Mercurial > hg > svgui
view layer/SpectrumLayer.cpp @ 267:4ed1446ad604
* more on measurement tool -- pull out some logic from pane to layer &c
still more to do
author | Chris Cannam |
---|---|
date | Thu, 21 Jun 2007 16:12:00 +0000 |
parents | a3a54632cd4c |
children | b9380f679f70 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2007 QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "SpectrumLayer.h" #include "data/model/FFTModel.h" #include "view/View.h" #include "base/AudioLevel.h" #include "base/Preferences.h" #include "base/RangeMapper.h" #include "ColourMapper.h" #include <QPainter> SpectrumLayer::SpectrumLayer() : m_originModel(0), m_channel(-1), m_channelSet(false), m_windowSize(1024), m_windowType(HanningWindow), m_windowHopLevel(2) { Preferences *prefs = Preferences::getInstance(); connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); setWindowType(prefs->getWindowType()); setBinScale(LogBins); } SpectrumLayer::~SpectrumLayer() { //!!! delete parent's model // for (size_t i = 0; i < m_fft.size(); ++i) delete m_fft[i]; } void SpectrumLayer::setModel(DenseTimeValueModel *model) { if (m_originModel == model) return; m_originModel = model; setupFFT(); } void SpectrumLayer::setupFFT() { FFTModel *oldFFT = dynamic_cast<FFTModel *> (const_cast<DenseThreeDimensionalModel *>(m_sliceableModel)); if (oldFFT) { setSliceableModel(0); delete oldFFT; } FFTModel *newFFT = new FFTModel(m_originModel, m_channel, m_windowType, m_windowSize, getWindowIncrement(), m_windowSize, true); setSliceableModel(newFFT); m_biasCurve.clear(); for (size_t i = 0; i < m_windowSize; ++i) { m_biasCurve.push_back(1.f / (float(m_windowSize)/2.f)); } newFFT->resume(); } void SpectrumLayer::setChannel(int channel) { m_channelSet = true; FFTModel *fft = dynamic_cast<FFTModel *> (const_cast<DenseThreeDimensionalModel *>(m_sliceableModel)); if (m_channel == channel) { if (fft) fft->resume(); return; } m_channel = channel; if (!fft) setupFFT(); emit layerParametersChanged(); } Layer::PropertyList SpectrumLayer::getProperties() const { PropertyList list = SliceLayer::getProperties(); list.push_back("Window Size"); list.push_back("Window Increment"); return list; } QString SpectrumLayer::getPropertyLabel(const PropertyName &name) const { if (name == "Window Size") return tr("Window Size"); if (name == "Window Increment") return tr("Window Overlap"); return SliceLayer::getPropertyLabel(name); } Layer::PropertyType SpectrumLayer::getPropertyType(const PropertyName &name) const { if (name == "Window Size") return ValueProperty; if (name == "Window Increment") return ValueProperty; return SliceLayer::getPropertyType(name); } QString SpectrumLayer::getPropertyGroupName(const PropertyName &name) const { if (name == "Window Size" || name == "Window Increment") return tr("Window"); return SliceLayer::getPropertyGroupName(name); } int SpectrumLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max, int *deflt) const { int val = 0; int garbage0, garbage1, garbage2; if (!min) min = &garbage0; if (!max) max = &garbage1; if (!deflt) deflt = &garbage2; if (name == "Window Size") { *min = 0; *max = 15; *deflt = 5; val = 0; int ws = m_windowSize; while (ws > 32) { ws >>= 1; val ++; } } else if (name == "Window Increment") { *min = 0; *max = 5; *deflt = 2; val = m_windowHopLevel; } else { val = SliceLayer::getPropertyRangeAndValue(name, min, max, deflt); } return val; } QString SpectrumLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == "Window Size") { return QString("%1").arg(32 << value); } if (name == "Window Increment") { switch (value) { default: case 0: return tr("None"); case 