Mercurial > hg > svgui
view layer/Colour3DPlotRenderer.cpp @ 1412:79032214f79d
Debug tweaks
author | Chris Cannam |
---|---|
date | Wed, 19 Dec 2018 10:40:17 +0000 |
parents | 7d28e7522dbd |
children | 6cf3cb6641e1 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2016 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "Colour3DPlotRenderer.h" #include "RenderTimer.h" #include "base/Profiler.h" #include "base/HitCount.h" #include "data/model/DenseThreeDimensionalModel.h" #include "data/model/Dense3DModelPeakCache.h" #include "data/model/FFTModel.h" #include "LayerGeometryProvider.h" #include "VerticalBinLayer.h" #include "PaintAssistant.h" #include "ImageRegionFinder.h" #include "view/ViewManager.h" // for main model sample rate. Pity #include <vector> #include <utility> using namespace std::rel_ops; //#define DEBUG_COLOUR_PLOT_REPAINT 1 using namespace std; Colour3DPlotRenderer::RenderResult Colour3DPlotRenderer::render(const LayerGeometryProvider *v, QPainter &paint, QRect rect) { return render(v, paint, rect, false); } Colour3DPlotRenderer::RenderResult Colour3DPlotRenderer::renderTimeConstrained(const LayerGeometryProvider *v, QPainter &paint, QRect rect) { return render(v, paint, rect, true); } QRect Colour3DPlotRenderer::getLargestUncachedRect(const LayerGeometryProvider *v) { RenderType renderType = decideRenderType(v); if (renderType == DirectTranslucent) { return QRect(); // never cached } int h = m_cache.getSize().height(); QRect areaLeft(0, 0, m_cache.getValidLeft(), h); QRect areaRight(m_cache.getValidRight(), 0, m_cache.getSize().width() - m_cache.getValidRight(), h); if (areaRight.width() > areaLeft.width()) { return areaRight; } else { return areaLeft; } } bool Colour3DPlotRenderer::geometryChanged(const LayerGeometryProvider *v) { RenderType renderType = decideRenderType(v); if (renderType == DirectTranslucent) { return true; // never cached } if (m_cache.getSize() == v->getPaintSize() && m_cache.getZoomLevel() == v->getZoomLevel() && m_cache.getStartFrame() == v->getStartFrame()) { return false; } else { return true; } } Colour3DPlotRenderer::RenderResult Colour3DPlotRenderer::render(const LayerGeometryProvider *v, QPainter &paint, QRect rect, bool timeConstrained) { RenderType renderType = decideRenderType(v); if (timeConstrained) { if (renderType != DrawBufferPixelResolution) { // Rendering should be fast in bin-resolution and direct // draw cases because we are quite well zoomed-in, and the // sums are easier this way. Calculating boundaries later // will be fiddly for partial paints otherwise. timeConstrained = false; } else if (m_secondsPerXPixelValid) { double predicted = m_secondsPerXPixel * rect.width(); #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "Predicted time for width " << rect.width() << " = " << predicted << " (" << m_secondsPerXPixel << " x " << rect.width() << ")" << endl; #endif if (predicted < 0.2) { #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "Predicted time looks fast enough: no partial renders" << endl; #endif timeConstrained = false; } } } int x0 = v->getXForViewX(rect.x()); int x1 = v->getXForViewX(rect.x() + rect.width()); if (x0 < 0) x0 = 0; if (x1 > v->getPaintWidth()) x1 = v->getPaintWidth(); sv_frame_t startFrame = v->getStartFrame(); m_cache.resize(v->getPaintSize()); m_cache.setZoomLevel(v->getZoomLevel()); m_magCache.resize(v->getPaintSize().width()); m_magCache.setZoomLevel(v->getZoomLevel()); if (renderType == DirectTranslucent) { MagnitudeRange range = renderDirectTranslucent(v, paint, rect); return { rect, range }; } #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "cache start " << m_cache.getStartFrame() << " valid left " << m_cache.getValidLeft() << " valid right " << m_cache.getValidRight() << endl; SVDEBUG << " view start " << startFrame << " x0 " << x0 << " x1 " << x1 << endl; #endif static HitCount count("Colour3DPlotRenderer: image cache"); if (m_cache.isValid()) { // some part of the cache is valid if (v->getXForFrame(m_cache.getStartFrame()) == v->getXForFrame(startFrame) && m_cache.getValidLeft() <= x0 && m_cache.getValidRight() >= x1) { #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "cache