Mercurial > hg > svgui
view layer/SpectrogramLayer.cpp @ 76:45ba0b381c5d
* Fix long-standing off-by-1 bug in WaveFileModel that was getting us the wrong
values for almost all audio data when merging channels (channel == -1)
* Implement cut, copy and paste
* Make draw mode work properly in time value layer
* Minor fixes to CSV import
author | Chris Cannam |
---|---|
date | Fri, 07 Apr 2006 17:50:33 +0000 |
parents | dfdbf336bb37 |
children | fd348f36c0d3 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "SpectrogramLayer.h" #include "base/View.h" #include "base/Profiler.h" #include "base/AudioLevel.h" #include "base/Window.h" #include "base/Pitch.h" #include <QPainter> #include <QImage> #include <QPixmap> #include <QRect> #include <QTimer> #include <iostream> #include <cassert> #include <cmath> //#define DEBUG_SPECTROGRAM_REPAINT 1 static double mod(double x, double y) { double a = floor(x / y); double b = x - (y * a); return b; } static double princarg(double ang) { return mod(ang + M_PI, -2 * M_PI) + M_PI; } SpectrogramLayer::SpectrogramLayer(Configuration config) : Layer(), m_model(0), m_channel(0), m_windowSize(1024), m_windowType(HanningWindow), m_windowOverlap(50), m_gain(1.0), m_threshold(0.0), m_colourRotation(0), m_minFrequency(0), m_maxFrequency(8000), m_colourScale(dBColourScale), m_colourScheme(DefaultColours), m_frequencyScale(LinearFrequencyScale), m_binDisplay(AllBins), m_normalizeColumns(false), m_cache(0), m_cacheInvalid(true), m_pixmapCache(0), m_pixmapCacheInvalid(true), m_fillThread(0), m_updateTimer(0), m_candidateFillStartFrame(0), m_lastFillExtent(0), m_exiting(false) { if (config == MelodicRange) { setWindowSize(8192); setWindowOverlap(90); setWindowType(ParzenWindow); setMaxFrequency(1000); setColourScale(LinearColourScale); } else if (config == MelodicPeaks) { setWindowSize(4096); setWindowOverlap(90); setWindowType(BlackmanWindow); setMaxFrequency(2000); setMinFrequency(40); setFrequencyScale(LogFrequencyScale); setColourScale(MeterColourScale); setBinDisplay(PeakFrequencies); setNormalizeColumns(true); } } SpectrogramLayer::~SpectrogramLayer() { delete m_updateTimer; m_updateTimer = 0; m_exiting = true; m_condition.wakeAll(); if (m_fillThread) m_fillThread->wait(); delete m_fillThread; delete m_cache; } void SpectrogramLayer::setModel(const DenseTimeValueModel *model) { std::cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << std::endl; m_mutex.lock(); m_cacheInvalid = true; m_model = model; delete m_cache; //!!! hang on, this isn't safe to do here is it? // we need some sort of guard against the fill // thread trying to read the defunct model too. // should we use a scavenger? m_cache = 0; m_mutex.unlock(); if (!m_model || !m_model->isOK()) return; connect(m_model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged())); connect(m_model, SIGNAL(modelChanged(size_t, size_t)), this, SIGNAL(modelChanged(size_t, size_t))); connect(m_model, SIGNAL(completionChanged()), this, SIGNAL(modelCompletionChanged())); connect(m_model, SIGNAL(modelChanged()), this, SLOT(cacheInvalid())); connect(m_model, SIGNAL(modelChanged(size_t, size_t)), this, SLOT(cacheInvalid(size_t, size_t))); emit modelReplaced(); fillCache(); } Layer::PropertyList SpectrogramLayer::getProperties() const { PropertyList list; list.push_back(tr("Colour")); list.push_back(tr("Colour Scale")); list.push_back(tr("Window Type")); list.push_back(tr("Window Size")); list.push_back(tr("Window Overlap")); list.push_back(tr("Normalize")); list.push_back(tr("Bin Display")); list.push_back(tr("Threshold")); list.push_back(tr("Gain")); list.push_back(tr("Colour Rotation")); list.push_back(tr("Min Frequency")); list.push_back(tr("Max Frequency")); list.push_back(tr("Frequency Scale")); return list; } Layer::PropertyType SpectrogramLayer::getPropertyType(const PropertyName &name) const { if (name == tr("Gain")) return RangeProperty; if (name == tr("Colour Rotation")) return RangeProperty; if (name == tr("Normalize")) return ToggleProperty; if (name == tr("Threshold")) return RangeProperty; return ValueProperty; } QString SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const { if (name == tr("Window Size") || name == tr("Window Type") || name == tr("Window Overlap")) return tr("Window"); if (name == tr("Colour") || name == tr("Gain") || name == tr("Threshold") || name == tr("Colour Rotation")) return tr("Colour"); if (name == tr("Normalize") || name == tr("Bin Display") || name == tr("Colour Scale")) return tr("Scale"); if (name == tr("Max Frequency") || name == tr("Min Frequency") || name == tr("Frequency Scale") || name == tr("Frequency Adjustment")) return tr("Range"); return QString(); } int SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max) const { int deft = 0; int garbage0, garbage1; if (!min) min = &garbage0; if (!max) max = &garbage1; if (name == tr("Gain")) { *min = -50; *max = 50; deft = lrint(log10(m_gain) * 20.0); if (deft < *min) deft = *min; if (deft > *max) deft = *max; } else if (name == tr("Threshold")) { *min = -50; *max = 0; deft = lrintf(AudioLevel::multiplier_to_dB(m_threshold)); if (deft < *min) deft = *min; if (deft > *max) deft = *max; } else if (name == tr("Colour Rotation")) { *min = 0; *max = 256; deft = m_colourRotation; } else if (name == tr("Colour Scale")) { *min = 0; *max = 3; deft = (int)m_colourScale; } else if (name == tr("Colour")) { *min = 0; *max = 6; deft = (int)m_colourScheme; } else if (name == tr("Window Type")) { *min = 0; *max = 6; deft = (int)m_windowType; } else if (name == tr("Window Size")) { *min = 0; *max = 10; deft = 0; int ws = m_windowSize; while (ws > 32) { ws >>= 1; deft ++; } } else if (name == tr("Window Overlap")) { *min = 0; *max = 4; deft = m_windowOverlap / 25; if (m_windowOverlap == 90) deft = 4; } else if (name == tr("Min Frequency")) { *min = 0; *max = 9; switch (m_minFrequency) { case 0: default: deft = 0; break; case 10: deft = 1; break; case 20: deft = 2; break; case 40: deft = 3; break; case 100: deft = 4; break; case 250: deft = 5; break; case 500: deft = 6; break; case 1000: deft = 7; break; case 4000: deft = 8; break; case 10000: deft = 9; break; } } else if (name == tr("Max Frequency")) { *min = 0; *max = 9; switch (m_maxFrequency) { case 500: deft = 0; break; case 1000: deft = 1; break; case 1500: deft = 2; break; case 2000: deft = 3; break; case 4000: deft = 4; break; case 6000: deft = 5; break; case 8000: deft = 6; break; case 12000: deft = 7; break; case 16000: deft = 8; break; default: deft = 9; break; } } else if (name == tr("Frequency Scale")) { *min = 0; *max = 1; deft = (int)m_frequencyScale; } else if (name == tr("Bin Display")) { *min = 0; *max = 2; deft = (int)m_binDisplay; } else if (name == tr("Normalize")) { deft = (m_normalizeColumns ? 