1: return tr("25 %"); case 2: return tr("50 %"); case 3: return tr("75 %"); case 4: return tr("87.5 %"); case 5: return tr("93.75 %"); } } return SliceLayer::getPropertyValueLabel(name, value); } RangeMapper * SpectrumLayer::getNewPropertyRangeMapper(const PropertyName &name) const { return SliceLayer::getNewPropertyRangeMapper(name); } void SpectrumLayer::setProperty(const PropertyName &name, int value) { if (name == "Window Size") { setWindowSize(32 << value); } else if (name == "Window Increment") { setWindowHopLevel(value); } else { SliceLayer::setProperty(name, value); } } void SpectrumLayer::setWindowSize(size_t ws) { if (m_windowSize == ws) return; m_windowSize = ws; setupFFT(); emit layerParametersChanged(); } void SpectrumLayer::setWindowHopLevel(size_t v) { if (m_windowHopLevel == v) return; m_windowHopLevel = v; setupFFT(); emit layerParametersChanged(); } void SpectrumLayer::setWindowType(WindowType w) { if (m_windowType == w) return; m_windowType = w; setupFFT(); emit layerParametersChanged(); } void SpectrumLayer::preferenceChanged(PropertyContainer::PropertyName name) { if (name == "Window Type") { setWindowType(Preferences::getInstance()->getWindowType()); return; } } bool SpectrumLayer::getValueExtents(float &, float &, bool &, QString &) const { return false; } float SpectrumLayer::getXForBin(int bin, int totalBins, float w) const { if (!m_sliceableModel) return SliceLayer::getXForBin(bin, totalBins, w); float sampleRate = m_sliceableModel->getSampleRate(); float binfreq = (sampleRate * bin) / (totalBins * 2); return getXForFrequency(binfreq, w); } int SpectrumLayer::getBinForX(float x, int totalBins, float w) const { if (!m_sliceableModel) return SliceLayer::getBinForX(x, totalBins, w); float sampleRate = m_sliceableModel->getSampleRate(); float binfreq = getFrequencyForX(x, w); return int((binfreq * totalBins * 2) / sampleRate); } float SpectrumLayer::getFrequencyForX(float x, float w) const { float freq = 0; int sampleRate = m_sliceableModel->getSampleRate(); float maxfreq = float(sampleRate) / 2; switch (m_binScale) { case LinearBins: freq = ((x * maxfreq) / w); break; case LogBins: freq = powf(10.f, (x * log10f(maxfreq)) / w); break; case InvertedLogBins: freq = maxfreq - powf(10.f, ((w - x) * log10f(maxfreq)) / w); break; } return freq; } float SpectrumLayer::getXForFrequency(float freq, float w) const { float x = 0; int sampleRate = m_sliceableModel->getSampleRate(); float maxfreq = float(sampleRate) / 2; switch (m_binScale) { case LinearBins: x = (freq * w) / maxfreq; break; case LogBins: x = (log10f(freq) * w) / log10f(maxfreq); break; case InvertedLogBins: x = (w - log10f(maxfreq - freq) * w) / log10f(maxfreq); break; } return x; } bool SpectrumLayer::getXScaleValue(const View *v, int x, float &value, QString &unit) const { if (m_xorigins.find(v) == m_xorigins.end()) return false; int xorigin = m_xorigins.find(v)->second; value = getFrequencyForX(x - xorigin, v->width() - xorigin - 1); unit = "Hz"; return true; } bool SpectrumLayer::getCrosshairExtents(View *v, QPainter &paint, QPoint cursorPos, std::vector<QRect> &extents) const { QRect vertical(cursorPos.x(), cursorPos.y(), 1, v->height() - cursorPos.y()); extents.push_back(vertical); QRect horizontal(0, cursorPos.y(), v->width(), 12); extents.push_back(horizontal); QRect label(cursorPos.x(), v->height() - paint.fontMetrics().height(), paint.fontMetrics().width("123456 Hz") + 2, paint.fontMetrics().height()); extents.push_back(label); return true; } void SpectrumLayer::paintCrosshairs(View *v, QPainter &paint, QPoint cursorPos) const { paint.save(); ColourMapper