view layer/SpectrogramLayer.cpp @ 128:33929e0c3c6b

* Reorganising code base. This revision probably should compile once more.
author Chris Cannam
date Mon, 31 Jul 2006 14:05:22 +0000
parents bd6e85b3d88b
children 10eec0da9efe
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 Chris Cannam.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "SpectrogramLayer.h"

#include "view/View.h"
#include "base/Profiler.h"
#include "base/AudioLevel.h"
#include "base/Window.h"
#include "base/Pitch.h"
#include "base/Preferences.h"
#include "data/fft/FFTDataServer.h"

#include <QPainter>
#include <QImage>
#include <QPixmap>
#include <QRect>
#include <QTimer>
#include <QApplication>

#include <iostream>

#include <cassert>
#include <cmath>

//#define DEBUG_SPECTROGRAM_REPAINT 1

SpectrogramLayer::SpectrogramLayer(Configuration config) :
    Layer(),
    m_model(0),
    m_channel(0),
    m_windowSize(1024),
    m_windowType(HanningWindow),
    m_windowHopLevel(2),
    m_zeroPadLevel(0),
    m_fftSize(1024),
    m_gain(1.0),
    m_threshold(0.0),
    m_colourRotation(0),
    m_minFrequency(10),
    m_maxFrequency(8000),
    m_colourScale(dBColourScale),
    m_colourScheme(DefaultColours),
    m_frequencyScale(LinearFrequencyScale),
    m_binDisplay(AllBins),
    m_normalizeColumns(false),
    m_normalizeVisibleArea(false),
    m_updateTimer(0),
    m_candidateFillStartFrame(0),
    m_exiting(false)
{
    if (config == MelodicRange) {
	setWindowSize(8192);
	setWindowHopLevel(4);
//	setWindowType(ParzenWindow);
	setMaxFrequency(1000);
	setColourScale(LinearColourScale);
    } else if (config == MelodicPeaks) {
	setWindowSize(4096);
	setWindowHopLevel(5);
//	setWindowType(BlackmanWindow);
	setMaxFrequency(2000);
	setMinFrequency(40);
	setFrequencyScale(LogFrequencyScale);
	setColourScale(MeterColourScale);
	setBinDisplay(PeakFrequencies);
	setNormalizeColumns(true);
    }

    Preferences *prefs = Preferences::getInstance();
    connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)),
            this, SLOT(preferenceChanged(PropertyContainer::PropertyName)));
    setWindowType(prefs->getWindowType());

    setColourmap();
}

SpectrogramLayer::~SpectrogramLayer()
{
    delete m_updateTimer;
    m_updateTimer = 0;
    
    invalidateFFTAdapters();
}

void
SpectrogramLayer::setModel(const DenseTimeValueModel *model)
{
//    std::cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << std::endl;

    if (model == m_model) return;

    m_model = model;
    invalidateFFTAdapters();

    if (!m_model || !m_model->isOK()) return;

    connect(m_model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged()));
    connect(m_model, SIGNAL(modelChanged(size_t, size_t)),
	    this, SIGNAL(modelChanged(size_t, size_t)));

    connect(m_model, SIGNAL(completionChanged()),
	    this, SIGNAL(modelCompletionChanged()));

    connect(m_model, SIGNAL(modelChanged()), this, SLOT(cacheInvalid()));
    connect(m_model, SIGNAL(modelChanged(size_t, size_t)),
	    this, SLOT(cacheInvalid(size_t, size_t)));

    emit modelReplaced();
}

Layer::PropertyList
SpectrogramLayer::getProperties() const
{
    PropertyList list;
    list.push_back("Colour");
    list.push_back("Colour Scale");
//    list.push_back("Window Type");
    list.push_back("Window Size");
    list.push_back("Window Increment");
    list.push_back("Normalize Columns");
    list.push_back("Normalize Visible Area");
    list.push_back("Bin Display");
    list.push_back("Threshold");
    list.push_back("Gain");
    list.push_back("Colour Rotation");
    list.push_back("Min Frequency");
    list.push_back("Max Frequency");
    list.push_back("Frequency Scale");
//    list.push_back("Zero Padding");
    return list;
}

QString
SpectrogramLayer::getPropertyLabel(const PropertyName &name) const
{
    if (name == "Colour") return tr("Colour");
    if (name == "Colour Scale") return tr("Colour Scale");
    if (name == "Window Type") return tr("Window Type");
    if (name == "Window Size") return tr("Window Size");
    if (name == "Window Increment") return tr("Window Overlap");
    if (name == "Normalize Columns") return tr("Normalize Columns");
    if (name == "Normalize Visible Area") return tr("Normalize Visible Area");
    if (name == "Bin Display") return tr("Bin Display");
    if (name == "Threshold") return tr("Threshold");
    if (name == "Gain") return tr("Gain");
    if (name == "Colour Rotation") return tr("Colour Rotation");
    if (name == "Min Frequency") return tr("Min Frequency");
    if (name == "Max Frequency") return tr("Max Frequency");
    if (name == "Frequency Scale") return tr("Frequency Scale");
    if (name == "Zero Padding") return tr("Smoothing");
    return "";
}

Layer::PropertyType
SpectrogramLayer::getPropertyType(const PropertyName &name) const
{
    if (name == "Gain") return RangeProperty;
    if (name == "Colour Rotation") return RangeProperty;
    if (name == "Normalize Columns") return ToggleProperty;
    if (name == "Normalize Visible Area") return ToggleProperty;
    if (name == "Threshold") return RangeProperty;
    if (name == "Zero Padding") return ToggleProperty;
    return ValueProperty;
}