1 : 0); } else { deft = Layer::getPropertyRangeAndValue(name, min, max); } return deft; } QString SpectrogramLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == tr("Colour")) { switch (value) { default: case 0: return tr("Default"); case 1: return tr("White on Black"); case 2: return tr("Black on White"); case 3: return tr("Red on Blue"); case 4: return tr("Yellow on Black"); case 5: return tr("Blue on Black"); case 6: return tr("Fruit Salad"); } } if (name == tr("Colour Scale")) { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Meter"); case 2: return tr("dB"); case 3: return tr("Phase"); } } if (name == tr("Window Type")) { switch ((WindowType)value) { default: case RectangularWindow: return tr("Rectangle"); case BartlettWindow: return tr("Bartlett"); case HammingWindow: return tr("Hamming"); case HanningWindow: return tr("Hanning"); case BlackmanWindow: return tr("Blackman"); case GaussianWindow: return tr("Gaussian"); case ParzenWindow: return tr("Parzen"); } } if (name == tr("Window Size")) { return QString("%1").arg(32 << value); } if (name == tr("Window Overlap")) { switch (value) { default: case 0: return tr("0%"); case 1: return tr("25%"); case 2: return tr("50%"); case 3: return tr("75%"); case 4: return tr("90%"); } } if (name == tr("Min Frequency")) { switch (value) { default: case 0: return tr("No min"); case 1: return tr("10 Hz"); case 2: return tr("20 Hz"); case 3: return tr("40 Hz"); case 4: return tr("100 Hz"); case 5: return tr("250 Hz"); case 6: return tr("500 Hz"); case 7: return tr("1 KHz"); case 8: return tr("4 KHz"); case 9: return tr("10 KHz"); } } if (name == tr("Max Frequency")) { switch (value) { default: case 0: return tr("500 Hz"); case 1: return tr("1 KHz"); case 2: return tr("1.5 KHz"); case 3: return tr("2 KHz"); case 4: return tr("4 KHz"); case 5: return tr("6 KHz"); case 6: return tr("8 KHz"); case 7: return tr("12 KHz"); case 8: return tr("16 KHz"); case 9: return tr("No max"); } } if (name == tr("Frequency Scale")) { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Log"); } } if (name == tr("Bin Display")) { switch (value) { default: case 0: return tr("All Bins"); case 1: return tr("Peak Bins"); case 2: return tr("Frequencies"); } } return tr("<unknown>"); } void SpectrogramLayer::setProperty(const PropertyName &name, int value) { if (name == tr("Gain")) { setGain(pow(10, float(value)/20.0)); } else if (name == tr("Threshold")) { if (value == -50) setThreshold(0.0); else setThreshold(AudioLevel::dB_to_multiplier(value)); } else if (name == tr("Colour Rotation")) { setColourRotation(value); } else if (name == tr("Colour")) { switch (value) { default: case 0: setColourScheme(DefaultColours); break; case 1: setColourScheme(WhiteOnBlack); break; case 2: setColourScheme(BlackOnWhite); break; case 3: setColourScheme(RedOnBlue); break; case 4: setColourScheme(YellowOnBlack); break; case 5: setColourScheme(BlueOnBlack); break; case 6: setColourScheme(Rainbow); break; } } else if (name == tr("Window Type")) { setWindowType(WindowType(value)); } else if (name == tr("Window Size")) { setWindowSize(32 << value); } else if (name == tr("Window Overlap")) { if (value == 4) setWindowOverlap(90); else setWindowOverlap(25 * value); } else if (name == tr("Min Frequency")) { switch (value) { default: case 0: setMinFrequency(0); break; case 1: setMinFrequency(10); break; case 2: setMinFrequency(20); break; case 3: setMinFrequency(40); break; case 4: setMinFrequency(100); break; case 5: setMinFrequency(250); break; case 6: setMinFrequency(500); break; case 7: setMinFrequency(1000); break; case 8: setMinFrequency(4000); break; case 9: setMinFrequency(10000); break; } } else if (name == tr("Max Frequency")) { switch (value) { case 0: setMaxFrequency(500); break; case 1: setMaxFrequency(1000); break; case 2: setMaxFrequency(1500); break; case 3: setMaxFrequency(2000); break; case 4: setMaxFrequency(4000); break; case 5: setMaxFrequency(6000); break; case 6: setMaxFrequency(8000); break; case 7: setMaxFrequency(12000); break; case 8: setMaxFrequency(16000); break; default: case 9: setMaxFrequency(0); break; } } else if (name == tr("Colour Scale")) { switch (value) { default: case 0: setColourScale(LinearColourScale); break; case 1: setColourScale(MeterColourScale); break; case 2: setColourScale(dBColourScale); break; case 3: setColourScale(PhaseColourScale); break; } } else if (name == tr("Frequency Scale")) { switch (value) { default: case 0: setFrequencyScale(LinearFrequencyScale); break; case 1: setFrequencyScale(LogFrequencyScale); break; } } else if (name == tr("Bin Display")) { switch (value) { default: case 0: setBinDisplay(AllBins); break; case 1: setBinDisplay(PeakBins); break; case 2: setBinDisplay(PeakFrequencies); break; } } else if (name == "Normalize") { setNormalizeColumns(value ? true : false); } } void SpectrogramLayer::setChannel(int ch) { if (m_channel == ch) return; m_mutex.lock(); m_cacheInvalid = true; m_pixmapCacheInvalid = true; m_channel = ch; m_mutex.unlock(); emit layerParametersChanged(); fillCache(); } int SpectrogramLayer::getChannel() const { return m_channel; } void SpectrogramLayer::setWindowSize(size_t ws) { if (m_windowSize == ws) return; m_mutex.lock(); m_cacheInvalid = true; m_pixmapCacheInvalid = true; m_windowSize = ws; m_mutex.unlock(); emit layerParametersChanged(); fillCache(); } size_t SpectrogramLayer::getWindowSize() const { return m_windowSize; } void SpectrogramLayer::setWindowOverlap(size_t wi) { if (m_windowOverlap == wi) return; m_mutex.lock(); m_cacheInvalid = true; m_pixmapCacheInvalid = true; m_windowOverlap = wi; m_mutex.unlock(); emit layerParametersChanged(); fillCache(); } size_t SpectrogramLayer::getWindowOverlap() const { return m_windowOverlap; } void SpectrogramLayer::setWindowType(WindowType w) { if (m_windowType == w) return; m_mutex.lock(); m_cacheInvalid = true; m_pixmapCacheInvalid = true; m_windowType = w; m_mutex.unlock(); emit layerParametersChanged(); fillCache(); } WindowType SpectrogramLayer::getWindowType() const { return m_windowType; } void SpectrogramLayer::setGain(float gain) { std::cerr << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " << m_gain << ")" << std::endl; if (m_gain == gain) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_gain = gain; m_mutex.unlock(); emit layerParametersChanged(); fillCache(); } float