mapper(m_colourMap, 0, 1); paint.setPen(mapper.getContrastingColour()); int xorigin = m_xorigins[v]; int w = v->width() - xorigin - 1; paint.drawLine(xorigin, cursorPos.y(), v->width(), cursorPos.y()); paint.drawLine(cursorPos.x(), cursorPos.y(), cursorPos.x(), v->height()); float fundamental = getFrequencyForX(cursorPos.x() - xorigin, w); paint.drawText(cursorPos.x() + 2, v->height() - 2, QString("%1 Hz").arg(fundamental)); int harmonic = 2; while (harmonic < 100) { float hx = lrintf(getXForFrequency(fundamental * harmonic, w)); hx += xorigin; if (hx < xorigin || hx > v->width()) break; int len = 7; if (harmonic % 2 == 0) { if (harmonic % 4 == 0) { len = 12; } else { len = 10; } } paint.drawLine(int(hx), cursorPos.y(), int(hx), cursorPos.y() + len); ++harmonic; } paint.restore(); } QString SpectrumLayer::getFeatureDescription(View *v, QPoint &p) const { if (!m_sliceableModel) return ""; int minbin = 0, maxbin = 0, range = 0; QString genericDesc = SliceLayer::getFeatureDescription (v, p, false, minbin, maxbin, range); if (genericDesc == "") return ""; float minvalue = 0.f; if (minbin < int(m_values.size())) minvalue = m_values[minbin]; float maxvalue = minvalue; if (maxbin < int(m_values.size())) maxvalue = m_values[maxbin]; if (minvalue > maxvalue) std::swap(minvalue, maxvalue); QString binstr; QString hzstr; int minfreq = lrintf((minbin * m_sliceableModel->getSampleRate()) / m_windowSize); int maxfreq = lrintf((std::max(maxbin, minbin+1) * m_sliceableModel->getSampleRate()) / m_windowSize); if (maxbin != minbin) { binstr = tr("%1 - %2").arg(minbin+1).arg(maxbin+1); } else { binstr = QString("%1").arg(minbin+1); } if (minfreq != maxfreq) { hzstr = tr("%1 - %2 Hz").arg(minfreq).arg(maxfreq); } else { hzstr = tr("%1 Hz").arg(minfreq); } QString valuestr; if (maxvalue != minvalue) { valuestr = tr("%1 - %2").arg(minvalue).arg(maxvalue); } else { valuestr = QString("%1").arg(minvalue); } QString dbstr; float mindb = AudioLevel::multiplier_to_dB(minvalue); float maxdb = AudioLevel::multiplier_to_dB(maxvalue); QString mindbstr; QString maxdbstr; if (mindb == AudioLevel::DB_FLOOR) { mindbstr = tr("-Inf"); } else { mindbstr = QString("%1").arg(lrintf(mindb)); } if (maxdb == AudioLevel::DB_FLOOR) { maxdbstr = tr("-Inf"); } else { maxdbstr = QString("%1").arg(lrintf(maxdb)); } if (lrintf(mindb) != lrintf(maxdb)) { dbstr = tr("%1 - %2").arg(mindbstr).arg(maxdbstr); } else { dbstr = tr("%1").arg(mindbstr); } QString description; if (range > int(m_sliceableModel->getResolution())) { description = tr("%1\nBin:\t%2 (%3)\n%4 value:\t%5\ndB:\t%6") .arg(genericDesc) .arg(binstr) .arg(hzstr) .arg(m_samplingMode == NearestSample ? tr("First") : m_samplingMode == SampleMean ? tr("Mean") : tr("Peak")) .arg(valuestr) .arg(dbstr); } else { description = tr("%1\nBin:\t%2 (%3)\nValue:\t%4\ndB:\t%5") .arg(genericDesc) .arg(binstr) .arg(hzstr) .arg(valuestr) .arg(dbstr); } return description; } void SpectrumLayer::getBiasCurve(BiasCurve &curve) const { curve = m_biasCurve; } QString SpectrumLayer::toXmlString(QString indent, QString extraAttributes) const { QString s; s += QString("windowSize=\"%1\" " "windowHopLevel=\"%2\"") .arg(m_windowSize) .arg(m_windowHopLevel); return SliceLayer::toXmlString(indent, extraAttributes + " " + s); } void SpectrumLayer::setProperties(const QXmlAttributes &attributes) { SliceLayer::setProperties(attributes); bool ok = false; size_t windowSize = attributes.value("windowSize").toUInt(&ok); if (ok) setWindowSize(windowSize); size_t windowHopLevel = attributes.value("windowHopLevel").toUInt(&ok); if (ok) setWindowHopLevel(windowHopLevel); }