hit" << endl; #endif count.hit(); // cache is valid for the complete requested area paint.drawImage(rect, m_cache.getImage(), rect); MagnitudeRange range = m_magCache.getRange(x0, x1 - x0); return { rect, range }; } else { #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "cache partial hit" << endl; #endif count.partial(); // cache doesn't begin at the right frame or doesn't // contain the complete view, but might be scrollable or // partially usable m_cache.scrollTo(v, startFrame); m_magCache.scrollTo(v, startFrame); // if we are not time-constrained, then we want to paint // the whole area in one go; we don't return a partial // paint. To avoid providing the more complex logic to // handle painting discontiguous areas, if the only valid // part of cache is in the middle, just make the whole // thing invalid and start again. if (!timeConstrained) { if (m_cache.getValidLeft() > x0 && m_cache.getValidRight() < x1) { m_cache.invalidate(); } } } } else { // cache is completely invalid count.miss(); m_cache.setStartFrame(startFrame); m_magCache.setStartFrame(startFrame); } bool rightToLeft = false; int reqx0 = x0; int reqx1 = x1; if (!m_cache.isValid() && timeConstrained) { if (x0 == 0 && x1 == v->getPaintWidth()) { // When rendering the whole area, in a context where we // might not be able to complete the work, start from // somewhere near the middle so that the region of // interest appears first. // // This is very useful if we actually are slow to render, // but if we're not sure how fast we'll be, we should // prefer not to because it can be distracting to render // fast from the middle and then jump back to fill in the // start. That is: // // - if our seconds-per-x-pixel count is invalid, then we // don't do this: we've probably only just been created // and don't know how fast we'll be yet (this happens // often while zooming rapidly in and out). The exception // to the exception is if we're displaying peak // frequencies; this we can assume to be slow. (Note that // if the seconds-per-x-pixel is valid and we know we're // fast, then we've already set timeConstrained false // above so this doesn't apply) // // - if we're using a peak cache, we don't do this; // drawing from peak cache is often (even if not always) // fast. bool drawFromTheMiddle = true; if (!m_secondsPerXPixelValid && (m_params.binDisplay != BinDisplay::PeakFrequencies)) { drawFromTheMiddle = false; } else { int peakCacheIndex = -1, binsPerPeak = -1; getPreferredPeakCache(v, peakCacheIndex, binsPerPeak); if (peakCacheIndex >= 0) { // have a peak cache drawFromTheMiddle = false; } } if (drawFromTheMiddle) { double offset = 0.5 * (double(rand()) / double(RAND_MAX)); x0 = int(x1 * offset); } } } if (m_cache.isValid()) { // When rendering only a part of the cache, we need to make // sure that the part we're rendering is adjacent to (or // overlapping) a valid area of cache, if we have one. The // alternative is to ditch the valid area of cache and render // only the requested area, but that's risky because this can // happen when just waving the pointer over a small part of // the view -- if we lose the partly-built cache every time // the user does that, we'll never finish building it. int left = x0; int width = x1 - x0; bool isLeftOfValidArea = false; m_cache.adjustToTouchValidArea(left, width, isLeftOfValidArea); x0 = left; x1 = x0 + width; // That call also told us whether we should be painting // sub-regions of our target region in right-to-left order in // order to ensure contiguity rightToLeft = isLeftOfValidArea; } // Note, we always paint the full height to cache. We want to // ensure the cache is coherent without having to worry about // vertical matching of required and valid areas as well as // horizontal. if (renderType == DrawBufferBinResolution) { renderToCacheBinResolution(v, x0, x1 - x0); } else { // must be DrawBufferPixelResolution, handled DirectTranslucent earlier renderToCachePixelResolution(v, x0, x1 - x0, rightToLeft, timeConstrained); } QRect pr = rect & m_cache.getValidArea(); paint.drawImage(pr.x(), pr.y(), m_cache.getImage(), pr.x(), pr.y(), pr.width(), pr.height()); if (!timeConstrained && (pr != rect)) { SVCERR << "WARNING: failed to render entire requested rect " << "even when not time-constrained" << endl; } MagnitudeRange range = m_magCache.getRange(reqx0, reqx1 - reqx0); #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "render: returning rect rendered as " << pr.x() << "," << pr.y() << " " << pr.width() << "x" << pr.height() << endl; SVDEBUG << "render: mag range from cache in x-range " << reqx0 << " to " << reqx1 << " is " << range.getMin() << " -> " << range.getMax() << endl; #endif return { pr, range }; } Colour3DPlotRenderer::RenderType Colour3DPlotRenderer::decideRenderType(const LayerGeometryProvider *v) const { const DenseThreeDimensionalModel *model = m_sources.source; if (!model || !v || !(v->getViewManager())) { return DrawBufferPixelResolution; // or anything } int binResolution = model->getResolution(); ZoomLevel zoomLevel = v->getZoomLevel(); sv_samplerate_t modelRate = model->getSampleRate(); double rateRatio = v->getViewManager()->getMainModelSampleRate() / modelRate; double relativeBinResolution = binResolution * rateRatio; if (m_params.binDisplay == BinDisplay::PeakFrequencies) { // no alternative works here return DrawBufferPixelResolution; } if (!m_params.alwaysOpaque && !m_params.interpolate) { // consider translucent option -- only if not smoothing & not // explicitly requested opaque & sufficiently zoomed-in if (model->getHeight() * 3 < v->getPaintHeight() && zoomLevel < ZoomLevel(ZoomLevel::FramesPerPixel, int(round(relativeBinResolution / 3)))) { return DirectTranslucent; } } if (ZoomLevel(ZoomLevel::FramesPerPixel, int(round(relativeBinResolution))) > zoomLevel) { return DrawBufferBinResolution; } else { return DrawBufferPixelResolution; } } ColumnOp::Column Colour3DPlotRenderer::getColumn(int sx, int minbin, int nbins, int peakCacheIndex) const { // order: // get column -> scale -> normalise -> record extents -> // peak pick -> distribute/interpolate -> apply display gain // we do the first bit here: // get column -> scale -> normalise ColumnOp::Column column; if (m_params.showDerivative && sx > 0) { auto prev = getColumnRaw(sx - 1, minbin, nbins, peakCacheIndex); column = getColumnRaw(sx, minbin, nbins, peakCacheIndex); for (int i = 0; i < nbins; ++i) { column[i] -= prev[i]; } } else { column = getColumnRaw(sx, minbin, nbins, peakCacheIndex); } if (m_params.colourScale.getScale() == ColourScaleType::Phase && m_sources.fft) { return column; } else { column = ColumnOp::applyGain(column, m_params.scaleFactor); column = ColumnOp::normalize(column, m_params.normalization); return column; } } ColumnOp::Column Colour3DPlotRenderer::getColumnRaw(int sx, int minbin, int nbins, int peakCacheIndex) const { Profiler profiler("Colour3DPlotRenderer::getColumn"); ColumnOp::Column column; if (m_params.colourScale.getScale() == ColourScaleType::Phase && m_sources.fft) { ColumnOp::Column fullColumn = m_sources.fft->getPhases(sx); column = vector<float>(fullColumn.data() + minbin, fullColumn.data() + minbin + nbins); } else { ColumnOp::Column fullColumn = (peakCacheIndex >= 0 ? m_sources.peakCaches[peakCacheIndex] : m_sources.source) ->getColumn(sx); column = vector<float>(fullColumn.data() + minbin, fullColumn.data() + minbin + nbins); } return column; } MagnitudeRange Colour3DPlotRenderer::renderDirectTranslucent(const LayerGeometryProvider *v, QPainter &paint, QRect rect) { Profiler profiler("Colour3DPlotRenderer::renderDirectTranslucent"); MagnitudeRange magRange; QPoint illuminatePos; bool illuminate = v->shouldIlluminateLocalFeatures (m_sources.verticalBinLayer, illuminatePos); const DenseThreeDimensionalModel *model = m_sources.source; int x0 = rect.left(); int x1 = rect.right() + 1; int h = v->getPaintHeight(); sv_frame_t modelStart = model->getStartFrame(); sv_frame_t modelEnd = model->getEndFrame(); int modelResolution = model->getResolution(); double rateRatio = v->getViewManager()->getMainModelSampleRate() / model->getSampleRate(); // the s-prefix values are source, i.e. model, column and bin numbers int sx0 = int((double(v->getFrameForX(x0)) / rateRatio - double(modelStart)) / modelResolution); int sx1 = int((double(v->getFrameForX(x1)) / rateRatio - double(modelStart)) / modelResolution); int