SpectrogramLayer::getGain() const { return m_gain; } void SpectrogramLayer::setThreshold(float threshold) { if (m_threshold == threshold) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_threshold = threshold; m_mutex.unlock(); emit layerParametersChanged(); fillCache(); } float SpectrogramLayer::getThreshold() const { return m_threshold; } void SpectrogramLayer::setMinFrequency(size_t mf) { if (m_minFrequency == mf) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_minFrequency = mf; m_mutex.unlock(); emit layerParametersChanged(); } size_t SpectrogramLayer::getMinFrequency() const { return m_minFrequency; } void SpectrogramLayer::setMaxFrequency(size_t mf) { if (m_maxFrequency == mf) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_maxFrequency = mf; m_mutex.unlock(); emit layerParametersChanged(); } size_t SpectrogramLayer::getMaxFrequency() const { return m_maxFrequency; } void SpectrogramLayer::setColourRotation(int r) { m_mutex.lock(); m_pixmapCacheInvalid = true; if (r < 0) r = 0; if (r > 256) r = 256; int distance = r - m_colourRotation; if (distance != 0) { rotateCacheColourmap(-distance); m_colourRotation = r; } m_mutex.unlock(); emit layerParametersChanged(); } void SpectrogramLayer::setColourScale(ColourScale colourScale) { if (m_colourScale == colourScale) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_colourScale = colourScale; m_mutex.unlock(); fillCache(); emit layerParametersChanged(); } SpectrogramLayer::ColourScale SpectrogramLayer::getColourScale() const { return m_colourScale; } void SpectrogramLayer::setColourScheme(ColourScheme scheme) { if (m_colourScheme == scheme) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_colourScheme = scheme; setCacheColourmap(); m_mutex.unlock(); emit layerParametersChanged(); } SpectrogramLayer::ColourScheme SpectrogramLayer::getColourScheme() const { return m_colourScheme; } void SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale) { if (m_frequencyScale == frequencyScale) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_frequencyScale = frequencyScale; m_mutex.unlock(); emit layerParametersChanged(); } SpectrogramLayer::FrequencyScale SpectrogramLayer::getFrequencyScale() const { return m_frequencyScale; } void SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) { if (m_binDisplay == binDisplay) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_binDisplay = binDisplay; m_mutex.unlock(); fillCache(); emit layerParametersChanged(); } SpectrogramLayer::BinDisplay SpectrogramLayer::getBinDisplay() const { return m_binDisplay; } void SpectrogramLayer::setNormalizeColumns(bool n) { if (m_normalizeColumns == n) return; m_mutex.lock(); m_pixmapCacheInvalid = true; m_normalizeColumns = n; m_mutex.unlock(); fillCache(); emit layerParametersChanged(); } bool SpectrogramLayer::getNormalizeColumns() const { return m_normalizeColumns; } void SpectrogramLayer::setLayerDormant(const View *v, bool dormant) { QMutexLocker locker(&m_mutex); if (dormant == m_dormancy[v]) return; if (dormant) { m_dormancy[v] = true; // delete m_cache; // m_cache = 0; m_cacheInvalid = true; m_pixmapCacheInvalid = true; delete m_pixmapCache; m_pixmapCache = 0; } else { m_dormancy[v] = false; } } void SpectrogramLayer::cacheInvalid() { m_cacheInvalid = true; m_pixmapCacheInvalid = true; fillCache(); } void SpectrogramLayer::cacheInvalid(size_t, size_t) { // for now (or forever?) cacheInvalid(); } void SpectrogramLayer::fillCache() { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::fillCache" << std::endl; #endif QMutexLocker locker(&m_mutex); m_lastFillExtent = 0; delete m_updateTimer; m_updateTimer = new QTimer(this); connect(m_updateTimer, SIGNAL(timeout()), this, SLOT(fillTimerTimedOut())); m_updateTimer->start(200); if (!m_fillThread) { std::cerr << "SpectrogramLayer::fillCache creating thread" << std::endl; m_fillThread = new CacheFillThread(*this); m_fillThread->start(); } m_condition.wakeAll(); } void SpectrogramLayer::fillTimerTimedOut() { if (m_fillThread && m_model) { size_t fillExtent = m_fillThread->getFillExtent(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::fillTimerTimedOut: extent " << fillExtent << ", last " << m_lastFillExtent << ", total " << m_model->getEndFrame() << std::endl; #endif if (fillExtent >= m_lastFillExtent) { if (fillExtent >= m_model->getEndFrame() && m_lastFillExtent > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "complete!" << std::endl; #endif m_pixmapCacheInvalid = true; emit modelChanged(); delete m_updateTimer; m_updateTimer = 0; m_lastFillExtent = 0; } else if (fillExtent > m_lastFillExtent) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: emitting modelChanged(" << m_lastFillExtent << "," << fillExtent << ")" << std::endl; #endif m_pixmapCacheInvalid = true; emit modelChanged(m_lastFillExtent, fillExtent); m_lastFillExtent = fillExtent; } } else { // if (v) { size_t sf = 0; //!!! if (v->getStartFrame() > 0) sf = v->getStartFrame(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: going backwards, emitting modelChanged(" << sf << "," << m_model->getEndFrame() << ")" << std::endl; #endif m_pixmapCacheInvalid = true; emit modelChanged(sf, m_model->getEndFrame()); // } m_lastFillExtent = fillExtent; } } } void SpectrogramLayer::setCacheColourmap() { if (m_cacheInvalid || !m_cache) return; int formerRotation = m_colourRotation; if (m_colourScheme == BlackOnWhite) { m_cache->setColour(NO_VALUE, Qt::white); } else { m_cache->setColour(NO_VALUE, Qt::black); } for (int pixel = 1; pixel < 256; ++pixel) { QColor colour; int hue, px; switch (m_colourScheme) { default: case DefaultColours: hue = 256 - pixel; colour = QColor::fromHsv(hue, pixel/2 + 128, pixel); break; case WhiteOnBlack: colour = QColor(pixel, pixel, pixel); break; case BlackOnWhite: colour = QColor(256-pixel, 256-pixel, 256-pixel); break; case RedOnBlue: colour = QColor(pixel > 128 ? (pixel - 128) * 2 : 0, 0, pixel < 128 ? pixel : (256 - pixel)); break; case YellowOnBlack: px = 256 - pixel; colour = QColor(px < 64 ? 255 - px/2 : px < 128 ? 224 - (px - 64) : px < 192 ? 160 - (px - 128) * 3 / 2 : 256 - px, pixel, pixel / 4); break; case BlueOnBlack: colour = QColor::fromHsv (240, pixel > 226 ? 