbin = minbin * zpl; maxbin = (maxbin + 1) * zpl - 1; float minFreq = (float(minbin) * sr) / fftSize; float maxFreq = (float(maxbin) * sr) / fftSize; float displayMinFreq = minFreq; float displayMaxFreq = maxFreq; if (fftSize != m_fftSize) { displayMinFreq = getEffectiveMinFrequency(); displayMaxFreq = getEffectiveMaxFrequency(); } // std::cerr << "(giving actual minFreq " << minFreq << " and display minFreq " << displayMinFreq << ")" << std::endl; int increment = getWindowIncrement(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); /* float yforbin[maxbin - minbin + 1]; for (size_t q = minbin; q <= maxbin; ++q) { float f0 = (float(q) * sr) / fftSize; yforbin[q - minbin] = v->getYForFrequency(f0, displayMinFreq, displayMaxFreq, logarithmic); } */ MagnitudeRange overallMag = m_viewMags[v]; bool overallMagChanged = false; bool fftSuspended = false; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << ((float(v->getFrameForX(1) - v->getFrameForX(0))) / increment) << " bin(s) per pixel" << std::endl; #endif bool runOutOfData = false; if (w == 0) { SVDEBUG << "*** NOTE: w == 0" << endl; } #ifdef DEBUG_SPECTROGRAM_REPAINT size_t pixels = 0; #endif Profiler outerprof("SpectrogramLayer::paint: all cols"); // The draw buffer contains a fragment at either our pixel // resolution (if there is more than one time-bin per pixel) or // time-bin resolution (if a time-bin spans more than one pixel). // We need to ensure that it starts and ends at points where a // time-bin boundary occurs at an exact pixel boundary, and with a // certain amount of overlap across existing pixels so that we can // scale and draw from it without smoothing errors at the edges. // If (getFrameForX(x) / increment) * increment == // getFrameForX(x), then x is a time-bin boundary. We want two // such boundaries at either side of the draw buffer -- one which // we draw up to, and one which we subsequently crop at. bool bufferBinResolution = false; if (increment > zoomLevel) bufferBinResolution = true; long leftBoundaryFrame = -1, leftCropFrame = -1; long rightBoundaryFrame = -1, rightCropFrame = -1; int bufwid; if (bufferBinResolution) { for (int x = x0; ; --x) { long f = v->getFrameForX(x); if ((f / increment) * increment == f) { if (leftCropFrame == -1) leftCropFrame = f; else if (x < x0 - 2) { leftBoundaryFrame = f; break; } } } for (int x = x0 + w; ; ++x) { long f = v->getFrameForX(x); if ((f / increment) * increment == f) { if (rightCropFrame == -1) rightCropFrame = f; else if (x > x0 + w + 2) { rightBoundaryFrame = f; break; } } } #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "Left: crop: " << leftCropFrame << " (bin " << leftCropFrame/increment << "); boundary: " << leftBoundaryFrame << " (bin " << leftBoundaryFrame/increment << ")" << endl; cerr << "Right: crop: " << rightCropFrame << " (bin " << rightCropFrame/increment << "); boundary: " << rightBoundaryFrame << " (bin " << rightBoundaryFrame/increment << ")" << endl; #endif bufwid = (rightBoundaryFrame - leftBoundaryFrame) / increment; } else { bufwid = w; } #ifdef __GNUC__ int binforx[bufwid]; float binfory[h]; #else int *binforx = (int *)alloca(bufwid * sizeof(int)); float *binfory = (float *)alloca(h * sizeof(float)); #endif bool usePeaksCache = false; if (bufferBinResolution) { for (int x = 0; x < bufwid; ++x) { binforx[x] = (leftBoundaryFrame / increment) + x; // cerr << "binforx[" << x << "] = " << binforx[x] << endl; } m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); } else { for (int x = 0; x < bufwid; ++x) { float s0 = 0, s1 = 0; if (getXBinRange(v, x + x0, s0, s1)) { binforx[x] = int(s0 + 0.0001); } else { binforx[x] = -1; //??? } } if (m_drawBuffer.width() < bufwid || m_drawBuffer.height() < h) { m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); } usePeaksCache = (increment * 8) < zoomLevel; if (m_colourScale == PhaseColourScale) usePeaksCache = false; } m_drawBuffer.setNumColors(256); for (int pixel = 0; pixel < 256; ++pixel) { m_drawBuffer.setColor(pixel, m_palette.getColour(pixel).rgb()); } m_drawBuffer.fill(0); if (m_binDisplay != PeakFrequencies) { for (int y = 0; y < h; ++y) { float q0 = 0, q1 = 0; if (!getSmoothedYBinRange(v, h-y-1, q0, q1)) { binfory[y] = -1; } else { binfory[y] = q0; // cerr << "binfory[" << y << "] = " << binfory[y] << endl; } } paintDrawBuffer(v, bufwid, h, binforx, binfory, usePeaksCache, overallMag, overallMagChanged); } else { paintDrawBufferPeakFrequencies(v, bufwid, h, binforx, minbin, maxbin, displayMinFreq, displayMaxFreq, logarithmic, overallMag, overallMagChanged); } /* for (int x = 0; x < w / xPixelRatio; ++x) { Profiler innerprof("SpectrogramLayer::paint: 1 pixel column"); runOutOfData = !paintColumnValues(v, fft, x0, x, minbin, maxbin, displayMinFreq, displayMaxFreq, xPixelRatio, h, yforbin); if (runOutOfData) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Run out of data -- dropping out of