QString
SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const
{
    if (name == "Window Size" ||
	name == "Window Type" ||
	name == "Window Increment" ||
        name == "Zero Padding") return tr("Window");
    if (name == "Colour" ||
	name == "Gain" ||
	name == "Threshold" ||
	name == "Colour Rotation") return tr("Colour");
    if (name == "Normalize Columns" ||
        name == "Normalize Visible Area" ||
	name == "Bin Display" ||
	name == "Colour Scale") return tr("Scale");
    if (name == "Max Frequency" ||
	name == "Min Frequency" ||
	name == "Frequency Scale" ||
	name == "Frequency Adjustment") return tr("Range");
    return QString();
}

int
SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name,
					   int *min, int *max) const
{
    int deft = 0;

    int garbage0, garbage1;
    if (!min) min = &garbage0;
    if (!max) max = &garbage1;

    if (name == "Gain") {

	*min = -50;
	*max = 50;

	deft = lrint(log10(m_gain) * 20.0);
	if (deft < *min) deft = *min;
	if (deft > *max) deft = *max;

    } else if (name == "Threshold") {

	*min = -50;
	*max = 0;

	deft = lrintf(AudioLevel::multiplier_to_dB(m_threshold));
	if (deft < *min) deft = *min;
	if (deft > *max) deft = *max;

    } else if (name == "Colour Rotation") {

	*min = 0;
	*max = 256;

	deft = m_colourRotation;

    } else if (name == "Colour Scale") {

	*min = 0;
	*max = 3;

	deft = (int)m_colourScale;

    } else if (name == "Colour") {

	*min = 0;
	*max = 6;

	deft = (int)m_colourScheme;

    } else if (name == "Window Type") {

	*min = 0;
	*max = 6;

	deft = (int)m_windowType;

    } else if (name == "Window Size") {

	*min = 0;
	*max = 10;
	
	deft = 0;
	int ws = m_windowSize;
	while (ws > 32) { ws >>= 1; deft ++; }

    } else if (name == "Window Increment") {
	
	*min = 0;
	*max = 5;
	
        deft = m_windowHopLevel;
    
    } else if (name == "Zero Padding") {
	
	*min = 0;
	*max = 1;
	
        deft = m_zeroPadLevel > 0 ? 1 : 0;
    
    } else if (name == "Min Frequency") {

	*min = 0;
	*max = 9;

	switch (m_minFrequency) {
	case 0: default: deft = 0; break;
	case 10: deft = 1; break;
	case 20: deft = 2; break;
	case 40: deft = 3; break;
	case 100: deft = 4; break;
	case 250: deft = 5; break;
	case 500: deft = 6; break;
	case 1000: deft = 7; break;
	case 4000: deft = 8; break;
	case 10000: deft = 9; break;
	}
    
    } else if (name == "Max Frequency") {

	*min = 0;
	*max = 9;

	switch (m_maxFrequency) {
	case 500: deft = 0; break;
	case 1000: deft = 1; break;
	case 1500: deft = 2; break;
	case 2000: deft = 3; break;
	case 4000: deft = 4; break;
	case 6000: deft = 5; break;
	case 8000: deft = 6; break;
	case 12000: deft = 7; break;
	case 16000: deft = 8; break;
	default: deft = 9; break;
	}

    } else if (name == "Frequency Scale") {

	*min = 0;
	*max = 1;
	deft = (int)m_frequencyScale;

    } else if (name == "Bin Display") {

	*min = 0;
	*max = 2;
	deft = (int)m_binDisplay;

    } else if (name == "Normalize Columns") {
	
	deft = (m_normalizeColumns ? 1 : 0);

    } else if (name == "Normalize Visible Area") {
	
	deft = (m_normalizeVisibleArea ? 1 : 0);

    } else {
	deft = Layer::getPropertyRangeAndValue(name, min, max);
    }

    return deft;
}

QString
SpectrogramLayer::getPropertyValueLabel(const PropertyName &name,
					int value) const
{
    if (name == "Colour") {
	switch (value) {
	default:
	case 0: return tr("Default");
	case 1: return tr("White on Black");
	case 2: return tr("Black on White");
	case 3: return tr("Red on Blue");
	case 4: return tr("Yellow on Black");
	case 5: return tr("Blue on Black");
	case 6: return tr("Fruit Salad");
	}
    }
    if (name == "Colour Scale") {
	switch (value) {
	default:
	case 0: return tr("Linear");
	case 1: return tr("Meter");
	case 2: return tr("dB");
	case 3: return tr("Other");
	case 4: return tr("Phase");
	}
    }
    if (name == "Window Type") {
	switch ((WindowType)value) {
	default:
	case RectangularWindow: return tr("Rectangle");
	case BartlettWindow: return tr("Bartlett");
	case HammingWindow: return tr("Hamming");
	case HanningWindow: return tr("Hanning");
	case BlackmanWindow: return tr("Blackman");
	case GaussianWindow: return tr("Gaussian");
	case ParzenWindow: return tr("Parzen");
	}
    }
    if (name == "Window Size") {
	return QString("%1").arg(32 << value);
    }
    if (name == "Window Increment") {
	switch (value) {
	default:
	case 0: return tr("None");
	case 1: return tr("25 %");
	case 2: return tr("50 %");
	case 3: return tr("75 %");
	case 4: return tr("87.5 %");
	case 5: return tr("93.75 %");
	}
    }
    if (name == "Zero Padding") {
        if (value == 0) return tr("None");
        return QString("%1x").arg(value + 1);
    }
    if (name == "Min Frequency") {
	switch (value) {
	default:
	case 0: return tr("No min");
	case 1: return tr("10 Hz");
	case 2: return tr("20 Hz");
	case 3: return tr("40 Hz");
	case 4: return tr("100 Hz");
	case 5: return tr("250 Hz");
	case 6: return tr("500 Hz");
	case 7: return tr("1 KHz");
	case 8: return tr("4 KHz");
	case 9: return tr("10 KHz");
	}
    }
    if (name == "Max Frequency") {
	switch (value) {
	default:
	case 0: return tr("500 Hz");
	case 1: return tr("1 KHz");
	case 2: return tr("1.5 KHz");
	case 3: return tr("2 KHz");
	case 4: return tr("4 KHz");
	case 5: return tr("6 KHz");
	case 6: return tr("8 KHz");
	case 7: return tr("12 KHz");
	case 8: return tr("16 KHz");
	case 9: return tr("No max");
	}
    }
    if (name == "Frequency Scale") {
	switch (value) {
	default:
	case 0: return tr("Linear");
	case 1: return tr("Log");
	}
    }
    if (name == "Bin Display") {
	switch (value) {
	default:
	case 0: return tr("All Bins");
	case 1: return tr("Peak Bins");
	case 2: return tr("Frequencies");
	}
    }
    return tr("<unknown>");
}