sh = model->getHeight(); const int buflen = 40; char labelbuf[buflen]; int minbin = m_sources.verticalBinLayer->getIBinForY(v, h); if (minbin >= sh) minbin = sh - 1; if (minbin < 0) minbin = 0; int nbins = m_sources.verticalBinLayer->getIBinForY(v, 0) - minbin + 1; if (minbin + nbins > sh) nbins = sh - minbin; int psx = -1; vector<float> preparedColumn; int modelWidth = model->getWidth(); for (int sx = sx0; sx <= sx1; ++sx) { if (sx < 0 || sx >= modelWidth) { continue; } if (sx != psx) { // order: // get column -> scale -> normalise -> record extents -> // peak pick -> distribute/interpolate -> apply display gain // this does the first three: preparedColumn = getColumn(sx, minbin, nbins, -1); magRange.sample(preparedColumn); if (m_params.binDisplay == BinDisplay::PeakBins) { preparedColumn = ColumnOp::peakPick(preparedColumn); } // Display gain belongs to the colour scale and is // applied by the colour scale object when mapping it psx = sx; } sv_frame_t fx = sx * modelResolution + modelStart; if (fx + modelResolution <= modelStart || fx > modelEnd) continue; int rx0 = v->getXForFrame(int(double(fx) * rateRatio)); int rx1 = v->getXForFrame(int(double(fx + modelResolution + 1) * rateRatio)); int rw = rx1 - rx0; if (rw < 1) rw = 1; bool showLabel = (rw > 10 && paint.fontMetrics().width("0.000000") < rw - 3 && paint.fontMetrics().height() < (h / sh)); for (int sy = minbin; sy < minbin + nbins; ++sy) { int ry0 = m_sources.verticalBinLayer->getIYForBin(v, sy); int ry1 = m_sources.verticalBinLayer->getIYForBin(v, sy + 1); if (m_params.invertVertical) { ry0 = h - ry0 - 1; ry1 = h - ry1 - 1; } QRect r(rx0, ry1, rw, ry0 - ry1); float value = preparedColumn[sy - minbin]; QColor colour = m_params.colourScale.getColour(value, m_params.colourRotation); if (rw == 1) { paint.setPen(colour); paint.setBrush(Qt::NoBrush); paint.drawLine(r.x(), r.y(), r.x(), r.y() + r.height() - 1); continue; } QColor pen(255, 255, 255, 80); QColor brush(colour); if (rw > 3 && r.height() > 3) { brush.setAlpha(160); } paint.setPen(Qt::NoPen); paint.setBrush(brush); if (illuminate) { if (r.contains(illuminatePos)) { paint.setPen(v->getForeground()); } } #ifdef DEBUG_COLOUR_PLOT_REPAINT // SVDEBUG << "rect " << r.x() << "," << r.y() << " " // << r.width() << "x" << r.height() << endl; #endif paint.drawRect(r); if (showLabel) { double value = model->getValueAt(sx, sy); snprintf(labelbuf, buflen, "%06f", value); QString text(labelbuf); PaintAssistant::drawVisibleText (v, paint, rx0 + 2, ry0 - h / sh - 1 + 2 + paint.fontMetrics().ascent(), text, PaintAssistant::OutlinedText); } } } return magRange; } void Colour3DPlotRenderer::getPreferredPeakCache(const LayerGeometryProvider *v, int &peakCacheIndex, int &binsPerPeak) const { peakCacheIndex = -1; binsPerPeak = -1; const DenseThreeDimensionalModel *model = m_sources.source; if (!model) return; if (m_params.binDisplay == BinDisplay::PeakFrequencies) return; if (m_params.colourScale.getScale() == ColourScaleType::Phase) return; ZoomLevel zoomLevel = v->getZoomLevel(); int binResolution = model->getResolution(); for (int ix = 0; in_range_for(m_sources.peakCaches, ix); ++ix) { int bpp = m_sources.peakCaches[ix]->getColumnsPerPeak(); ZoomLevel equivZoom(ZoomLevel::FramesPerPixel, binResolution * bpp); if (zoomLevel >= equivZoom) { // this peak cache would work, though it might not be best if (bpp > binsPerPeak) { // ok, it's better than the best one we've found so far peakCacheIndex = ix; binsPerPeak = bpp; } } } #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "getPreferredPeakCache: zoomLevel = " << zoomLevel << ", binResolution " << binResolution << ", binsPerPeak " << binsPerPeak << ", peakCacheIndex " << peakCacheIndex << ", peakCaches " << m_sources.peakCaches.size() << endl; #endif } void Colour3DPlotRenderer::renderToCachePixelResolution(const LayerGeometryProvider *v, int x0, int repaintWidth, bool rightToLeft, bool timeConstrained) { Profiler profiler("Colour3DPlotRenderer::renderToCachePixelResolution"); #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "renderToCachePixelResolution" << endl; #endif // Draw to the draw buffer, and then copy from there. The