loop" << std::endl; #endif break; } } */ #ifdef DEBUG_SPECTROGRAM_REPAINT // std::cerr << pixels << " pixels drawn" << std::endl; #endif if (overallMagChanged) { m_viewMags[v] = overallMag; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Overall mag is now [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "] - will be updating" << std::endl; #endif } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Overall mag unchanged at [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; #endif } outerprof.end(); Profiler profiler2("SpectrogramLayer::paint: draw image"); if (recreateWholeImageCache) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "Recreating image cache: width = " << v->width() << ", height = " << h << endl; #endif cache.image = QImage(v->width(), h, QImage::Format_ARGB32_Premultiplied); } if (w > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "Painting " << w << "x" << h << " from draw buffer at " << 0 << "," << 0 << " to " << w << "x" << h << " on cache at " << x0 << "," << 0 << endl; #endif QPainter cachePainter(&cache.image); if (bufferBinResolution) { int scaledLeft = v->getXForFrame(leftBoundaryFrame); int scaledRight = v->getXForFrame(rightBoundaryFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "Rescaling image from " << bufwid << "x" << h << " to " << scaledRight-scaledLeft << "x" << h << endl; #endif Preferences::SpectrogramXSmoothing xsmoothing = Preferences::getInstance()->getSpectrogramXSmoothing(); // SVDEBUG << "xsmoothing == " << xsmoothing << endl; QImage scaled = m_drawBuffer.scaled (scaledRight - scaledLeft, h, Qt::IgnoreAspectRatio, ((xsmoothing == Preferences::SpectrogramXInterpolated) ? Qt::SmoothTransformation : Qt::FastTransformation)); int scaledLeftCrop = v->getXForFrame(leftCropFrame); int scaledRightCrop = v->getXForFrame(rightCropFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "Drawing image region of width " << scaledRightCrop - scaledLeftCrop << " to " << scaledLeftCrop << " from " << scaledLeftCrop - scaledLeft << endl; #endif cachePainter.drawImage (QRect(scaledLeftCrop, 0, scaledRightCrop - scaledLeftCrop, h), scaled, QRect(scaledLeftCrop - scaledLeft, 0, scaledRightCrop - scaledLeftCrop, h)); } else { cachePainter.drawImage(QRect(x0, 0, w, h), m_drawBuffer, QRect(0, 0, w, h)); } cachePainter.end(); } QRect pr = rect & cache.validArea; #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "Painting " << pr.width() << "x" << pr.height() << " from cache at " << pr.x() << "," << pr.y() << " to window" << endl; #endif paint.drawImage(pr.x(), pr.y(), cache.image, pr.x(), pr.y(), pr.width(), pr.height()); //!!! // paint.drawImage(v->rect(), cache.image, // QRect(QPoint(0, 0), cache.image.size())); cache.startFrame = startFrame; cache.zoomLevel = zoomLevel; if (!m_synchronous) { if (!m_normalizeVisibleArea || !overallMagChanged) { if (cache.validArea.x() > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::paint() updating left (0, " << cache.validArea.x() << ")" << endl; #endif v->update(0, 0, cache.validArea.x(), h); } if (cache.validArea.x() + cache.validArea.width() < cache.image.width()) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::paint() updating right (" << cache.validArea.x() + cache.validArea.width() << ", " << cache.image.width() - (cache.validArea.x() + cache.validArea.width()) << ")" << endl; #endif v->update(cache.validArea.x() + cache.validArea.width(), 0, cache.image.width() - (cache.validArea.x() + cache.validArea.width()), h); } } else { // overallMagChanged std::cerr << "\noverallMagChanged - updating all\n" << std::endl; cache.validArea = QRect(); v->update(); } } illuminateLocalFeatures(v, paint); #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::paint() returning" << endl; #endif if (!m_synchronous) { m_lastPaintBlockWidth = paintBlockWidth; (void)gettimeofday(&tv, 0); m_lastPaintTime = RealTime::fromTimeval(tv) - mainPaintStart; } //!!! if (fftSuspended) fft->resume(); } bool SpectrogramLayer::paintDrawBufferPeakFrequencies(View *v, int w, int h, int *binforx, int minbin, int maxbin, float displayMinFreq, float displayMaxFreq, bool logarithmic, MagnitudeRange &overallMag, bool &overallMagChanged) const { Profiler profiler("SpectrogramLayer::paintDrawBufferPeakFrequencies"); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; #endif if (minbin < 0) minbin = 0; if (maxbin < 0) maxbin = minbin+1; FFTModel *fft = getFFTModel(v); if (!fft) return false; FFTModel::PeakSet peakfreqs; int px = -1, psx = -1; #ifdef __GNUC__ float values[maxbin - minbin + 1]; #else float *values = (float *)alloca((maxbin - minbin + 1) * sizeof(float)); #endif for (int x = 0; x < w; ++x) { if (binforx[x] < 0) continue; float columnMax = 0.f; int sx0 = binforx[x]; int sx1 = sx0; if (x+1 < w) sx1 = binforx[x+1]; if (sx0 < 0) sx0 = sx1 - 1; if (sx0 < 0) continue; if (sx1 <= sx0) sx1 = sx0 + 1; for (int sx = sx0; sx < sx1; ++sx) { if (x == px && sx == psx) continue; if (sx < 0 || sx >= int(fft->getWidth())) continue; if (!m_synchronous) { if (!fft->isColumnAvailable(sx)) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Met unavailable column at col " << sx << std::endl; #endif return false; } } MagnitudeRange mag; if (sx != psx) { peakfreqs = fft->getPeakFrequencies(FFTModel::AllPeaks, sx, minbin, maxbin - 1); if (m_colourScale == PhaseColourScale) { fft->getPhasesAt(sx, values, minbin, maxbin - minbin + 1); } else if (m_normalizeColumns) { fft->getNormalizedMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); } else { fft->getMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); } psx = sx; } for (FFTModel::PeakSet::const_iterator pi = peakfreqs.begin(); pi != peakfreqs.end(); ++pi) { int bin = pi->first; int freq = pi->second; if (bin < minbin) continue; if (bin > maxbin) break; float value = values[bin - minbin]; if (m_colourScale != PhaseColourScale) { if (!m_normalizeColumns) { value /= (m_fftSize/2.f); } mag.sample(value); value *= m_gain; } float y = v->getYForFrequency (freq, displayMinFreq, displayMaxFreq, logarithmic); int iy = int(y + 0.5); if (iy < 0 || iy >= h) continue; m_drawBuffer.setPixel(x, iy, getDisplayValue(v, value)); } if (mag.isSet()) { if (sx >= int(m_columnMags.size())) { #ifdef DEBUG_SPECTROGRAM std::cerr << "INTERNAL ERROR: " << sx << " >= " << m_columnMags.size() << " at SpectrogramLayer.cpp::paintDrawBuffer" << std::endl; #endif } else { m_columnMags[sx].sample(mag); if (overallMag.sample(mag)) overallMagChanged = true; } } } } return true; } bool SpectrogramLayer::paintDrawBuffer(View *v, int w, int h, int *binforx, float *binfory, bool usePeaksCache, MagnitudeRange &overallMag, bool &overallMagChanged) const { Profiler profiler("SpectrogramLayer::paintDrawBuffer"); int minbin = int(binfory[0] + 0.0001); int maxbin = binfory[h-1]; #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; #endif if (minbin < 0) minbin = 0; if (maxbin < 0) maxbin = minbin+1; DenseThreeDimensionalModel *sourceModel = 0; FFTModel *fft = 0; int divisor = 1; #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "Note: bin display = " << m_binDisplay << ", w = " << w << ", binforx[" << w-1 << "] = " << binforx[w-1] << ", binforx[0] = " << binforx[0] << endl; #endif if (usePeaksCache) { //!!! sourceModel = getPeakCache(v); divisor = 8;//!!! minbin = 0; maxbin = sourceModel->getHeight(); } else { sourceModel = fft = getFFTModel(v); } if (!sourceModel) return false; bool interpolate = false; Preferences::SpectrogramSmoothing smoothing = Preferences::getInstance()->getSpectrogramSmoothing(); if (smoothing == Preferences::SpectrogramInterpolated || smoothing == Preferences::SpectrogramZeroPaddedAndInterpolated) { if (m_binDisplay != PeakBins && m_binDisplay != PeakFrequencies) { interpolate = true; } } int psx = -1; #ifdef __GNUC__ float autoarray[maxbin - minbin + 1]; float peaks[h]; #else float *autoarray = (float *)alloca((maxbin - minbin + 1) * sizeof(float)); float *peaks = (float *)alloca(h * sizeof(float)); #endif const float *values = autoarray; DenseThreeDimensionalModel::Column c; for (int x = 0; x < w; ++x) { if (binforx[x] < 0) continue; // float columnGain = m_gain; float columnMax = 0.f; int sx0 = binforx[x] / divisor; int sx1 = sx0; if (x+1 < w) sx1 = binforx[x+1] / divisor; if (sx0 < 0) sx0 = sx1 - 1; if (sx0 < 0) continue; if (sx1 <= sx0) sx1 = sx0 + 1; for (int y = 0; y < h; ++y) peaks[y] = 0.f; for (int sx = sx0; sx < sx1; ++sx) { #ifdef DEBUG_SPECTROGRAM_REPAINT // std::cerr << "sx = " << sx << std::endl; #endif if (sx < 0 || sx >= int(sourceModel->getWidth())) continue; if (!m_synchronous) { if (!sourceModel->isColumnAvailable(sx)) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "Met unavailable column at col " << sx << std::endl; #endif return false; } } MagnitudeRange mag; if (sx != psx) { if (fft) { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "Retrieving column " << sx << " from fft directly" << endl; #endif if (m_colourScale == PhaseColourScale) { fft->getPhasesAt(sx, autoarray, minbin, maxbin - minbin + 1); } else if (m_normalizeColumns) { fft->getNormalizedMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); } else { fft->getMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "Retrieving column " << sx << " from peaks cache" << endl; #endif c = sourceModel->getColumn(sx); if (m_normalizeColumns) { for (int y = 0; y < h; ++y) { if (c[y] > columnMax) columnMax = c[y]; } } values = c.constData() + minbin; } psx = sx; } for (int y = 0; y < h; ++y) { float sy0 = binfory[y]; float sy1 = sy0 + 1; if (y+1 < h) sy1 = binfory[y+1]; float value = 0.f; if (interpolate && fabsf(sy1 - sy0) < 1.f) { float centre = (sy0 + sy1) / 2; float dist = (centre - 0.5) - lrintf(centre - 0.5); int bin = int(centre); int other = (dist < 0 ? (bin-1) : (bin+1)); if (bin < minbin) bin = minbin; if (bin > maxbin) bin = maxbin; if (other < minbin || other > maxbin) other = bin; float prop = 1.f - fabsf(dist); float v0 = values[bin - minbin]; float v1 = values[other - minbin]; if (m_binDisplay == PeakBins) { if (bin == minbin || bin == maxbin || v0 < values[bin-minbin-1] || v0 < values[bin-minbin+1]) v0 = 0.f; if (other == minbin || other == maxbin || v1 < values[other-minbin-1] || v1 < values[other-minbin+1]) v1 = 0.f; } if (v0 == 0.f && v1 == 0.f) continue; value = prop * v0 + (1.f - prop) * v1; if (m_colourScale != PhaseColourScale) { if (!m_normalizeColumns) { value /= (m_fftSize/2.f); } mag.sample(value); value *= m_gain; } peaks[y] = value; } else { int by0 = int(sy0 + 0.0001); int by1 = int(sy1 + 0.0001); if (by1 < by0 + 1) by1 = by0 + 1; for (int bin = by0; bin < by1; ++bin) { value = values[bin - minbin]; if (m_binDisplay == PeakBins) { if (bin == minbin || bin == maxbin || value < values[bin-minbin-1] || value < values[bin-minbin+1]) continue; } if (m_colourScale != PhaseColourScale) { if (!m_normalizeColumns) { value /= (m_fftSize/2.f); } mag.sample(value); value *= m_gain; } if (value > peaks[y]) peaks[y] = value; //!!! not right for phase! } } } if (mag.isSet()) { if (sx >= int(m_columnMags.size())) { #ifdef DEBUG_SPECTROGRAM std::cerr << "INTERNAL ERROR: " << sx << " >= " << m_columnMags.size() << " at SpectrogramLayer.cpp::paintDrawBuffer" << std::endl; #endif } else { m_columnMags[sx].sample(mag); if (overallMag.sample(mag)) overallMagChanged = true; } } } for (int y = 0; y < h; ++y) { float peak = peaks[y]; if (m_colourScale != PhaseColourScale && m_normalizeColumns && columnMax > 0.f) { peak /= columnMax; } unsigned char peakpix = getDisplayValue(v, peak); m_drawBuffer.setPixel(x, h-y-1, peakpix); } } return true; } void SpectrogramLayer::illuminateLocalFeatures(View *v, QPainter &paint) const { Profiler profiler("SpectrogramLayer::illuminateLocalFeatures"); QPoint localPos; if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { return; } // std::cerr << "SpectrogramLayer: illuminateLocalFeatures(" // << localPos.x() << "," << localPos.y() << ")" << std::endl; float s0, s1; float f0, f1; if (getXBinRange(v, localPos.x(), s0, s1) && getYBinSourceRange(v, localPos.y(), f0, f1)) { int s0i = int(s0 + 0.001); int s1i = int(s1); int x0 = v->getXForFrame(s0i * getWindowIncrement()); int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); int y1 = int(getYForFrequency(v, f1)); int y0 = int(getYForFrequency(v, f0)); // std::cerr << "SpectrogramLayer: illuminate " // << x0 << "," << y1 << " -> " << x1 << "," << y0 << std::endl; paint.setPen(v->getForeground()); //!!! should we be using paintCrosshairs for this? paint.drawRect(x0, y1, x1 - x0 + 1, y0 - y1 + 1); } } float SpectrogramLayer::getYForFrequency(const View *v, float frequency) const { return v->getYForFrequency(frequency, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } float SpectrogramLayer::getFrequencyForY(const View *v, int y) const { return v->getFrequencyForY(y, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } int SpectrogramLayer::getCompletion(View *v) const { if (m_updateTimer == 0) return 100; if (m_fftModels.find(v) == m_fftModels.end()) return 100; size_t completion = m_fftModels[v].first->getCompletion(); #ifdef DEBUG_SPECTROGRAM_REPAINT SVDEBUG << "SpectrogramLayer::getCompletion: completion = " << completion << endl; #endif return completion; } QString SpectrogramLayer::getError(View *v) const { if (m_fftModels.find(v) == m_fftModels.end()) return ""; return m_fftModels[v].first->getError(); } bool SpectrogramLayer::getValueExtents(float &min, float &max, bool &logarithmic, QString &unit) const { if (!m_model) return false; int sr = m_model->getSampleRate(); min = float(sr) / m_fftSize; max = float(sr) / 2; logarithmic = (m_frequencyScale == LogFrequencyScale); unit = "Hz"; return true; } bool SpectrogramLayer::getDisplayExtents(float &min, float &max) const { min = getEffectiveMinFrequency(); max = getEffectiveMaxFrequency(); // SVDEBUG << "SpectrogramLayer::getDisplayExtents: " << min << "->" << max << endl; return true; } bool SpectrogramLayer::setDisplayExtents(float min, float max) { if (!m_model) return false; // SVDEBUG << "SpectrogramLayer::setDisplayExtents: " << min << "->" << max << endl; if (min < 0) min = 0; if (max > m_model->getSampleRate()/2) max = m_model->getSampleRate()/2; size_t minf = lrintf(min); size_t maxf = lrintf(max); if (m_minFrequency == minf && m_maxFrequency == maxf) return true; invalidateImageCaches(); invalidateMagnitudes(); m_minFrequency = minf; m_maxFrequency = maxf; emit layerParametersChanged(); int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } return true; } bool SpectrogramLayer::getYScaleValue(const View *v, int y, float &value, QString &unit) const { value = getFrequencyForY(v, y); unit = "Hz"; return true; } bool