void
SpectrogramLayer::setProperty(const PropertyName &name, int value)
{
    if (name == "Gain") {
	setGain(pow(10, float(value)/20.0));
    } else if (name == "Threshold") {
	if (value == -50) setThreshold(0.0);
	else setThreshold(AudioLevel::dB_to_multiplier(value));
    } else if (name == "Colour Rotation") {
	setColourRotation(value);
    } else if (name == "Colour") {
	switch (value) {
	default:
	case 0:	setColourScheme(DefaultColours); break;
	case 1: setColourScheme(WhiteOnBlack); break;
	case 2: setColourScheme(BlackOnWhite); break;
	case 3: setColourScheme(RedOnBlue); break;
	case 4: setColourScheme(YellowOnBlack); break;
	case 5: setColourScheme(BlueOnBlack); break;
	case 6: setColourScheme(Rainbow); break;
	}
    } else if (name == "Window Type") {
	setWindowType(WindowType(value));
    } else if (name == "Window Size") {
	setWindowSize(32 << value);
    } else if (name == "Window Increment") {
        setWindowHopLevel(value);
    } else if (name == "Zero Padding") {
        setZeroPadLevel(value > 0.1 ? 3 : 0);
    } else if (name == "Min Frequency") {
	switch (value) {
	default:
	case 0: setMinFrequency(0); break;
	case 1: setMinFrequency(10); break;
	case 2: setMinFrequency(20); break;
	case 3: setMinFrequency(40); break;
	case 4: setMinFrequency(100); break;
	case 5: setMinFrequency(250); break;
	case 6: setMinFrequency(500); break;
	case 7: setMinFrequency(1000); break;
	case 8: setMinFrequency(4000); break;
	case 9: setMinFrequency(10000); break;
	}
    } else if (name == "Max Frequency") {
	switch (value) {
	case 0: setMaxFrequency(500); break;
	case 1: setMaxFrequency(1000); break;
	case 2: setMaxFrequency(1500); break;
	case 3: setMaxFrequency(2000); break;
	case 4: setMaxFrequency(4000); break;
	case 5: setMaxFrequency(6000); break;
	case 6: setMaxFrequency(8000); break;
	case 7: setMaxFrequency(12000); break;
	case 8: setMaxFrequency(16000); break;
	default:
	case 9: setMaxFrequency(0); break;
	}
    } else if (name == "Colour Scale") {
	switch (value) {
	default:
	case 0: setColourScale(LinearColourScale); break;
	case 1: setColourScale(MeterColourScale); break;
	case 2: setColourScale(dBColourScale); break;
	case 3: setColourScale(OtherColourScale); break;
	case 4: setColourScale(PhaseColourScale); break;
	}
    } else if (name == "Frequency Scale") {
	switch (value) {
	default:
	case 0: setFrequencyScale(LinearFrequencyScale); break;
	case 1: setFrequencyScale(LogFrequencyScale); break;
	}
    } else if (name == "Bin Display") {
	switch (value) {
	default:
	case 0: setBinDisplay(AllBins); break;
	case 1: setBinDisplay(PeakBins); break;
	case 2: setBinDisplay(PeakFrequencies); break;
	}
    } else if (name == "Normalize Columns") {
	setNormalizeColumns(value ? true : false);
    } else if (name == "Normalize Visible Area") {
	setNormalizeVisibleArea(value ? true : false);
    }
}

void
SpectrogramLayer::invalidatePixmapCaches()
{
    for (ViewPixmapCache::iterator i = m_pixmapCaches.begin();
         i != m_pixmapCaches.end(); ++i) {
        i->second.validArea = QRect();
    }
}

void
SpectrogramLayer::invalidatePixmapCaches(size_t startFrame, size_t endFrame)
{
    for (ViewPixmapCache::iterator i = m_pixmapCaches.begin();
         i != m_pixmapCaches.end(); ++i) {
        //!!! when are views removed from the map? on setLayerDormant?
        const View *v = i->first;

        if (startFrame < v->getEndFrame() && int(endFrame) >= v->getStartFrame()) {
            i->second.validArea = QRect();
        }
    }
}

void
SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name)
{
    std::cerr << "SpectrogramLayer::preferenceChanged(" << name.toStdString() << ")" << std::endl;

    if (name == "Window Type") {
        setWindowType(Preferences::getInstance()->getWindowType());
        return;
    }
    if (name == "Smooth Spectrogram") {
        invalidatePixmapCaches();
        invalidateMagnitudes();
        emit layerParametersChanged();
    }
    if (name == "Tuning Frequency") {
        emit layerParametersChanged();
    }
}

void
SpectrogramLayer::setChannel(int ch)
{
    if (m_channel == ch) return;

    invalidatePixmapCaches();
    m_channel = ch;
    invalidateFFTAdapters();

    emit layerParametersChanged();
}

int
SpectrogramLayer::getChannel() const
{
    return m_channel;
}

void
SpectrogramLayer::setWindowSize(size_t ws)
{
    if (m_windowSize == ws) return;

    invalidatePixmapCaches();
    
    m_windowSize = ws;
    m_fftSize = ws * (m_zeroPadLevel + 1);
    
    invalidateFFTAdapters();

    emit layerParametersChanged();
}

size_t
SpectrogramLayer::getWindowSize() const
{
    return m_windowSize;
}

void
SpectrogramLayer::setWindowHopLevel(size_t v)
{
    if (m_windowHopLevel == v) return;

    invalidatePixmapCaches();
    
    m_windowHopLevel = v;
    
    invalidateFFTAdapters();

    emit layerParametersChanged();