draw // buffer is at the same resolution as the target in the cache, so // no extra scaling needed. const DenseThreeDimensionalModel *model = m_sources.source; if (!model || !model->isOK() || !model->isReady()) { throw std::logic_error("no source model provided, or model not ready"); } int h = v->getPaintHeight(); clearDrawBuffer(repaintWidth, h); vector<int> binforx(repaintWidth); vector<double> binfory(h); int binResolution = model->getResolution(); for (int x = 0; x < repaintWidth; ++x) { sv_frame_t f0 = v->getFrameForX(x0 + x); double s0 = double(f0 - model->getStartFrame()) / binResolution; binforx[x] = int(s0 + 0.0001); } int peakCacheIndex = -1; int binsPerPeak = -1; getPreferredPeakCache(v, peakCacheIndex, binsPerPeak); for (int y = 0; y < h; ++y) { binfory[y] = m_sources.verticalBinLayer->getBinForY(v, h - y - 1); } int attainedWidth; if (m_params.binDisplay == BinDisplay::PeakFrequencies) { attainedWidth = renderDrawBufferPeakFrequencies(v, repaintWidth, h, binforx, binfory, rightToLeft, timeConstrained); } else { attainedWidth = renderDrawBuffer(repaintWidth, h, binforx, binfory, peakCacheIndex, rightToLeft, timeConstrained); } if (attainedWidth == 0) return; // draw buffer is pixel resolution, no scaling factors or padding involved int paintedLeft = x0; if (rightToLeft) { paintedLeft += (repaintWidth - attainedWidth); } m_cache.drawImage(paintedLeft, attainedWidth, m_drawBuffer, paintedLeft - x0, attainedWidth); for (int i = 0; in_range_for(m_magRanges, i); ++i) { m_magCache.sampleColumn(i, m_magRanges.at(i)); } } QImage Colour3DPlotRenderer::scaleDrawBufferImage(QImage image, int targetWidth, int targetHeight) const { int sourceWidth = image.width(); int sourceHeight = image.height(); // We can only do this if we're making the image larger -- // otherwise peaks may be lost. So this should be called only when // rendering in DrawBufferBinResolution mode. Whenever the bin // size is smaller than the pixel size, in either x or y axis, we // should be using DrawBufferPixelResolution mode instead if (targetWidth < sourceWidth || targetHeight < sourceHeight) { throw std::logic_error("Colour3DPlotRenderer::scaleDrawBufferImage: Can only use this function when making the image larger; should be rendering DrawBufferPixelResolution instead"); } if (sourceWidth <= 0 || sourceHeight <= 0) { throw std::logic_error("Colour3DPlotRenderer::scaleDrawBufferImage: Source image is empty"); } if (targetWidth <= 0 || targetHeight <= 0) { throw std::logic_error("Colour3DPlotRenderer::scaleDrawBufferImage: Target image is empty"); } // This function exists because of some unpredictable behaviour // from Qt when scaling images with FastTransformation mode. We // continue to use Qt's scaler for SmoothTransformation but let's // bring the non-interpolated version "in-house" so we know what // it's really doing. if (m_params.interpolate) { return image.scaled(targetWidth, targetHeight, Qt::IgnoreAspectRatio, Qt::SmoothTransformation); } // Same format as the target cache QImage target(targetWidth, targetHeight, QImage::Format_ARGB32_Premultiplied); for (int y = 0; y < targetHeight; ++y) { QRgb *targetLine = reinterpret_cast<QRgb *>(target.scanLine(y)); int sy = int((uint64_t(y) * sourceHeight) / targetHeight); if (sy == sourceHeight) --sy; for (int x = 0; x < targetWidth; ++x) { int sx = int((uint64_t(x) * sourceWidth) / targetWidth); if (sx == sourceWidth) --sx; targetLine[x] = image.pixel(sx, sy); } } return target; } void Colour3DPlotRenderer::renderToCacheBinResolution(const LayerGeometryProvider *v, int x0, int repaintWidth) { Profiler profiler("Colour3DPlotRenderer::renderToCacheBinResolution"); #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "renderToCacheBinResolution" << endl; #endif // Draw to the draw buffer, and then scale-copy from there. Draw // buffer is at bin resolution, i.e. buffer x == source column // number. We use toolkit smooth scaling for interpolation. const DenseThreeDimensionalModel *model = m_sources.source; if (!model || !model->isOK() || !model->isReady()) { throw std::logic_error("no source model provided, or model not ready"); } // The draw buffer will contain a fragment at