SpectrogramLayer::snapToFeatureFrame(View *, int &frame, size_t &resolution, SnapType snap) const { resolution = getWindowIncrement(); int left = (frame / resolution) * resolution; int right = left + resolution; switch (snap) { case SnapLeft: frame = left; break; case SnapRight: frame = right; break; case SnapNearest: case SnapNeighbouring: if (frame - left > right - frame) frame = right; else frame = left; break; } return true; } void SpectrogramLayer::measureDoubleClick(View *v, QMouseEvent *e) { ImageCache &cache = m_imageCaches[v]; std::cerr << "cache width: " << cache.image.width() << ", height: " << cache.image.height() << std::endl; QImage image = cache.image; ImageRegionFinder finder; QRect rect = finder.findRegionExtents(&image, e->pos()); if (rect.isValid()) { MeasureRect mr; setMeasureRectFromPixrect(v, mr, rect); CommandHistory::getInstance()->addCommand (new AddMeasurementRectCommand(this, mr)); } } bool SpectrogramLayer::getCrosshairExtents(View *v, QPainter &paint, QPoint cursorPos, std::vector<QRect> &extents) const { QRect vertical(cursorPos.x() - 12, 0, 12, v->height()); extents.push_back(vertical); QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); extents.push_back(horizontal); int sw = getVerticalScaleWidth(v, paint); QRect freq(sw, cursorPos.y() - paint.fontMetrics().ascent() - 2, paint.fontMetrics().width("123456 Hz") + 2, paint.fontMetrics().height()); extents.push_back(freq); QRect pitch(sw, cursorPos.y() + 2, paint.fontMetrics().width("C#10+50c") + 2, paint.fontMetrics().height()); extents.push_back(pitch); QRect rt(cursorPos.x(), v->height() - paint.fontMetrics().height() - 2, paint.fontMetrics().width("1234.567 s"), paint.fontMetrics().height()); extents.push_back(rt); int w(paint.fontMetrics().width("1234567890") + 2); QRect frame(cursorPos.x() - w - 2, v->height() - paint.fontMetrics().height() - 2, w, paint.fontMetrics().height()); extents.push_back(frame); return true; } void SpectrogramLayer::paintCrosshairs(View *v, QPainter &paint, QPoint cursorPos) const { paint.save(); int sw = getVerticalScaleWidth(v, paint); QFont fn = paint.font(); if (fn.pointSize() > 8) { fn.setPointSize(fn.pointSize() - 1); paint.setFont(fn); } paint.setPen(m_crosshairColour); paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->height()); float fundamental = getFrequencyForY(v, cursorPos.y()); v->drawVisibleText(paint, sw + 2, cursorPos.y() - 2, QString("%1 Hz").arg(fundamental), View::OutlinedText); if (Pitch::isFrequencyInMidiRange(fundamental)) { QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); v->drawVisibleText(paint, sw + 2, cursorPos.y() + paint.fontMetrics().ascent() + 2, pitchLabel, View::OutlinedText); } long frame = v->getFrameForX(cursorPos.x()); RealTime rt = RealTime::frame2RealTime(frame, m_model->getSampleRate()); QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); QString frameLabel = QString("%1").arg(frame); v->drawVisibleText(paint, cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, v->height() - 2, frameLabel, View::OutlinedText); v->drawVisibleText(paint, cursorPos.x() + 2, v->height() - 2, rtLabel, View::OutlinedText); int harmonic = 2; while (harmonic < 100) { float hy = lrintf(getYForFrequency(v, fundamental * harmonic)); if (hy < 0 || hy > v->height()) break; int len = 7; if (harmonic % 2 == 0) { if (harmonic % 4 == 0) { len = 12; } else { len = 10; } } paint.drawLine(cursorPos.x() - len, int(hy), cursorPos.x(), int(hy)); ++harmonic; } paint.restore(); } QString SpectrogramLayer::getFeatureDescription(View *v, QPoint &pos) const { int x = pos.x(); int y = pos.y(); if (!m_model || !m_model->isOK()) return ""; float magMin = 0, magMax = 0; float phaseMin = 0, phaseMax = 0; float freqMin = 0, freqMax = 0; float adjFreqMin = 0, adjFreqMax = 0; QString pitchMin, pitchMax; RealTime rtMin, rtMax; bool haveValues = false; if (!getXBinSourceRange(v, x, rtMin, rtMax)) { return ""; } if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) { haveValues = true; } QString adjFreqText = "", adjPitchText = ""; if (m_binDisplay == PeakFrequencies) { if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, adjFreqMin, adjFreqMax)) { return ""; } if (adjFreqMin != adjFreqMax) { adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n") .arg(adjFreqMin).arg(adjFreqMax); } else { adjFreqText = tr("Peak Frequency:\t%1 Hz\n") .arg(adjFreqMin); } QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin); QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax); if (pmin != pmax) { adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax); } else { adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin); } } else { if (!getYBinSourceRange(v, y, freqMin, freqMax)) return ""; } QString text; if (rtMin != rtMax) { text += tr("Time:\t%1 - %2\n") .arg(rtMin.toText(true).c_str()) .arg(rtMax.toText(true).c_str()); } else { text += tr("Time:\t%1\n") .arg(rtMin.toText(true).c_str()); } if (freqMin != freqMax) { text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n") .arg(adjFreqText) .arg(freqMin) .arg(freqMax) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)) .arg(Pitch::getPitchLabelForFrequency(freqMax)); } else { text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n") .arg(adjFreqText) .arg(freqMin) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)); } if (haveValues) { float dbMin = AudioLevel::multiplier_to_dB(magMin); float dbMax = AudioLevel::multiplier_to_dB(magMax); QString dbMinString; QString dbMaxString; if (dbMin == AudioLevel::DB_FLOOR) { dbMinString = tr("-Inf"); } else { dbMinString = QString("%1").arg(lrintf(dbMin)); } if (dbMax == AudioLevel::DB_FLOOR) { dbMaxString = tr("-Inf"); } else { dbMaxString = QString("%1").arg(lrintf(dbMax)); } if (lrintf(dbMin) != lrintf(dbMax)) { text += tr("dB:\t%1 - %2").arg(dbMinString).arg(dbMaxString); } else { text += tr("dB:\t%1").arg(dbMinString); } if (phaseMin != phaseMax) { text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax); } else { text += tr("\nPhase:\t%1").arg(phaseMin); } } return text; } int SpectrogramLayer::getColourScaleWidth(QPainter &paint) const { int cw; cw = paint.fontMetrics().width("-80dB"); return cw; } int SpectrogramLayer::getVerticalScaleWidth(View *, QPainter &paint) const { if (!m_model || !m_model->isOK()) return 0; int cw = getColourScaleWidth(paint); int tw = paint.fontMetrics().width(QString("%1") .arg(m_maxFrequency > 0 ? m_maxFrequency - 1 : m_model->getSampleRate() / 2)); int fw = paint.fontMetrics().width(tr("43Hz")); if (tw < fw) tw = fw; int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); return cw + tickw + tw + 13; } void SpectrogramLayer::paintVerticalScale(View *v, QPainter &paint, QRect rect) const { if (!m_model || !m_model->isOK()) { return; } Profiler profiler("SpectrogramLayer::paintVerticalScale"); //!!! cache this? int h = rect.height(), w = rect.width(); int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); size_t bins = m_fftSize / 2; int sr = m_model->getSampleRate(); if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (bins > m_fftSize / 2) bins = m_fftSize / 2; } int cw = getColourScaleWidth(paint); int cbw = paint.fontMetrics().width("dB"); int py = -1; int textHeight = paint.fontMetrics().height(); int toff = -textHeight + paint.fontMetrics().ascent() + 2; if (h > textHeight * 3 + 10) { int topLines = 2; if (m_colourScale == PhaseColourScale) topLines = 1; int ch = h - textHeight * (topLines + 1) - 8; // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); QString top, bottom; float min = m_viewMags[v].getMin(); float max = m_viewMags[v].getMax(); float dBmin = AudioLevel::multiplier_to_dB(min); float dBmax = AudioLevel::multiplier_to_dB(max); if (dBmax < -60.f) dBmax = -60.f; else top = QString("%1").arg(lrintf(dBmax)); if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; bottom = QString("%1").arg(lrintf(dBmin)); //!!! & phase etc if (m_colourScale != PhaseColourScale) { paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, 2 + textHeight + toff, "dBFS"); } // paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2, paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), 2 + textHeight * topLines + toff + textHeight/2, top); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), h + toff - 3 - textHeight/2, bottom); paint.save(); paint.setBrush(Qt::NoBrush); int lasty = 0; int lastdb = 0; for (int i = 0; i < ch; ++i) { float dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); int idb = int(dBval); float value = AudioLevel::dB_to_multiplier(dBval); int colour = getDisplayValue(v, value * m_gain); paint.setPen(m_palette.getColour(colour)); int y = textHeight * topLines + 4 + ch - i; paint.drawLine(5 + cw - cbw, y, cw + 2, y); if (i == 0) { lasty = y; lastdb = idb; } else if (i < ch - paint.fontMetrics().ascent() && idb != lastdb && ((abs(y - lasty) > textHeight && idb % 10 == 0) || (abs(y - lasty) > paint.fontMetrics().ascent() && idb % 5 == 0))) { paint.setPen(v->getBackground()); QString text = QString("%1").arg(idb); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), y + toff + textHeight/2, text); paint.setPen(v->getForeground()); paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); lasty = y; lastdb = idb; } } paint.restore(); } paint.drawLine(cw + 7, 0, cw + 7, h); int bin = -1; for (int y = 0; y < v->height(); ++y) { float q0, q1; if (!getYBinRange(v, v->height() - y, q0, q1)) continue; int vy; if (int(q0) > bin) { vy = y; bin = int(q0); } else { continue; } int freq = (sr * bin) / m_fftSize; if (py >= 0 && (vy - py) < textHeight - 1) { if (m_frequencyScale == LinearFrequencyScale) { paint.drawLine(w - tickw, h - vy, w, h - vy); } continue; } QString text = QString("%1").arg(freq); if (bin == 1) text = tr("%1Hz").arg(freq); // bin 0 is DC paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); if (h - vy - textHeight >= -2) { int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw); paint.drawText(tx, h - vy + toff, text); } py = vy; } if (m_frequencyScale == LogFrequencyScale) { // piano keyboard paint.drawLine(w - pkw - 1, 0, w - pkw - 1, h); float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); int py = h, ppy = h; paint.setBrush(paint.pen().color()); for (int i = 0; i < 128; ++i) { float f = Pitch::getFrequencyForPitch(i); int y = lrintf(v->getYForFrequency(f, minf, maxf, true)); if (y < -2) break; if (y > h + 2) { continue; } int n = (i % 12); if (n == 1) { // C# -- fill the C from here QColor col = Qt::gray; if (i == 61) { // filling middle C col = Qt::blue; col = col.light(150); } if (ppy - y > 2) { paint.fillRect(w - pkw, y, pkw, (py + ppy) / 2 - y, col); } } if (n == 1 || n == 3 || n == 6 || n == 8 || n == 10) { // black notes paint.drawLine(w - pkw, y, w, y); int rh = ((py - y) / 4) * 2; if (rh < 2) rh = 2; paint.drawRect(w - pkw, y - (py-y)/4, pkw/2, rh); } else if (n == 0 || n == 5) { // C, F if (py < h) { paint.drawLine(w - pkw, (y + py) / 2, w, (y + py) / 2); } } ppy = py; py = y; } } } class SpectrogramRangeMapper : public RangeMapper { public: SpectrogramRangeMapper(int sr, int /* fftsize */) : m_dist(float(sr) / 2), m_s2(sqrtf(sqrtf(2))) { } ~SpectrogramRangeMapper() { } virtual int getPositionForValue(float value) const { float dist = m_dist; int n = 0; while (dist > (value + 0.00001) && dist > 0.1f) { dist /= m_s2; ++n; } return n; } virtual float getValueForPosition(int position) const { // Vertical zoom step 0 shows the entire range from DC -> // Nyquist frequency. Step 1 shows 2^(1/4) of the range of // step 0, and so on until the visible range is smaller than // the frequency step between bins at the current fft size. float dist = m_dist; int n = 0; while (n < position) { dist /= m_s2; ++n; } return dist; } virtual QString getUnit() const { return "Hz"; } protected: float m_dist; float m_s2; }; int SpectrogramLayer::getVerticalZoomSteps(int &defaultStep) const { if (!m_model) return 0; int sr = m_model->getSampleRate(); SpectrogramRangeMapper mapper(sr, m_fftSize); // int maxStep = mapper.getPositionForValue((float(sr) / m_fftSize) + 0.001); int maxStep = mapper.getPositionForValue(0); int minStep = mapper.getPositionForValue(float(sr) / 2); size_t initialMax = m_initialMaxFrequency; if (initialMax == 0) initialMax = sr / 2; defaultStep = mapper.getPositionForValue(initialMax) - minStep; // SVDEBUG << "SpectrogramLayer::getVerticalZoomSteps: " << maxStep - minStep << " (" << maxStep <<"-" << minStep << "), default is " << defaultStep << " (from initial max freq " << initialMax << ")" << endl; return maxStep - minStep; } int SpectrogramLayer::getCurrentVerticalZoomStep() const { if (!m_model) return 0; float dmin, dmax; getDisplayExtents(dmin, dmax); SpectrogramRangeMapper mapper(m_model->getSampleRate(), m_fftSize); int n = mapper.getPositionForValue(dmax - dmin); // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; return n; } void SpectrogramLayer::setVerticalZoomStep(int step) { if (!m_model) return; float dmin = m_minFrequency, dmax = m_maxFrequency; // getDisplayExtents(dmin, dmax); // std::cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << std::endl; int sr = m_model->getSampleRate(); SpectrogramRangeMapper mapper(sr, m_fftSize); float newdist = mapper.getValueForPosition(step); float newmin, newmax; if (m_frequencyScale == LogFrequencyScale) { // need to pick newmin and newmax such that // // (log(newmin) + log(newmax)) / 2 == logmid // and // newmax - newmin = newdist // // so log(newmax - newdist) + log(newmax) == 2logmid // log(newmax(newmax - newdist)) == 2logmid // newmax.newmax - newmax.newdist == exp(2logmid) // newmax^2 + (-newdist)newmax + -exp(2logmid) == 0 // quadratic with a = 1, b = -newdist, c = -exp(2logmid), all known // // positive root // newmax = (newdist + sqrt(newdist^2 + 4exp(2logmid))) / 2 // // but logmid = (log(dmin) + log(dmax)) / 2 // so exp(2logmid) = exp(log(dmin) + log(dmax)) // = exp(log(dmin.dmax)) // = dmin.dmax // so newmax = (newdist + sqrtf(newdist^2 + 4dmin.dmax)) / 2 newmax = (newdist + sqrtf(newdist*newdist + 4*dmin*dmax)) / 2; newmin = newmax - newdist; // std::cerr << "newmin = " << newmin << ", newmax = " << newmax << std::endl; } else { float dmid = (dmax + dmin) / 2; newmin = dmid - newdist / 2; newmax = dmid + newdist / 2; } float mmin, mmax; mmin = 0; mmax = float(sr) / 2; if (newmin < mmin) { newmax += (mmin - newmin); newmin = mmin; } if (newmax > mmax) { newmax = mmax; } // SVDEBUG << "SpectrogramLayer::setVerticalZoomStep: " << step << ": " << newmin << " -> " << newmax << " (range " << newdist << ")" << endl; setMinFrequency(lrintf(newmin)); setMaxFrequency(lrintf(newmax)); } RangeMapper * SpectrogramLayer::getNewVerticalZoomRangeMapper() const { if (!m_model) return 