//    fillCache();
}

size_t
SpectrogramLayer::getWindowHopLevel() const
{
    return m_windowHopLevel;
}

void
SpectrogramLayer::setZeroPadLevel(size_t v)
{
    if (m_zeroPadLevel == v) return;

    invalidatePixmapCaches();
    
    m_zeroPadLevel = v;
    m_fftSize = m_windowSize * (v + 1);

    invalidateFFTAdapters();

    emit layerParametersChanged();
}

size_t
SpectrogramLayer::getZeroPadLevel() const
{
    return m_zeroPadLevel;
}

void
SpectrogramLayer::setWindowType(WindowType w)
{
    if (m_windowType == w) return;

    invalidatePixmapCaches();
    
    m_windowType = w;

    invalidateFFTAdapters();

    emit layerParametersChanged();
}

WindowType
SpectrogramLayer::getWindowType() const
{
    return m_windowType;
}

void
SpectrogramLayer::setGain(float gain)
{
//    std::cerr << "SpectrogramLayer::setGain(" << gain << ") (my gain is now "
//	      << m_gain << ")" << std::endl;

    if (m_gain == gain) return;

    invalidatePixmapCaches();
    
    m_gain = gain;
    
    emit layerParametersChanged();
}

float
SpectrogramLayer::getGain() const
{
    return m_gain;
}

void
SpectrogramLayer::setThreshold(float threshold)
{
    if (m_threshold == threshold) return;

    invalidatePixmapCaches();
    
    m_threshold = threshold;

    emit layerParametersChanged();
}

float
SpectrogramLayer::getThreshold() const
{
    return m_threshold;
}

void
SpectrogramLayer::setMinFrequency(size_t mf)
{
    if (m_minFrequency == mf) return;

    invalidatePixmapCaches();
    invalidateMagnitudes();
    
    m_minFrequency = mf;

    emit layerParametersChanged();
}

size_t
SpectrogramLayer::getMinFrequency() const
{
    return m_minFrequency;
}

void
SpectrogramLayer::setMaxFrequency(size_t mf)
{
    if (m_maxFrequency == mf) return;

    invalidatePixmapCaches();
    invalidateMagnitudes();
    
    m_maxFrequency = mf;
    
    emit layerParametersChanged();
}

size_t
SpectrogramLayer::getMaxFrequency() const
{
    return m_maxFrequency;
}

void
SpectrogramLayer::setColourRotation(int r)
{
    invalidatePixmapCaches();

    if (r < 0) r = 0;
    if (r > 256) r = 256;
    int distance = r - m_colourRotation;

    if (distance != 0) {
	rotateColourmap(-distance);
	m_colourRotation = r;
    }
    
    emit layerParametersChanged();
}

void
SpectrogramLayer::setColourScale(ColourScale colourScale)
{
    if (m_colourScale == colourScale) return;

    invalidatePixmapCaches();
    
    m_colourScale = colourScale;
    
    emit layerParametersChanged();
}

SpectrogramLayer::ColourScale
SpectrogramLayer::getColourScale() const
{
    return m_colourScale;
}

void
SpectrogramLayer::setColourScheme(ColourScheme scheme)
{
    if (m_colourScheme == scheme) return;

    invalidatePixmapCaches();
    
    m_colourScheme = scheme;
    setColourmap();

    emit layerParametersChanged();
}

SpectrogramLayer::ColourScheme
SpectrogramLayer::getColourScheme() const
{
    return m_colourScheme;
}

void
SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale)
{
    if (m_frequencyScale == frequencyScale) return;

    invalidatePixmapCaches();
    m_frequencyScale = frequencyScale;

    emit layerParametersChanged();
}

SpectrogramLayer::FrequencyScale
SpectrogramLayer::getFrequencyScale() const
{
    return m_frequencyScale;
}

void
SpectrogramLayer::setBinDisplay(BinDisplay binDisplay)
{
    if (m_binDisplay == binDisplay) return;

    invalidatePixmapCaches();
    m_binDisplay = binDisplay;

    emit layerParametersChanged();
}

SpectrogramLayer::BinDisplay
SpectrogramLayer::getBinDisplay() const
{
    return m_binDisplay;
}

void
SpectrogramLayer::setNormalizeColumns(bool n)
{
    if (m_normalizeColumns == n) return;

    invalidatePixmapCaches();
    invalidateMagnitudes();
    m_normalizeColumns = n;

    emit layerParametersChanged();
}

bool
SpectrogramLayer::getNormalizeColumns() const
{
    return m_normalizeColumns;
}

void
SpectrogramLayer::setNormalizeVisibleArea(bool n)
{
    if (m_normalizeVisibleArea == n) return;

    invalidatePixmapCaches();
    invalidateMagnitudes();
    m_normalizeVisibleArea = n;

    emit layerParametersChanged();
}

bool
SpectrogramLayer::getNormalizeVisibleArea() const
{
    return m_normalizeVisibleArea;
}

void
SpectrogramLayer::setLayerDormant(const View *v, bool dormant)
{
    if (dormant == m_dormancy[v]) return;

    if (dormant) {

	m_dormancy[v] = true;

	invalidatePixmapCaches();
        m_pixmapCaches.erase(v);

        if (m_fftAdapters.find(v) != m_fftAdapters.end()) {
            delete m_fftAdapters[v].first;
            m_fftAdapters.erase(v);
        }
	
    } else {

	m_dormancy[v] = false;
    }
}

void
SpectrogramLayer::cacheInvalid()
{
    invalidatePixmapCaches();
    invalidateMagnitudes();
}

void
SpectrogramLayer::cacheInvalid(size_t, size_t)
{
    // for now (or forever?)
    cacheInvalid();
}

void
SpectrogramLayer::fillTimerTimedOut()
{
    if (!m_model) return;

    bool allDone = true;

    for (ViewFFTMap::iterator i = m_fftAdapters.begin();
         i != m_fftAdapters.end(); ++i) {

        const View *v = i->first;
        const FFTFuzzyAdapter *adapter = i->second.first;
        size_t lastFill = i->second.second;

        if (adapter) {

            size_t fill = adapter->getFillExtent();