256 - (pixel - 226) * 8 : 255, (pixel * pixel) / 255); break; case Rainbow: hue = 250 - pixel; if (hue < 0) hue += 256; colour = QColor::fromHsv(pixel, 255, 255); break; } m_cache->setColour(pixel, colour); } m_colourRotation = 0; rotateCacheColourmap(m_colourRotation - formerRotation); m_colourRotation = formerRotation; } void SpectrogramLayer::rotateCacheColourmap(int distance) { if (!m_cache) return; QColor newPixels[256]; newPixels[NO_VALUE] = m_cache->getColour(NO_VALUE); for (int pixel = 1; pixel < 256; ++pixel) { int target = pixel + distance; while (target < 1) target += 255; while (target > 255) target -= 255; newPixels[target] = m_cache->getColour(pixel); } for (int pixel = 0; pixel < 256; ++pixel) { m_cache->setColour(pixel, newPixels[pixel]); } } float SpectrogramLayer::calculateFrequency(size_t bin, size_t windowSize, size_t windowIncrement, size_t sampleRate, float oldPhase, float newPhase, bool &steadyState) { // At frequency f, phase shift of 2pi (one cycle) happens in 1/f sec. // At hopsize h and sample rate sr, one hop happens in h/sr sec. // At window size w, for bin b, f is b*sr/w. // thus 2pi phase shift happens in w/(b*sr) sec. // We need to know what phase shift we expect from h/sr sec. // -> 2pi * ((h/sr) / (w/(b*sr))) // = 2pi * ((h * b * sr) / (w * sr)) // = 2pi * (h * b) / w. float frequency = (float(bin) * sampleRate) / windowSize; float expectedPhase = oldPhase + (2.0 * M_PI * bin * windowIncrement) / windowSize; float phaseError = princarg(newPhase - expectedPhase); if (fabs(phaseError) < (1.1 * (windowIncrement * M_PI) / windowSize)) { // The new frequency estimate based on the phase error // resulting from assuming the "native" frequency of this bin float newFrequency = (sampleRate * (expectedPhase + phaseError - oldPhase)) / (2 * M_PI * windowIncrement); steadyState = true; return newFrequency; } steadyState = false; return frequency; } void SpectrogramLayer::fillCacheColumn(int column, double *input, fftw_complex *output, fftw_plan plan, size_t windowSize, size_t increment, const Window<double> &windower) const { //!!! we _do_ need a lock for these references to the model // though, don't we? int startFrame = increment * column; int endFrame = startFrame + windowSize; startFrame -= int(windowSize - increment) / 2; endFrame -= int(windowSize - increment) / 2; size_t pfx = 0; if (startFrame < 0) { pfx = size_t(-startFrame); for (size_t i = 0; i < pfx; ++i) { input[i] = 0.0; } } size_t got = m_model->getValues(m_channel, startFrame + pfx, endFrame, input + pfx); while (got + pfx < windowSize) { input[got + pfx] = 0.0; ++got; } if (m_channel == -1) { int channels = m_model->getChannelCount(); if (channels > 1) { for (size_t i = 0; i < windowSize; ++i) { input[i] /= channels; } } } windower.cut(input); for (size_t i = 0; i < windowSize/2; ++i) { double temp = input[i]; input[i] = input[i + windowSize/2]; input[i + windowSize/2] = temp; } fftw_execute(plan); double factor = 0.0; // Calculate magnitude and phase from real and imaginary in // output[i][0] and output[i][1] respectively, and store the phase // straight into cache and the magnitude back into output[i][0] // (because we'll need to know the normalization factor, // i.e. maximum magnitude in this column, before we can store it) for (size_t i = 0; i < windowSize/2; ++i) { double mag = sqrt(output[i][0] * output[i][0] + output[i][1] * output[i][1]); mag /= windowSize / 2; if (mag > factor) factor = mag; double phase = atan2(output[i][1], output[i][0]); phase = princarg(phase); output[i][0] = mag; m_cache->setPhaseAt(column, i, phase); } m_cache->setNormalizationFactor(column, factor); for (size_t i = 0; i < windowSize/2; ++i) { m_cache->setMagnitudeAt(column, i, output[i][0]); } } unsigned char SpectrogramLayer::getDisplayValue(float input) const { int value; switch (m_colourScale) { default: case LinearColourScale: value = int (input * (m_normalizeColumns ? 1.0 : 50.0) * 255.0) + 1; break; case MeterColourScale: value = AudioLevel::multiplier_to_preview (input * (m_normalizeColumns ? 1.0 : 50.0), 255) + 1; break; case dBColourScale: input = 20.0 * log10(input); input = (input + 80.0) / 80.0; if (input < 0.0) input = 0.0; if (input > 1.0) input = 1.0; value = int(input * 255.0) + 1; break; case PhaseColourScale: value = int((input * 127.0 / M_PI) + 128); break; } if (value > UCHAR_MAX) value = UCHAR_MAX; if (value < 0) value = 0; return value; } float SpectrogramLayer::getInputForDisplayValue(unsigned char uc) const { int value = uc; float input; switch (m_colourScale) { default: case LinearColourScale: input = float(value - 1) / 255.0 / (m_normalizeColumns ? 1 : 50); break; case MeterColourScale: input = AudioLevel::preview_to_multiplier(value - 1, 255) / (m_normalizeColumns ? 1.0 : 50.0); break; case dBColourScale: input = float(value - 1) / 255.0; input = (input * 80.0) - 80.0; input = powf(10.0, input) / 20.0; value = int(input); break; case PhaseColourScale: input = float(value - 128) * M_PI / 127.0; break; } return input; } SpectrogramLayer::Cache::Cache() : m_width(0), m_height(0), m_magnitude(0), m_phase(0), m_factor(0) { } SpectrogramLayer::Cache::~Cache() { std::cerr << "SpectrogramLayer::Cache[" << this << "]::~Cache" << std::endl; for (size_t i = 0; i < m_width; ++i) { if (m_magnitude && m_magnitude[i]) free(m_magnitude[i]); if (m_phase && m_phase[i]) free(m_phase[i]); } if (m_magnitude) free(m_magnitude); if (m_phase) free(m_phase); if (m_factor) free(m_factor); } void SpectrogramLayer::Cache::resize(size_t width, size_t height) { std::cerr << "SpectrogramLayer::Cache[" << this << "]::resize(" << width << "x" << height << " = " << width*height << ")" << std::endl; if (m_width == width && m_height == height) return; resize(m_magnitude, width, height); resize(m_phase, width, height); m_factor = (float *)realloc(m_factor, width * sizeof(float)); m_width = width; m_height = height; std::cerr << "done, width = " << m_width << " height = " << m_height << std::endl; } void SpectrogramLayer::Cache::resize(uint16_t **&array, size_t width, size_t height) { for (size_t i = width; i < m_width; ++i) { free(array[i]); } if (width != m_width) { array = (uint16_t **)realloc(array, width * sizeof(uint16_t *)); if (!array) throw std::bad_alloc(); MUNLOCK(array, width * sizeof(uint16_t *)); } for (size_t i = m_width; i < width; ++i) { array[i] = 0; } for (size_t i = 0; i < width; ++i) { array[i] = (uint16_t *)realloc(array[i], height * sizeof(uint16_t)); if (!array[i]) throw std::bad_alloc(); MUNLOCK(array[i], height * sizeof(uint16_t)); } } void SpectrogramLayer::Cache::reset() { for (size_t x = 0; x < m_width; ++x) { for (size_t y = 0; y < m_height; ++y) { m_magnitude[x][y] = 0; m_phase[x][y] = 0; } m_factor[x] = 1.0; } } void SpectrogramLayer::CacheFillThread::run() { // std::cerr << "SpectrogramLayer::CacheFillThread::run" << std::endl; m_layer.m_mutex.lock(); while (!m_layer.m_exiting) { bool interrupted = false; // std::cerr << "SpectrogramLayer::CacheFillThread::run in loop" << std::endl; bool haveUndormantViews = false; for (std::map<const void *, bool>::iterator i = m_layer.m_dormancy.begin(); i != m_layer.m_dormancy.end(); ++i) { if (!i->second) { haveUndormantViews = true; break; } } if (!haveUndormantViews) { if (m_layer.m_cacheInvalid && m_layer.m_cache) { std::cerr << "All views dormant, freeing spectrogram cache" << std::endl; delete m_layer.m_cache; m_layer.m_cache = 0; } } else if (m_layer.m_model && m_layer.m_cacheInvalid) { // std::cerr << "SpectrogramLayer::CacheFillThread::run: something to do" << std::endl; while (!m_layer.m_model->isReady()) { m_layer.m_condition.wait(&m_layer.m_mutex, 100); if (m_layer.m_exiting) break; } if (m_layer.m_exiting) break; m_layer.m_cacheInvalid = false; m_fillExtent = 0; m_fillCompletion = 0; std::cerr << "SpectrogramLayer::CacheFillThread::run: model is ready" << std::endl; size_t start = m_layer.m_model->getStartFrame(); size_t end = m_layer.m_model->getEndFrame(); std::cerr << "start = " << start << ", end = " << end << std::endl; WindowType windowType = m_layer.m_windowType; size_t windowSize = m_layer.m_windowSize; size_t windowIncrement = m_layer.getWindowIncrement(); size_t visibleStart = m_layer.m_candidateFillStartFrame; visibleStart = (visibleStart / windowIncrement) * windowIncrement; size_t width = (end - start) / windowIncrement + 1; size_t height = windowSize / 2; if (!m_layer.m_cache) { m_layer.m_cache = new Cache; } m_layer.m_cache->resize(width, height); m_layer.setCacheColourmap(); //!!! m_layer.m_cache->reset(); // We don't need a lock when writing to or reading from // the pixels in the cache. We do need to ensure we have // the width and height of the cache and the FFT // parameters known before we unlock, in case they change // in the model while we aren't holding a lock. It's safe // for us to continue to use the "old" values if that // happens, because they will continue to match the // dimensions of the actual cache (which we manage, not // the model). m_layer.m_mutex.unlock(); double *input = (double *) fftw_malloc(windowSize * sizeof(double)); fftw_complex *output = (fftw_complex *) fftw_malloc(windowSize * sizeof(fftw_complex)); fftw_plan plan = fftw_plan_dft_r2c_1d(windowSize, input, output, FFTW_ESTIMATE); Window<double> windower(windowType, windowSize); if (!plan) { std::cerr << "WARNING: fftw_plan_dft_r2c_1d(" << windowSize << ") failed!" << std::endl; fftw_free(input); fftw_free(output); m_layer.m_mutex.lock(); continue; } int counter = 0; int updateAt = (end / windowIncrement) / 20; if (updateAt < 100) updateAt = 100; bool doVisibleFirst = (visibleStart != start); if (doVisibleFirst) { for (size_t f = visibleStart; f < end; f += windowIncrement) { m_layer.fillCacheColumn(int((f - start) / windowIncrement), input, output, plan, windowSize, windowIncrement, windower); if (m_layer.m_cacheInvalid || m_layer.m_exiting) { interrupted = true; m_fillExtent = 0; break; } if (++counter == updateAt) { m_fillExtent = f; m_fillCompletion = size_t(100 * fabsf(float(f - visibleStart) / float(end - start))); counter = 0; } } } if (!interrupted) { size_t remainingEnd = end; if (doVisibleFirst) { remainingEnd = visibleStart; if (remainingEnd > start) --remainingEnd; else remainingEnd = start; } size_t baseCompletion = m_fillCompletion; for (size_t f = start; f < remainingEnd; f += windowIncrement) { m_layer.fillCacheColumn(int((f - start) / windowIncrement), input, output, plan, windowSize, windowIncrement, windower); if (m_layer.m_cacheInvalid || m_layer.m_exiting) { interrupted = true; m_fillExtent = 0; break; } if (++counter == updateAt) { m_fillExtent = f; m_fillCompletion = baseCompletion + size_t(100 * fabsf(float(f - start) / float(end - start))); counter = 0; } } } fftw_destroy_plan(plan); fftw_free(output); fftw_free(input); if (!interrupted) { m_fillExtent = end; m_fillCompletion = 100; } m_layer.m_mutex.lock(); } if (!interrupted) m_layer.m_condition.wait(&m_layer.m_mutex, 2000); } } float SpectrogramLayer::getEffectiveMinFrequency() const { int sr = m_model->getSampleRate(); float minf = float(sr) / m_windowSize; if (m_minFrequency > 0.0) { size_t minbin = size_t((double(m_minFrequency) * m_windowSize) / sr + 0.01); if (minbin < 1) minbin = 1; minf = minbin * sr / m_windowSize; } return minf; } float SpectrogramLayer::getEffectiveMaxFrequency() const { int sr = m_model->getSampleRate(); float maxf = float(sr) / 2; if (m_maxFrequency > 0.0) { size_t maxbin = size_t((double(m_maxFrequency) * m_windowSize) / sr + 0.1); if (maxbin > m_windowSize / 2) maxbin = m_windowSize / 2; maxf = maxbin * sr / m_windowSize; } return maxf; } bool SpectrogramLayer::getYBinRange(View *v, int y, float &q0, float &q1) const { int h = v->height(); if (y < 0 || y >= h) return false; int sr = m_model->getSampleRate(); float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); // Now map these on to actual bins int b0 = int((q0 * m_windowSize) / sr); int b1 = int((q1 * m_windowSize) / sr); //!!! this is supposed to return fractions-of-bins, as it were, hence the floats q0 = b0; q1 = b1; // q0 = (b0 * sr) / m_windowSize; // q1 = (b1 * sr) / m_windowSize; return true; } bool SpectrogramLayer::getXBinRange(View *v, int x, float &s0, float &s1) const { size_t modelStart = m_model->getStartFrame(); size_t modelEnd = m_model->getEndFrame(); // Each pixel column covers an exact range of sample frames: int f0 = v->getFrameForX(x) - modelStart; int f1 = v->getFrameForX(x + 1) - modelStart - 1; if (f1 < int(modelStart) || f0 > int(modelEnd)) { return false; } // And that range may be drawn from a possibly non-integral // range of spectrogram windows: size_t windowIncrement = getWindowIncrement(); s0 = float(f0) / windowIncrement; s1 = float(f1) / windowIncrement; return true; } bool SpectrogramLayer::getXBinSourceRange(View *v, int x, RealTime &min, RealTime &max) const { float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int windowIncrement = getWindowIncrement(); int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2; int w1 = s1i * windowIncrement + windowIncrement + (m_windowSize - windowIncrement)/2 - 1; min = RealTime::frame2RealTime(w0, m_model->getSampleRate()); max = RealTime::frame2RealTime(w1, m_model->getSampleRate()); return true; } bool SpectrogramLayer::getYBinSourceRange(View *v, int y, float &freqMin, float &freqMax) const { float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int sr = m_model->getSampleRate(); for (int q = q0i; q <= q1i; ++q) { int binfreq = (sr * q) / m_windowSize; if (q == q0i) freqMin = binfreq; if (q == q1i) freqMax = binfreq; } return true; } bool SpectrogramLayer::getAdjustedYBinSourceRange(View *v, int x, int y, float &freqMin, float &freqMax, float &adjFreqMin, float &adjFreqMax) const { float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int q0i = int(q0 + 0.001); int q1i = int(q1); int sr = m_model->getSampleRate(); size_t windowSize = m_windowSize; size_t windowIncrement = getWindowIncrement(); bool haveAdj = false; bool peaksOnly = (m_binDisplay == PeakBins || m_binDisplay == PeakFrequencies); for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { float binfreq = (sr * q) / m_windowSize; if (q == q0i) freqMin = binfreq; if (q == q1i) freqMax = binfreq; if (!m_cache || m_cacheInvalid) break; //!!! lock? if (peaksOnly && !m_cache->isLocalPeak(s, q)) continue; if (!m_cache->isOverThreshold(s, q, m_threshold)) continue; float freq = binfreq; bool steady = false; if (s < int(m_cache->getWidth()) - 1) { freq = calculateFrequency(q, windowSize, windowIncrement, sr, m_cache->getPhaseAt(s, q), m_cache->getPhaseAt(s+1, q), steady); if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq; if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq; haveAdj = true; } } } if (!haveAdj) { adjFreqMin = adjFreqMax = 0.0; } return haveAdj; } bool SpectrogramLayer::getXYBinSourceRange(View *v, int x, int y, float &min, float &max, float &phaseMin, float &phaseMax) const { float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int s0i = int(s0 + 0.001); int s1i = int(s1); bool rv = false; if (m_mutex.tryLock()) { if (m_cache && !m_cacheInvalid) { int cw = m_cache->getWidth(); int ch = m_cache->getHeight(); min = 0.0; max = 0.0; phaseMin = 0.0; phaseMax = 0.0; bool have = false; for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (s >= 0 && q >= 0 && s < cw && q < ch) { float value; value = m_cache->getPhaseAt(s, q); if (!have || value < phaseMin) { phaseMin = value; } if (!have || value > phaseMax) { phaseMax = value; } value = m_cache->getMagnitudeAt(s, q); if (!have || value < min) { min = value; } if (!have || value > max) { max = value; } have = true; } } } if (have) { rv = true; } } m_mutex.unlock(); } return rv; } void SpectrogramLayer::paint(View *v, QPainter &paint, QRect rect) const { if (m_colourScheme == BlackOnWhite) { v->setLightBackground(true); } else { v->setLightBackground(false); } // Profiler profiler("SpectrogramLayer::paint", true); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << ", m_updateTimer " << m_updateTimer << ", pixmap cache invalid " << m_pixmapCacheInvalid << std::endl; #endif long sf = v->getStartFrame(); if (sf < 0) m_candidateFillStartFrame = 0; else m_candidateFillStartFrame = sf; if (!m_model || !m_model->isOK() || !m_model->isReady()) { return; } if (isLayerDormant(v)) { std::cerr << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << std::endl; } // Need to do this even if !isLayerDormant, as that could mean v // is not in the dormancy map at all -- we need it to be present // and accountable for when determining whether we need the cache // in the cache-fill thread above. m_dormancy[v] = false; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): About to lock" << std::endl; #endif m_mutex.lock(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): locked" << std::endl; #endif if (m_cacheInvalid) { // lock the mutex before checking this m_mutex.unlock(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): Cache invalid, returning" << std::endl; #endif return; } bool stillCacheing = (m_updateTimer != 0); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): Still cacheing = " << stillCacheing << std::endl; #endif long startFrame = v->getStartFrame(); int zoomLevel = v->getZoomLevel(); int x0 = 0; int x1 = v->width(); int y0 = 0; int y1 = v->height(); bool recreateWholePixmapCache = true; if (!m_pixmapCacheInvalid) { //!!! This cache may have been obsoleted entirely by the //scrolling cache in View. Perhaps experiment with //removing it and see if it makes things even quicker (or else //make it optional) if (int(m_pixmapCacheZoomLevel) == zoomLevel && m_pixmapCache->width() == v->width() && m_pixmapCache->height() == v->height()) { if (v->getXForFrame(m_pixmapCacheStartFrame) == v->getXForFrame(startFrame)) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache good" << std::endl; #endif m_mutex.unlock(); paint.drawPixmap(rect, *m_pixmapCache, rect); return; } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache partially OK" << std::endl; #endif recreateWholePixmapCache = false; int dx = v->getXForFrame(m_pixmapCacheStartFrame) - v->getXForFrame(startFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: dx = " << dx << " (pixmap cache " << m_pixmapCache->width() << "x" << m_pixmapCache->height() << ")" << std::endl; #endif if (dx > -m_pixmapCache->width() && dx < m_pixmapCache->width()) { #if defined(Q_WS_WIN32) || defined(Q_WS_MAC) // Copying a pixmap to itself doesn't work // properly on Windows or Mac (it only works when // moving in one direction). //!!! Need a utility function for this static QPixmap *tmpPixmap = 0; if (!tmpPixmap || tmpPixmap->width() != m_pixmapCache->width() || tmpPixmap->height() != m_pixmapCache->height()) { delete tmpPixmap; tmpPixmap = new QPixmap(m_pixmapCache->width(), m_pixmapCache->height()); } QPainter cachePainter; cachePainter.begin(tmpPixmap); cachePainter.drawPixmap(0, 0, *m_pixmapCache); cachePainter.end(); cachePainter.begin(m_pixmapCache); cachePainter.drawPixmap(dx, 0, *tmpPixmap); cachePainter.end(); #else QPainter cachePainter(m_pixmapCache); cachePainter.drawPixmap(dx, 0, *m_pixmapCache); cachePainter.end(); #endif paint.drawPixmap(rect, *m_pixmapCache, rect); if (dx < 0) { x0 = m_pixmapCache->width() + dx; x1 = m_pixmapCache->width(); } else { x0 = 0; x1 = dx; } } } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache useless" << std::endl; #endif } } if (stillCacheing) { x0 = rect.left(); x1 = rect.right() + 1; y0 = rect.top(); y1 = rect.bottom() + 1; } int w = x1 - x0; int h = y1 - y0; // std::cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << std::endl; QImage scaled(w, h, QImage::Format_RGB32); scaled.fill(m_cache->getColour(0).rgb()); float ymag[h]; float ydiv[h]; int sr = m_model->getSampleRate(); size_t bins = m_windowSize / 2; if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * m_windowSize) / sr + 0.1); if (bins > m_windowSize / 2) bins = m_windowSize / 2; } size_t minbin = 1; if (m_minFrequency > 0) { minbin = int((double(m_minFrequency) * m_windowSize) / sr + 0.1); if (minbin < 1) minbin = 1; if (minbin >= bins) minbin = bins - 1; } float minFreq = (float(minbin) * sr) / m_windowSize; float maxFreq = (float(bins) * sr) / m_windowSize; size_t increment = getWindowIncrement(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); m_mutex.unlock(); for (int x = 0; x < w; ++x) { m_mutex.lock(); if (m_cacheInvalid) { m_mutex.unlock(); break; } for (int y = 0; y < h; ++y) { ymag[y] = 0.0; ydiv[y] = 0.0; } float s0 = 0, s1 = 0; if (!getXBinRange(v, x0 + x, s0, s1)) { assert(x <= scaled.width()); m_mutex.unlock(); continue; } int s0i = int(s0 + 0.001); int s1i = int(s1); if (s1i >= m_cache->getWidth()) { if (s0i >= m_cache->getWidth()) { m_mutex.unlock(); continue; } else { s1i = s0i; } } for (size_t q = minbin; q < bins; ++q) { float f0 = (float(q) * sr) / m_windowSize; float f1 = (float(q + 1) * sr) / m_windowSize; float y0 = 0, y1 = 0; if (m_binDisplay != PeakFrequencies) { y0 = v->getYForFrequency(f1, minFreq, maxFreq, logarithmic); y1 = v->getYForFrequency(f0, minFreq, maxFreq, logarithmic); } for (int s = s0i; s <= s1i; ++s) { if (m_binDisplay == PeakBins || m_binDisplay == PeakFrequencies) { if (!m_cache->isLocalPeak(s, q)) continue; } if (!m_cache->isOverThreshold(s, q, m_threshold)) continue; float sprop = 1.0; if (s == s0i) sprop *= (s + 1) - s0; if (s == s1i) sprop *= s1 - s; if (m_binDisplay == PeakFrequencies && s < int(m_cache->getWidth()) - 1) { bool steady = false; f0 = f1 = calculateFrequency(q, m_windowSize, increment, sr, m_cache->getPhaseAt(s, q), m_cache->getPhaseAt(s+1, q), steady); y0 = y1 = v->getYForFrequency (f0, minFreq, maxFreq, logarithmic); } int y0i = int(y0 + 0.001); int y1i = int(y1); for (int y = y0i; y <= y1i; ++y) { if (y < 0 || y >= h) continue; float yprop = sprop; if (y == y0i) yprop *= (y + 1) - y0; if (y == y1i) yprop *= y1 - y; float value; if (m_colourScale == PhaseColourScale) { value = m_cache->getPhaseAt(s, q); } else if (m_normalizeColumns) { value = m_cache->getNormalizedMagnitudeAt(s, q) * m_gain; } else { value = m_cache->getMagnitudeAt(s, q) * m_gain; } ymag[y] += yprop * value; ydiv[y] += yprop; } } } for (int y = 0; y < h; ++y) { if (ydiv[y] > 0.0) { unsigned char pixel = 0; float avg = ymag[y] / ydiv[y]; pixel = getDisplayValue(avg); assert(x <= scaled.width()); QColor c = m_cache->getColour(pixel); scaled.setPixel(x, y, qRgb(c.red(), c.green(), c.blue())); } } m_mutex.unlock(); } paint.drawImage(x0, y0, scaled); if (recreateWholePixmapCache) { delete m_pixmapCache; m_pixmapCache = new QPixmap(w, h); } QPainter cachePainter(m_pixmapCache); cachePainter.drawImage(x0, y0, scaled); cachePainter.end(); m_pixmapCacheInvalid = false; m_pixmapCacheStartFrame = startFrame; m_pixmapCacheZoomLevel = zoomLevel; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint() returning" << std::endl; #endif } float SpectrogramLayer::getYForFrequency(View *v, float frequency) const { return v->getYForFrequency(frequency, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } float SpectrogramLayer::getFrequencyForY(View *v, int y) const { return v->getFrequencyForY(y, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } int SpectrogramLayer::getCompletion() const { if (m_updateTimer == 0) return 100; size_t completion = m_fillThread->getFillCompletion(); // std::cerr << "SpectrogramLayer::getCompletion: completion = " << completion << std::endl; return completion; } bool SpectrogramLayer::snapToFeatureFrame(View *v, int &frame, size_t &resolution, SnapType snap) const { resolution = getWindowIncrement(); int left = (frame / resolution) * resolution; int right = left + resolution; switch (snap) { case SnapLeft: frame = left; break; case SnapRight: frame = right; break; case SnapNearest: case SnapNeighbouring: if (frame - left > right - frame) frame = right; else frame = left; break; } return true; } QString SpectrogramLayer::getFeatureDescription(View *v, QPoint &pos) const { int x = pos.x(); int y = pos.y(); if (!m_model || !m_model->isOK()) return ""; float magMin = 0, magMax = 0; float phaseMin = 0, phaseMax = 0; float freqMin = 0, freqMax = 0; float adjFreqMin = 0, adjFreqMax = 0; QString pitchMin, pitchMax; RealTime rtMin, rtMax; bool haveValues = false; if (!getXBinSourceRange(v, x, rtMin, rtMax)) { return ""; } if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) { haveValues = true; } QString adjFreqText = "", adjPitchText = ""; if (m_binDisplay == PeakFrequencies) { if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, adjFreqMin, adjFreqMax)) { return ""; } if (adjFreqMin != adjFreqMax) { adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n") .arg(adjFreqMin).arg(adjFreqMax); } else { adjFreqText = tr("Peak Frequency:\t%1 Hz\n") .arg(adjFreqMin); } QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin); QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax); if (pmin != pmax) { adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax); } else { adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin); } } else { if (!getYBinSourceRange(v, y, freqMin, freqMax)) return ""; } QString text; if (rtMin != rtMax) { text += tr("Time:\t%1 - %2\n") .arg(rtMin.toText(true).c_str()) .arg(rtMax.toText(true).c_str()); } else { text += tr("Time:\t%1\n") .arg(rtMin.toText(true).c_str()); } if (freqMin != freqMax) { text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n") .arg(adjFreqText) .arg(freqMin) .arg(freqMax) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)) .arg(Pitch::getPitchLabelForFrequency(freqMax)); } else { text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n") .arg(adjFreqText) .arg(freqMin) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)); } if (haveValues) { float dbMin = AudioLevel::multiplier_to_dB(magMin); float dbMax = AudioLevel::multiplier_to_dB(magMax); QString dbMinString; QString dbMaxString; if (dbMin == AudioLevel::DB_FLOOR) { dbMinString = tr("-Inf"); } else { dbMinString = QString("%1").arg(lrintf(dbMin)); } if (dbMax == AudioLevel::DB_FLOOR) { dbMaxString = tr("-Inf"); } else { dbMaxString = QString("%1").arg(lrintf(dbMax)); } if (lrintf(dbMin) != lrintf(dbMax)) { text += tr("dB:\t%1 - %2").arg(lrintf(dbMin)).arg(lrintf(dbMax)); } else { text += tr("dB:\t%1").arg(lrintf(dbMin)); } if (phaseMin != phaseMax) { text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax); } else { text += tr("\nPhase:\t%1").arg(phaseMin); } } return text; } int