bin resolution. We // need to ensure that it starts and ends at points where a // time-bin boundary occurs at an exact pixel boundary, and with a // certain amount of overlap across existing pixels so that we can // scale and draw from it without smoothing errors at the edges. // If (getFrameForX(x) / increment) * increment == // getFrameForX(x), then x is a time-bin boundary. We want two // such boundaries at either side of the draw buffer -- one which // we draw up to, and one which we subsequently crop at. sv_frame_t leftBoundaryFrame = -1, leftCropFrame = -1; sv_frame_t rightBoundaryFrame = -1, rightCropFrame = -1; int drawBufferWidth; int binResolution = model->getResolution(); // These loops should eventually terminate provided that // getFrameForX always returns a multiple of the zoom level, // i.e. there is some x for which getFrameForX(x) == 0 and // subsequent return values are equally spaced for (int x = x0; ; --x) { sv_frame_t f = v->getFrameForX(x); if ((f / binResolution) * binResolution == f) { if (leftCropFrame == -1) leftCropFrame = f; else if (x < x0 - 2) { leftBoundaryFrame = f; break; } } } for (int x = x0 + repaintWidth; ; ++x) { sv_frame_t f = v->getFrameForX(x); if ((f / binResolution) * binResolution == f) { if (rightCropFrame == -1) rightCropFrame = f; else if (x > x0 + repaintWidth + 2) { rightBoundaryFrame = f; break; } } } drawBufferWidth = int ((rightBoundaryFrame - leftBoundaryFrame) / binResolution); int h = v->getPaintHeight(); // For our purposes here, the draw buffer needs to be exactly our // target size (so we recreate always rather than just clear it) recreateDrawBuffer(drawBufferWidth, h); vector<int> binforx(drawBufferWidth); vector<double> binfory(h); for (int x = 0; x < drawBufferWidth; ++x) { binforx[x] = int(leftBoundaryFrame / binResolution) + x; } #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "[BIN] binResolution " << binResolution << endl; #endif for (int y = 0; y < h; ++y) { binfory[y] = m_sources.verticalBinLayer->getBinForY(v, h - y - 1); } int attainedWidth = renderDrawBuffer(drawBufferWidth, h, binforx, binfory, -1, false, false); if (attainedWidth == 0) return; int scaledLeft = v->getXForFrame(leftBoundaryFrame); int scaledRight = v->getXForFrame(rightBoundaryFrame); #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "scaling draw buffer from width " << m_drawBuffer.width() << " to " << (scaledRight - scaledLeft) << " (nb drawBufferWidth = " << drawBufferWidth << ")" << endl; #endif QImage scaled = scaleDrawBufferImage (m_drawBuffer, scaledRight - scaledLeft, h); int scaledLeftCrop = v->getXForFrame(leftCropFrame); int scaledRightCrop = v->getXForFrame(rightCropFrame); int targetLeft = scaledLeftCrop; if (targetLeft < 0) { targetLeft = 0; } int targetWidth = scaledRightCrop - targetLeft; if (targetLeft + targetWidth > m_cache.getSize().width()) { targetWidth = m_cache.getSize().width() - targetLeft; } int sourceLeft = targetLeft - scaledLeft; if (sourceLeft < 0) { sourceLeft = 0; } #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "repaintWidth = " << repaintWidth << ", targetWidth = " << targetWidth << endl; #endif if (targetWidth > 0) { // we are copying from an image that has already been scaled, // hence using the same width in both geometries m_cache.drawImage(targetLeft, targetWidth, scaled, sourceLeft, targetWidth); } for (int i = 0; i < targetWidth; ++i) { // but the mag range vector has not been scaled int sourceIx = int((double(i + sourceLeft) / scaled.width()) * int(m_magRanges.size())); if (in_range_for(m_magRanges, sourceIx)) { m_magCache.sampleColumn(i, m_magRanges.at(sourceIx)); } } } int Colour3DPlotRenderer::renderDrawBuffer(int w, int h, const vector<int> &binforx, const vector<double> &binfory, int peakCacheIndex, bool rightToLeft, bool timeConstrained) { // Callers must have checked that the appropriate subset of // Sources data members are set for the supplied flags (e.g. that // peakCache corresponding to peakCacheIndex exists) RenderTimer timer(timeConstrained ? RenderTimer::FastRender : RenderTimer::NoTimeout); Profiler profiler("Colour3DPlotRenderer::renderDrawBuffer"); int divisor = 1; const DenseThreeDimensionalModel *sourceModel = m_sources.source; if (peakCacheIndex >= 0) { divisor = m_sources.peakCaches[peakCacheIndex]->getColumnsPerPeak(); sourceModel = m_sources.peakCaches[peakCacheIndex]; } #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "renderDrawBuffer: w = " << w << ", h = " << h << ", peakCacheIndex = " << peakCacheIndex << " (divisor = " << divisor << "), rightToLeft = " << rightToLeft << ", timeConstrained = " << timeConstrained << endl; SVDEBUG << "renderDrawBuffer: normalization = " << int(m_params.normalization) << ", binDisplay = " << int(m_params.binDisplay) << ", binScale = " << int(m_params.binScale) << ", alwaysOpaque = " << m_params.alwaysOpaque << ", interpolate = " << m_params.interpolate << endl; #endif int sh = sourceModel->getHeight(); int minbin = int(binfory[0] + 0.0001); if (minbin >= sh) minbin = sh - 1; if (minbin < 0) minbin = 0; int nbins = int(binfory[h-1] + 0.0001) - minbin + 1; if (minbin + nbins > sh) nbins = sh - minbin; #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "minbin = " << minbin << ", nbins = " << nbins << ", last binfory = " << binfory[h-1] << " (rounds to " << int(binfory[h-1]) << ") (model height " << sh << ")" << endl; #endif int psx = -1; int start = 0; int finish = w; int step = 1; if (rightToLeft) { start = w-1; finish = -1; step = -1; } int xPixelCount = 0; vector<float> preparedColumn; int modelWidth = sourceModel->getWidth(); #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "modelWidth " << modelWidth << ", divisor " << divisor << endl; #endif for (int x = start; x != finish; x += step) { // x is the on-canvas pixel coord; sx (later) will be the // source column index ++xPixelCount; if (binforx[x] < 0) continue; int sx0 = binforx[x] / divisor; int sx1 = sx0; if (x+1 < w) sx1 = binforx[x+1] / divisor; if (sx0 < 0) sx0 = sx1 - 1; if (sx0 < 0) continue; if (sx1 <= sx0) sx1 = sx0 + 1; #ifdef DEBUG_COLOUR_PLOT_REPAINT // SVDEBUG << "x = " << x << ", binforx[x] = " << binforx[x] << ", sx range " << sx0 << " -> " << sx1 << endl; #endif vector<float> pixelPeakColumn; MagnitudeRange magRange; for (int sx = sx0; sx < sx1; ++sx) { if (sx < 0 || sx >= modelWidth) { continue; } if (sx != psx) { // order: // get column -> scale -> normalise -> record extents -> // peak pick -> distribute/interpolate -> apply display gain // this does the first three: ColumnOp::Column column = getColumn(sx, minbin, nbins, peakCacheIndex); magRange.sample(column); if (m_params.binDisplay == BinDisplay::PeakBins) { column = ColumnOp::peakPick(column); } preparedColumn = ColumnOp::distribute(column, h, binfory, minbin, m_params.interpolate); // Display gain belongs to the colour scale and is // applied by the colour scale object when mapping it psx = sx; } if (sx == sx0) { pixelPeakColumn = preparedColumn; } else { for (int i = 0; in_range_for(pixelPeakColumn, i); ++i) { pixelPeakColumn[i] = std::max(pixelPeakColumn[i], preparedColumn[i]); } } } if (!pixelPeakColumn.empty()) { for (int y = 0; y < h; ++y) { int py; if (m_params.invertVertical) { py = y; } else { py = h - y - 1; } m_drawBuffer.setPixel (x, py, m_params.colourScale.getPixel(pixelPeakColumn[y])); } m_magRanges.push_back(magRange); } double fractionComplete = double(xPixelCount) / double(w); if (timer.outOfTime(fractionComplete)) { #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "out of time" << endl; #endif updateTimings(timer, xPixelCount); return xPixelCount; } } updateTimings(timer, xPixelCount); return xPixelCount; } int Colour3DPlotRenderer::renderDrawBufferPeakFrequencies(const LayerGeometryProvider *v, int w, int h, const vector<int> &binforx, const vector<double> &binfory, bool rightToLeft, bool timeConstrained) { // Callers must have checked that the appropriate subset of // Sources data members are set for the supplied flags (e.g. that // fft model exists) RenderTimer timer(timeConstrained ? RenderTimer::SlowRender : RenderTimer::NoTimeout); const FFTModel *fft = m_sources.fft; int sh = fft->getHeight(); int minbin = int(binfory[0] + 0.0001); if (minbin >= sh) minbin = sh - 1; if (minbin < 0) minbin = 0; int nbins = int(binfory[h-1]) - minbin + 1; if (minbin + nbins > sh) nbins = sh - minbin; FFTModel::PeakSet peakfreqs; int psx = -1; int start = 0; int finish = w; int step = 1; if (rightToLeft) { start = w-1; finish = -1; step = -1; } int xPixelCount = 0; vector<float> preparedColumn; int modelWidth = fft->getWidth(); #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "modelWidth " << modelWidth << endl; #endif double minFreq = (double(minbin) * fft->getSampleRate()) / fft->getFFTSize(); double maxFreq = (double(minbin + nbins - 1) * fft->getSampleRate()) / fft->getFFTSize(); bool logarithmic = (m_params.binScale == BinScale::Log); #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "start = " << start << ", finish = " << finish << ", step = " << step << endl; #endif for (int x = start; x != finish; x += step) { // x is the on-canvas pixel coord; sx (later) will be the // source column index ++xPixelCount; if (binforx[x] < 0) continue; int sx0 = binforx[x]; int sx1 = sx0; if (x+1 < w) sx1 = binforx[x+1]; if (sx0 < 0) sx0 = sx1 - 1; if (sx0 < 0) continue; if (sx1 <= sx0) sx1 = sx0 + 1; vector<float> pixelPeakColumn; MagnitudeRange magRange; for (int sx = sx0; sx < sx1; ++sx) { if (sx < 0 || sx >= modelWidth) { continue; } if (sx != psx) { preparedColumn = getColumn(sx, minbin, nbins, -1); magRange.sample(preparedColumn); psx = sx; } if (sx == sx0) { pixelPeakColumn = preparedColumn; peakfreqs = fft->getPeakFrequencies(FFTModel::AllPeaks, sx, minbin, minbin + nbins - 1); } else { for (int i = 0; in_range_for(pixelPeakColumn, i); ++i) { pixelPeakColumn[i] = std::max(pixelPeakColumn[i], preparedColumn[i]); } } } if (!pixelPeakColumn.empty()) { #ifdef DEBUG_COLOUR_PLOT_REPAINT // SVDEBUG << "found " << peakfreqs.size() << " peak freqs at column " // << sx0 << endl; #endif for (FFTModel::PeakSet::const_iterator pi = peakfreqs.begin(); pi != peakfreqs.end(); ++pi) { int bin = pi->first; double freq = pi->second; if (bin < minbin) continue; if (bin >= minbin + nbins) break; double value = pixelPeakColumn[bin - minbin]; double y = v->getYForFrequency (freq, minFreq, maxFreq, logarithmic); int iy = int(y + 0.5); if (iy < 0 || iy >= h) continue; auto pixel = m_params.colourScale.getPixel(value); #ifdef DEBUG_COLOUR_PLOT_REPAINT // SVDEBUG << "frequency " << freq << " for bin " << bin // << " -> y = " << y << ", iy = " << iy << ", value = " // << value << ", pixel " << pixel << "\n"; #endif m_drawBuffer.setPixel(x, iy, pixel); } m_magRanges.push_back(magRange); } else { #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "pixel peak column for range " << sx0 << " to " << sx1 << " is empty" << endl; #endif } double fractionComplete = double(xPixelCount) / double(w); if (timer.outOfTime(fractionComplete)) { #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "out of time" << endl; #endif updateTimings(timer, xPixelCount); return xPixelCount; } } updateTimings(timer, xPixelCount); return xPixelCount; } void Colour3DPlotRenderer::updateTimings(const RenderTimer &timer, int xPixelCount) { double secondsPerXPixel = timer.secondsPerItem(xPixelCount); // valid if we have enough data points, or if the overall time is // massively slow anyway (as we definitely need to warn about that) bool valid = (xPixelCount > 20 || secondsPerXPixel > 0.01); if (valid) { m_secondsPerXPixel = secondsPerXPixel; m_secondsPerXPixelValid = true; #ifdef DEBUG_COLOUR_PLOT_REPAINT SVDEBUG << "across " << xPixelCount << " x-pixels, seconds per x-pixel = " << m_secondsPerXPixel << endl; #endif } } void Colour3DPlotRenderer::recreateDrawBuffer(int w, int h) { m_drawBuffer = QImage(w, h, QImage::Format_Indexed8); for (int pixel = 0; pixel < 256; ++pixel) { m_drawBuffer.setColor ((unsigned char)pixel, m_params.colourScale.getColourForPixel (pixel, m_params.colourRotation).rgb()); } m_drawBuffer.fill(0); m_magRanges.clear(); } void Colour3DPlotRenderer::clearDrawBuffer(int w, int h) { if (m_drawBuffer.width() < w || m_drawBuffer.height() != h) { recreateDrawBuffer(w, h); } else { m_drawBuffer.fill(0); m_magRanges.clear(); } } QRect Colour3DPlotRenderer::findSimilarRegionExtents(QPoint p) const { QImage image = m_cache.getImage(); ImageRegionFinder finder; QRect rect = finder.findRegionExtents(&image, p); return rect; }