#ifdef DEBUG_SPECTROGRAM_REPAINT
            std::cerr << "SpectrogramLayer::fillTimerTimedOut: extent for " << adapter << ": " << fill << ", last " << lastFill << ", total " << m_model->getEndFrame() << std::endl;
#endif

            if (fill >= lastFill) {
                if (fill >= m_model->getEndFrame() && lastFill > 0) {
#ifdef DEBUG_SPECTROGRAM_REPAINT
                    std::cerr << "complete!" << std::endl;
#endif
                    invalidatePixmapCaches();
                    emit modelChanged();
                    i->second.second = -1;

                } else if (fill > lastFill) {
#ifdef DEBUG_SPECTROGRAM_REPAINT
                    std::cerr << "SpectrogramLayer: emitting modelChanged("
                              << lastFill << "," << fill << ")" << std::endl;
#endif
                    invalidatePixmapCaches(lastFill, fill);
                    emit modelChanged(lastFill, fill);
                    i->second.second = fill;
                }
            } else {
#ifdef DEBUG_SPECTROGRAM_REPAINT
                std::cerr << "SpectrogramLayer: going backwards, emitting modelChanged("
                          << m_model->getStartFrame() << "," << m_model->getEndFrame() << ")" << std::endl;
#endif
                invalidatePixmapCaches();
                emit modelChanged(m_model->getStartFrame(), m_model->getEndFrame());
                i->second.second = fill;
            }

            if (i->second.second >= 0) {
                allDone = false;
            }
        }
    }

    if (allDone) {
#ifdef DEBUG_SPECTROGRAM_REPAINT
        std::cerr << "SpectrogramLayer: all complete!" << std::endl;
#endif
        delete m_updateTimer;
        m_updateTimer = 0;
    }
}

void
SpectrogramLayer::setColourmap()
{
    int formerRotation = m_colourRotation;

    if (m_colourScheme == BlackOnWhite) {
	m_colourMap.setColour(NO_VALUE, Qt::white);
    } else {
	m_colourMap.setColour(NO_VALUE, Qt::black);
    }

    for (int pixel = 1; pixel < 256; ++pixel) {

	QColor colour;
	int hue, px;

	switch (m_colourScheme) {

	default:
	case DefaultColours:
	    hue = 256 - pixel;
	    colour = QColor::fromHsv(hue, pixel/2 + 128, pixel);
            m_crosshairColour = QColor(255, 150, 50);
//            m_crosshairColour = QColor::fromHsv(240, 160, 255);
	    break;

	case WhiteOnBlack:
	    colour = QColor(pixel, pixel, pixel);
            m_crosshairColour = Qt::red;
	    break;

	case BlackOnWhite:
	    colour = QColor(256-pixel, 256-pixel, 256-pixel);
            m_crosshairColour = Qt::darkGreen;
	    break;

	case RedOnBlue:
	    colour = QColor(pixel > 128 ? (pixel - 128) * 2 : 0, 0,
			    pixel < 128 ? pixel : (256 - pixel));
            m_crosshairColour = Qt::green;
	    break;

	case YellowOnBlack:
	    px = 256 - pixel;
	    colour = QColor(px < 64 ? 255 - px/2 :
			    px < 128 ? 224 - (px - 64) :
			    px < 192 ? 160 - (px - 128) * 3 / 2 :
			    256 - px,
			    pixel,
			    pixel / 4);
            m_crosshairColour = QColor::fromHsv(240, 255, 255);
	    break;

        case BlueOnBlack:
            colour = QColor::fromHsv
                (240, pixel > 226 ? 256 - (pixel - 226) * 8 : 255,
                 (pixel * pixel) / 255);
            m_crosshairColour = Qt::red;
            break;

	case Rainbow:
	    hue = 250 - pixel;
	    if (hue < 0) hue += 256;
	    colour = QColor::fromHsv(pixel, 255, 255);
            m_crosshairColour = Qt::white;
	    break;
	}

	m_colourMap.setColour(pixel, colour);
    }

    m_colourRotation = 0;
    rotateColourmap(m_colourRotation - formerRotation);
    m_colourRotation = formerRotation;
}

void
SpectrogramLayer::rotateColourmap(int distance)
{
    QColor newPixels[256];

    newPixels[NO_VALUE] = m_colourMap.getColour(NO_VALUE);

    for (int pixel = 1; pixel < 256; ++pixel) {
	int target = pixel + distance;
	while (target < 1) target += 255;
	while (target > 255) target -= 255;
	newPixels[target] = m_colourMap.getColour(pixel);
    }

    for (int pixel = 0; pixel < 256; ++pixel) {
	m_colourMap.setColour(pixel, newPixels[pixel]);
    }
}

float
SpectrogramLayer::calculateFrequency(size_t bin,
				     size_t windowSize,
				     size_t windowIncrement,
				     size_t sampleRate,
				     float oldPhase,
				     float newPhase,
				     bool &steadyState)
{
    // At frequency f, phase shift of 2pi (one cycle) happens in 1/f sec.
    // At hopsize h and sample rate sr, one hop happens in h/sr sec.
    // At window size w, for bin b, f is b*sr/w.
    // thus 2pi phase shift happens in w/(b*sr) sec.
    // We need to know what phase shift we expect from h/sr sec.
    // -> 2pi * ((h/sr) / (w/(b*sr)))
    //  = 2pi * ((h * b * sr) / (w * sr))
    //  = 2pi * (h * b) / w.