0; return new SpectrogramRangeMapper(m_model->getSampleRate(), m_fftSize); } void SpectrogramLayer::updateMeasureRectYCoords(View *v, const MeasureRect &r) const { int y0 = 0; if (r.startY > 0.0) y0 = getYForFrequency(v, r.startY); int y1 = y0; if (r.endY > 0.0) y1 = getYForFrequency(v, r.endY); // SVDEBUG << "SpectrogramLayer::updateMeasureRectYCoords: start " << r.startY << " -> " << y0 << ", end " << r.endY << " -> " << y1 << endl; r.pixrect = QRect(r.pixrect.x(), y0, r.pixrect.width(), y1 - y0); } void SpectrogramLayer::setMeasureRectYCoord(View *v, MeasureRect &r, bool start, int y) const { if (start) { r.startY = getFrequencyForY(v, y); r.endY = r.startY; } else { r.endY = getFrequencyForY(v, y); } // SVDEBUG << "SpectrogramLayer::setMeasureRectYCoord: start " << r.startY << " <- " << y << ", end " << r.endY << " <- " << y << endl; } void SpectrogramLayer::toXml(QTextStream &stream, QString indent, QString extraAttributes) const { QString s; s += QString("channel=\"%1\" " "windowSize=\"%2\" " "windowHopLevel=\"%3\" " "gain=\"%4\" " "threshold=\"%5\" ") .arg(m_channel) .arg(m_windowSize) .arg(m_windowHopLevel) .arg(m_gain) .arg(m_threshold); s += QString("minFrequency=\"%1\" " "maxFrequency=\"%2\" " "colourScale=\"%3\" " "colourScheme=\"%4\" " "colourRotation=\"%5\" " "frequencyScale=\"%6\" " "binDisplay=\"%7\" " "normalizeColumns=\"%8\" " "normalizeVisibleArea=\"%9\"") .arg(m_minFrequency) .arg(m_maxFrequency) .arg(m_colourScale) .arg(m_colourMap) .arg(m_colourRotation) .arg(m_frequencyScale) .arg(m_binDisplay) .arg(m_normalizeColumns ? "true" : "false") .arg(m_normalizeVisibleArea ? "true" : "false"); Layer::toXml(stream, indent, extraAttributes + " " + s); } void SpectrogramLayer::setProperties(const QXmlAttributes &attributes) { bool ok = false; int channel = attributes.value("channel").toInt(&ok); if (ok) setChannel(channel); size_t windowSize = attributes.value("windowSize").toUInt(&ok); if (ok) setWindowSize(windowSize); size_t windowHopLevel = attributes.value("windowHopLevel").toUInt(&ok); if (ok) setWindowHopLevel(windowHopLevel); else { size_t windowOverlap = attributes.value("windowOverlap").toUInt(&ok); // a percentage value if (ok) { if (windowOverlap == 0) setWindowHopLevel(0); else if (windowOverlap == 25) setWindowHopLevel(1); else if (windowOverlap == 50) setWindowHopLevel(2); else if (windowOverlap == 75) setWindowHopLevel(3); else if (windowOverlap == 90) setWindowHopLevel(4); } } float gain = attributes.value("gain").toFloat(&ok); if (ok) setGain(gain); float threshold = attributes.value("threshold").toFloat(&ok); if (ok) setThreshold(threshold); size_t minFrequency = attributes.value("minFrequency").toUInt(&ok); if (ok) { SVDEBUG << "SpectrogramLayer::setProperties: setting min freq to " << minFrequency << endl; setMinFrequency(minFrequency); } size_t maxFrequency = attributes.value("maxFrequency").toUInt(&ok); if (ok) { SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; setMaxFrequency(maxFrequency); } ColourScale colourScale = (ColourScale) attributes.value("colourScale").toInt(&ok); if (ok) setColourScale(colourScale); int colourMap = attributes.value("colourScheme").toInt(&ok); if (ok) setColourMap(colourMap); int colourRotation = attributes.value("colourRotation").toInt(&ok); if (ok) setColourRotation(colourRotation); FrequencyScale frequencyScale = (FrequencyScale) attributes.value("frequencyScale").toInt(&ok); if (ok) setFrequencyScale(frequencyScale); BinDisplay binDisplay = (BinDisplay) attributes.value("binDisplay").toInt(&ok); if (ok) setBinDisplay(binDisplay); bool normalizeColumns = (attributes.value("normalizeColumns").trimmed() == "true"); setNormalizeColumns(normalizeColumns); bool normalizeVisibleArea = (attributes.value("normalizeVisibleArea").trimmed() == "true"); setNormalizeVisibleArea(normalizeVisibleArea); } void SpectrogramLayer::processMouseEvent(const View *v, QMouseEvent *e, int w) { std::cerr<< "Mouse click detected in the layer: (" << e->x() << "," << e->y() << ")" << std::endl; //is there a way to declare pkw and w may as class private variables? int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); int pianoKeyboardXLeft = w - pkw - 1; int pianoKeyboardXRight = w; float freq; QString unit; float *centsOffsetReturn = 0; float concertA = 0.0; int midipitch; if ((e->x() >= pianoKeyboardXLeft)&&(e->x() <= pianoKeyboardXRight)) { std::cerr << "Piano keyboard left border: " << pianoKeyboardXLeft<<std::endl; std::cerr << "Piano keyboard right border: " << pianoKeyboardXRight<<std::endl; std::cerr<< "Mouse click detected within the piano keyboard: (" << e->x() << "," << e->y() << ")" << std::endl; if (getYScaleValue(v, e->y(),freq, unit)) { midipitch = Pitch::getPitchForFrequency(freq,centsOffsetReturn,concertA); std::cerr<< "Frequency: " << freq << " " << unit.toStdString() << " (midi pitch = " << midipitch << ")" << std::endl; } } }