SpectrogramLayer::getColourScaleWidth(QPainter &paint) const { int cw; switch (m_colourScale) { default: case LinearColourScale: cw = paint.fontMetrics().width(QString("0.00")); break; case MeterColourScale: case dBColourScale: cw = std::max(paint.fontMetrics().width(tr("-Inf")), paint.fontMetrics().width(tr("-90"))); break; case PhaseColourScale: cw = paint.fontMetrics().width(QString("-") + QChar(0x3c0)); break; } return cw; } int SpectrogramLayer::getVerticalScaleWidth(View *v, QPainter &paint) const { if (!m_model || !m_model->isOK()) return 0; int cw = getColourScaleWidth(paint); int tw = paint.fontMetrics().width(QString("%1") .arg(m_maxFrequency > 0 ? m_maxFrequency - 1 : m_model->getSampleRate() / 2)); int fw = paint.fontMetrics().width(QString("43Hz")); if (tw < fw) tw = fw; int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); return cw + tickw + tw + 13; } void SpectrogramLayer::paintVerticalScale(View *v, QPainter &paint, QRect rect) const { if (!m_model || !m_model->isOK()) { return; } int h = rect.height(), w = rect.width(); int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); size_t bins = m_windowSize / 2; int sr = m_model->getSampleRate(); if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * m_windowSize) / sr + 0.1); if (bins > m_windowSize / 2) bins = m_windowSize / 2; } int cw = getColourScaleWidth(paint); int py = -1; int textHeight = paint.fontMetrics().height(); int toff = -textHeight + paint.fontMetrics().ascent() + 2; if (m_cache && !m_cacheInvalid && h > textHeight * 2 + 10) { //!!! lock? int ch = h - textHeight * 2 - 8; paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); QString top, bottom; switch (m_colourScale) { default: case LinearColourScale: top = (m_normalizeColumns ? "1.0" : "0.02"); bottom = (m_normalizeColumns ? "0.0" : "0.00"); break; case MeterColourScale: top = (m_normalizeColumns ? QString("0") : QString("%1").arg(int(AudioLevel::multiplier_to_dB(0.02)))); bottom = QString("%1"). arg(int(AudioLevel::multiplier_to_dB (AudioLevel::preview_to_multiplier(0, 255)))); break; case dBColourScale: top = "0"; bottom = "-80"; break; case PhaseColourScale: top = QChar(0x3c0); bottom = "-" + top; break; } paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2, 2 + textHeight + toff, top); paint.drawText((cw + 6 - paint.fontMetrics().width(bottom)) / 2, h + toff - 3, bottom); paint.save(); paint.setBrush(Qt::NoBrush); for (int i = 0; i < ch; ++i) { int v = (i * 255) / ch + 1; paint.setPen(m_cache->getColour(v)); paint.drawLine(5, 4 + textHeight + ch - i, cw + 2, 4 + textHeight + ch - i); } paint.restore(); } paint.drawLine(cw + 7, 0, cw + 7, h); int bin = -1; for (int y = 0; y < v->height(); ++y) { float q0, q1; if (!getYBinRange(v, v->height() - y, q0, q1)) continue; int vy; if (int(q0) > bin) { vy = y; bin = int(q0); } else { continue; } int freq = (sr * bin) / m_windowSize; if (py >= 0 && (vy - py) < textHeight - 1) { if (m_frequencyScale == LinearFrequencyScale) { paint.drawLine(w - tickw, h - vy, w, h - vy); } continue; } QString text = QString("%1").arg(freq); if (bin == 1) text = QString("%1Hz").arg(freq); // bin 0 is DC paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); if (h - vy - textHeight >= -2) { int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw); paint.drawText(tx, h - vy + toff, text); } py = vy; } if (m_frequencyScale == LogFrequencyScale) { paint.drawLine(w - pkw - 1, 0, w - pkw - 1, h); int sr = m_model->getSampleRate();//!!! lock? float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); int py = h; paint.setBrush(paint.pen().color()); for (int i = 0; i < 128; ++i) { float f = Pitch::getFrequencyForPitch(i); int y = lrintf(v->getYForFrequency(f, minf, maxf, true)); int n = (i % 12); if (n == 1 || n == 3 || n == 6 || n == 8 || n == 10) { // black notes paint.drawLine(w - pkw, y, w, y); int rh = ((py - y) / 4) * 2; if (rh < 2) rh = 2; paint.drawRect(w - pkw, y - (py-y)/4, pkw/2, rh); } else if (n == 0 || n == 5) { // C, A if (py < h) { paint.drawLine(w - pkw, (y + py) / 2, w, (y + py) / 2); } } py = y; } } } QString SpectrogramLayer::toXmlString(QString indent, QString extraAttributes) const { QString s; s += QString("channel=\"%1\" " "windowSize=\"%2\" " "windowType=\"%3\" " "windowOverlap=\"%4\" " "gain=\"%5\" " "threshold=\"%6\" ") .arg(m_channel) .arg(m_windowSize) .arg(m_windowType) .arg(m_windowOverlap) .arg(m_gain) .arg(m_threshold); s += QString("minFrequency=\"%1\" " "maxFrequency=\"%2\" " "colourScale=\"%3\" " "colourScheme=\"%4\" " "colourRotation=\"%5\" " "frequencyScale=\"%6\" " "binDisplay=\"%7\" " "normalizeColumns=\"%8\"") .arg(m_minFrequency) .arg(m_maxFrequency) .arg(m_colourScale) .arg(m_colourScheme) .arg(m_colourRotation) .arg(m_frequencyScale) .arg(m_binDisplay) .arg(m_normalizeColumns ? "true" : "false"); return Layer::toXmlString(indent, extraAttributes + " " + s); } void SpectrogramLayer::setProperties(const QXmlAttributes &attributes) { bool ok = false; int channel = attributes.value("channel").toInt(&ok); if (ok) setChannel(channel); size_t windowSize = attributes.value("windowSize").toUInt(&ok); if (ok) setWindowSize(windowSize); WindowType windowType = (WindowType) attributes.value("windowType").toInt(&ok); if (ok) setWindowType(windowType); size_t windowOverlap = attributes.value("windowOverlap").toUInt(&ok); if (ok) setWindowOverlap(windowOverlap); float gain = attributes.value("gain").toFloat(&ok); if (ok) setGain(gain); float threshold = attributes.value("threshold").toFloat(&ok); if (ok) setThreshold(threshold); size_t minFrequency = attributes.value("minFrequency").toUInt(&ok); if (ok) setMinFrequency(minFrequency); size_t maxFrequency = attributes.value("maxFrequency").toUInt(&ok); if (ok) setMaxFrequency(maxFrequency); ColourScale colourScale = (ColourScale) attributes.value("colourScale").toInt(&ok); if (ok) setColourScale(colourScale); ColourScheme colourScheme = (ColourScheme) attributes.value("colourScheme").toInt(&ok); if (ok) setColourScheme(colourScheme); int colourRotation = attributes.value("colourRotation").toInt(&ok); if (ok) setColourRotation(colourRotation); FrequencyScale frequencyScale = (FrequencyScale) attributes.value("frequencyScale").toInt(&ok); if (ok) setFrequencyScale(frequencyScale); BinDisplay binDisplay = (BinDisplay) attributes.value("binDisplay").toInt(&ok); if (ok) setBinDisplay(binDisplay); bool normalizeColumns = (attributes.value("normalizeColumns").trimmed() == "true"); setNormalizeColumns(normalizeColumns); } #ifdef INCLUDE_MOCFILES #include "SpectrogramLayer.moc.cpp" #endif