    float frequency = (float(bin) * sampleRate) / windowSize;

    float expectedPhase =
	oldPhase + (2.0 * M_PI * bin * windowIncrement) / windowSize;

    float phaseError = princargf(newPhase - expectedPhase);
	    
    if (fabs(phaseError) < (1.1 * (windowIncrement * M_PI) / windowSize)) {

	// The new frequency estimate based on the phase error
	// resulting from assuming the "native" frequency of this bin

	float newFrequency =
	    (sampleRate * (expectedPhase + phaseError - oldPhase)) /
	    (2 * M_PI * windowIncrement);

	steadyState = true;
	return newFrequency;
    }

    steadyState = false;
    return frequency;
}

unsigned char
SpectrogramLayer::getDisplayValue(View *v, float input) const
{
    int value;

    float min = 0.f;
    float max = 1.f;

    if (m_normalizeVisibleArea) {
        min = m_viewMags[v].getMin();
        max = m_viewMags[v].getMax();
    } else if (!m_normalizeColumns) {
        if (m_colourScale == LinearColourScale ||
            m_colourScale == MeterColourScale) {
            max = 0.1f;
        }
    }

    float thresh = -80.f;

    if (max == 0.f) max = 1.f;
    if (max == min) min = max - 0.0001f;

    switch (m_colourScale) {
	
    default:
    case LinearColourScale:
//	value = int
//	    (input * (m_normalizeColumns ? 1.0 : 50.0) * 255.0) + 1;
        value = int(((input - min) / (max - min)) * 255.f) + 1;
	break;
	
    case MeterColourScale:
//	value = AudioLevel::multiplier_to_preview
//	    (input * (m_normalizeColumns ? 1.0 : 50.0), 255) + 1;
        value = AudioLevel::multiplier_to_preview((input - min) / (max - min), 255) + 1;
	break;
	
    case dBColourScale:
        //!!! experiment with normalizing the visible area this way.
        //In any case, we need to have some indication of what the dB
        //scale is relative to.
        input = 10.f * log10f(input / max);
        if (min > 0.f) {
            thresh = 10.f * log10f(min);
            if (thresh < -80.f) thresh = -80.f;
        }
	input = (input - thresh) / (-thresh);
	if (input < 0.f) input = 0.f;
	if (input > 1.f) input = 1.f;
	value = int(input * 255.f) + 1;
	break;

    case OtherColourScale:
        //!!! the "Other" scale is just where our current experiments go
        //!!! power rather than v
        input = 10.f * log10f((input * input) / (max * max));
        if (min > 0.f) {
            thresh = 10.f * log10f(min * min);
            if (thresh < -80.f) thresh = -80.f;
        }
	input = (input - thresh) / (-thresh);
	if (input < 0.f) input = 0.f;
	if (input > 1.f) input = 1.f;
	value = int(input * 255.f) + 1;
	break;
        
/*!!!
	input = 10.f * log10f(input * input);
        input = 1.f / (1.f + expf(- (input + 20.f) / 10.f));

	if (input < 0.f) input = 0.f;
	if (input > 1.f) input = 1.f;
	value = int(input * 255.f) + 1;
*/
	break;
	
    case PhaseColourScale:
	value = int((input * 127.0 / M_PI) + 128);
	break;
    }
    
    if (value > UCHAR_MAX) value = UCHAR_MAX;
    if (value < 0) value = 0;
    return value;
}

float
SpectrogramLayer::getInputForDisplayValue(unsigned char uc) const
{
    int value = uc;
    float input;

    //!!! incorrect for normalizing visible area (and also out of date)
    
    switch (m_colourScale) {
	
    default:
    case LinearColourScale:
	input = float(value - 1) / 255.0 / (m_normalizeColumns ? 1 : 50);
	break;
    
    case MeterColourScale:
	input = AudioLevel::preview_to_multiplier(value - 1, 255)
	    / (m_normalizeColumns ? 1.0 : 50.0);
	break;

    case dBColourScale:
	input = float(value - 1) / 255.0;
	input = (input * 80.0) - 80.0;
	input = powf(10.0, input) / 20.0;
	value = int(input);
	break;

    case OtherColourScale:
	input = float(value - 1) / 255.0;
	input = (input * 80.0) - 80.0;
	input = powf(10.0, input) / 20.0;
	value = int(input);
	break;

    case PhaseColourScale:
	input = float(value - 128) * M_PI / 127.0;
	break;
    }

    return input;
}

float
SpectrogramLayer::getEffectiveMinFrequency() const
{
    int sr = m_model->getSampleRate();
    float minf = float(sr) / m_fftSize;

    if (m_minFrequency > 0.0) {
	size_t minbin = size_t((double(m_minFrequency) * m_fftSize) / sr + 0.01);
	if (minbin < 1) minbin = 1;
	minf = minbin * sr / m_fftSize;
    }

    return minf;
}

float
SpectrogramLayer::getEffectiveMaxFrequency() const
{
    int sr = m_model->getSampleRate();
    float maxf = float(sr) / 2;

    if (m_maxFrequency > 0.0) {
	size_t maxbin = size_t((double(m_maxFrequency) * m_fftSize) / sr + 0.1);
	if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2;
	maxf = maxbin * sr / m_fftSize;
    }

    return maxf;
}

bool
SpectrogramLayer::getYBinRange(View *v, int y, float &q0, float &q1) const
{
    int h = v->height();
    if (y < 0 || y >= h) return false;

    int sr = m_model->getSampleRate();
    float minf = getEffectiveMinFrequency();
    float maxf = getEffectiveMaxFrequency();

    bool logarithmic = (m_frequencyScale == LogFrequencyScale);

    //!!! wrong for smoothing -- wrong fft size for fft adapter

    q0 = v->getFrequencyForY(y, minf, maxf, logarithmic);
    q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic);

    // Now map these on to actual bins

    int b0 = int((q0 * m_fftSize) / sr);
    int b1 = int((q1 * m_fftSize) / sr);
    
    //!!! this is supposed to return fractions-of-bins, as it were, hence the floats
    q0 = b0;
    q1 = b1;
    
//    q0 = (b0 * sr) / m_fftSize;
//    q1 = (b1 * sr) / m_fftSize;

    return true;
}
    
bool
SpectrogramLayer::getXBinRange(View *v, int x, float &s0, float &s1) const
{
    size_t modelStart = m_model->getStartFrame();
    size_t modelEnd = m_model->getEndFrame();

    // Each pixel column covers an exact range of sample frames:
    int f0 = v->getFrameForX(x) - modelStart;
    int f1 = v->getFrameForX(x + 1) - modelStart - 1;

    if (f1 < int(modelStart) || f0 > int(modelEnd)) {
	return false;
    }
      
    // And that range may be drawn from a possibly non-integral
    // range of spectrogram windows:

    size_t windowIncrement = getWindowIncrement();
    s0 = float(f0) / windowIncrement;
    s1 = float(f1) / windowIncrement;

    return true;
}
 
bool
SpectrogramLayer::getXBinSourceRange(View *v, int x, RealTime &min, RealTime &max) const
{
    float s0 = 0, s1 = 0;
    if (!getXBinRange(v, x, s0, s1)) return false;
    
    int s0i = int(s0 + 0.001);
    int s1i = int(s1);

    int windowIncrement = getWindowIncrement();
    int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2;
    int w1 = s1i * windowIncrement + windowIncrement +
	(m_windowSize - windowIncrement)/2 - 1;
    
    min = RealTime::frame2RealTime(w0, m_model->getSampleRate());
    max = RealTime::frame2RealTime(w1, m_model->getSampleRate());
    return true;
}

bool
SpectrogramLayer::getYBinSourceRange(View *v, int y, float &freqMin, float &freqMax)
const
{
    float q0 = 0, q1 = 0;
    if (!getYBinRange(v, y, q0, q1)) return false;

    int q0i = int(q0 + 0.001);
    int q1i = int(q1);

    int sr = m_model->getSampleRate();

    for (int q = q0i; q <= q1i; ++q) {
	if (q == q0i) freqMin = (sr * q) / m_fftSize;
	if (q == q1i) freqMax = (sr * (q+1)) / m_fftSize;
    }
    return true;
}

bool
SpectrogramLayer::getAdjustedYBinSourceRange(View *v, int x, int y,
					     float &freqMin, float &freqMax,
					     float &adjFreqMin, float &adjFreqMax)
const
{
    FFTFuzzyAdapter *fft = getFFTAdapter(v);
    if (!fft) return false;

    float s0 = 0, s1 = 0;
    if (!getXBinRange(v, x, s0, s1)) return false;

    float q0 = 0, q1 = 0;
    if (!getYBinRange(v, y, q0, q1)) return false;

    int s0i = int(s0 + 0.001);
    int s1i = int(s1);

    int q0i = int(q0 + 0.001);
    int q1i = int(q1);

    int sr = m_model->getSampleRate();

    size_t windowSize = m_windowSize;
    size_t windowIncrement = getWindowIncrement();

    bool haveAdj = false;

    bool peaksOnly = (m_binDisplay == PeakBins ||
		      m_binDisplay == PeakFrequencies);

    for (int q = q0i; q <= q1i; ++q) {

	for (int s = s0i; s <= s1i; ++s) {

            if (!fft->isColumnReady(s)) continue;

	    float binfreq = (sr * q) / m_windowSize;
	    if (q == q0i) freqMin = binfreq;
	    if (q == q1i) freqMax = binfreq;

	    if (peaksOnly && !fft->isLocalPeak(s, q)) continue;

	    if (!fft->isOverThreshold(s, q, m_threshold)) continue;

	    float freq = binfreq;
	    bool steady = false;
	    
	    if (s < int(fft->getWidth()) - 1) {

		freq = calculateFrequency(q, 
					  windowSize,
					  windowIncrement,
					  sr, 
					  fft->getPhaseAt(s, q),
					  fft->getPhaseAt(s+1, q),
					  steady);
	    
		if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq;
		if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq;

		haveAdj = true;
	    }
	}
    }

    if (!haveAdj) {
	adjFreqMin = adjFreqMax = 0.0;
    }

    return haveAdj;
}
    
bool
SpectrogramLayer::getXYBinSourceRange(View *v, int x, int y,
				      float &min, float &max,
				      float &phaseMin, float &phaseMax) const
{
    float q0 = 0, q1 = 0;
    if (!getYBinRange(v, y, q0, q1)) return false;

    float s0 = 0, s1 = 0;
    if (!getXBinRange(v, x, s0, s1)) return false;
    
    int q0i = int(q0 + 0.001);
    int q1i = int(q1);

    int s0i = int(s0 + 0.001);
    int s1i = int(s1);

    bool rv = false;

    size_t zp = getZeroPadLevel(v);
    q0i *= zp + 1;
    q1i *= zp + 1;

    FFTFuzzyAdapter *fft = getFFTAdapter(v);

    if (fft) {

        int cw = fft->getWidth();
        int ch = fft->getHeight();

        min = 0.0;
        max = 0.0;
        phaseMin = 0.0;
        phaseMax = 0.0;
        bool have = false;

        for (int q = q0i; q <= q1i; ++q) {
            for (int s = s0i; s <= s1i; ++s) {
                if (s >= 0 && q >= 0 && s < cw && q < ch) {

                    if (!fft->isColumnReady(s)) continue;
                    
                    float value;

                    value = fft->getPhaseAt(s, q);
                    if (!have || value < phaseMin) { phaseMin = value; }
                    if (!have || value > phaseMax) { phaseMax = value; }

                    value = fft->getMagnitudeAt(s, q);
                    if (!have || value < min) { min = value; }
                    if (!have || value > max) { max = value; }
                    
                    have = true;
                }	
            }
        }
        
        if (have) {
            rv = true;
        }
    }

    return rv;
}
   
size_t
SpectrogramLayer::getZeroPadLevel(const View *v) const
{
    //!!! tidy all this stuff

    if (m_binDisplay != AllBins) return 0;
    if (!Preferences::getInstance()->getSmoothSpectrogram()) return 0;
    if (m_frequencyScale == LogFrequencyScale) return 3;

    int sr = m_model->getSampleRate();
    
    size_t bins = m_fftSize / 2;
    if (m_maxFrequency > 0) {
	bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1);
	if (bins > m_fftSize / 2) bins = m_fftSize / 2;
    }

    size_t minbin = 1;
    if (m_minFrequency > 0) {
	minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.1);
	if (minbin < 1) minbin = 1;
	if (minbin >= bins) minbin = bins - 1;
    }

    float perPixel =
        float(v->height()) /
        float((bins - minbin) / (m_zeroPadLevel + 1));

    if (perPixel > 2.8) {
        return 3; // 4x oversampling
    } else if (perPixel > 1.5) {
        return 1; // 2x
    } else {
        return 0; // 1x
    }
}

size_t
SpectrogramLayer::getFFTSize(const View *v) const
{
    return m_fftSize * (getZeroPadLevel(v) + 1);
}
	
FFTFuzzyAdapter *
SpectrogramLayer::getFFTAdapter(const View *v) const
{
    if (!m_model) return 0;

    size_t fftSize = getFFTSize(v);

    if (m_fftAdapters.find(v) != m_fftAdapters.end()) {
        if (m_fftAdapters[v].first->getHeight() != fftSize / 2) {
            delete m_fftAdapters[v].first;
            m_fftAdapters.erase(v);
        }
    }

    if (m_fftAdapters.find(v) == m_fftAdapters.end()) {
        m_fftAdapters[v] = FFTFillPair
            (new FFTFuzzyAdapter(m_model,
                                 m_channel,
                                 m_windowType,
                                 m_windowSize,
                                 getWindowIncrement(),
                                 fftSize,
                                 true,
                                 m_candidateFillStartFrame),
             0);
        
        delete m_updateTimer;
        m_updateTimer = new QTimer((SpectrogramLayer *)this);
        connect(m_updateTimer, SIGNAL(timeout()),
                this, SLOT(fillTimerTimedOut()));
        m_updateTimer->start(200);
    }

    return m_fftAdapters[v].first;
}

void
SpectrogramLayer::invalidateFFTAdapters()
{
    for (ViewFFTMap::iterator i = m_fftAdapters.begin();
         i != m_fftAdapters.end(); ++i) {
        delete i->second.first;
    }
    
    m_fftAdapters.clear();
}

void
SpectrogramLayer::invalidateMagnitudes()
{
    m_viewMags.clear();
    for (std::vector<MagnitudeRange>::iterator i = m_columnMags.begin();
         i != m_columnMags.end(); ++i) {
        *i = MagnitudeRange();
    }
}

bool
SpectrogramLayer::updateViewMagnitudes(View *v) const
{
    MagnitudeRange mag;

    int x0 = 0, x1 = v->width();
    float s00 = 0, s01 = 0, s10 = 0, s11 = 0;
    
    getXBinRange(v, x0, s00, s01);
    getXBinRange(v, x1, s10, s11);

    int s0 = int(std::min(s00, s10) + 0.0001);
    int s1 = int(std::max(s01, s11));

    if (m_columnMags.size() <= s1) {
        m_columnMags.resize(s1 + 1);
    }

    for (int s = s0; s <= s1; ++s) {
        if (m_columnMags[s].isSet()) {
            mag.sample(m_columnMags[s]);
        }
    }

    std::cerr << "SpectrogramLayer::updateViewMagnitudes returning from cols "
              << s0 << " -> " << s1 << " inclusive" << std::endl;

    if (!mag.isSet()) return false;
    if (mag == m_viewMags[v]) return false;
    m_viewMags[v] = mag;
    return true;
}

void
SpectrogramLayer::paint(View *v, QPainter &paint, QRect rect) const
{
    if (m_colourScheme == BlackOnWhite) {
	v->setLightBackground(true);
    } else {
	v->setLightBackground(false);
    }

//    Profiler profiler("SpectrogramLayer::paint", true);
#ifdef DEBUG_SPECTROGRAM_REPAINT
    std::cerr << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << ", m_updateTimer " << m_updateTimer << std::endl;
    
    std::cerr << "rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << std::endl;
#endif

    long sf = v->getStartFrame();
    if (sf < 0) m_candidateFillStartFrame = 0;
    else m_candidateFillStartFrame = sf;

    if (!m_model || !m_model->isOK() || !m_model->isReady()) {
	return;
    }

    if (isLayerDormant(v)) {
	std::cerr << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << std::endl;
    }

    // Need to do this even if !isLayerDormant, as that could mean v
    // is not in the dormancy map at all -- we need it to be present
    // and accountable for when determining whether we need the cache
    // in the cache-fill thread above.
    m_dormancy[v] = false;

    size_t fftSize = getFFTSize(v);
    FFTFuzzyAdapter *fft = getFFTAdapter(v);
    if (!fft) {
	std::cerr << "ERROR: SpectrogramLayer::paint(): No FFT adapter, returning" << std::endl;
	return;
    }

    PixmapCache &cache = m_pixmapCaches[v];

#ifdef DEBUG_SPECTROGRAM_REPAINT
    std::cerr << "SpectrogramLayer::paint(): pixmap cache valid area " << cache.validArea.x() << ", " << cache.validArea.y() << ", " << cache.validArea.width() << "x" << cache.validArea.height() << std::endl;
#endif

    bool stillCacheing = (m_updateTimer != 0);

#ifdef DEBUG_SPECTROGRAM_REPAINT
    std::cerr << "SpectrogramLayer::paint(): Still cacheing = " << stillCacheing << std::endl;
#endif

    long startFrame = v->getStartFrame();
    int zoomLevel = v->getZoomLevel();

    int x0 = 0;
    int x1 = v->width();
    int y0 = 0;
    int y1 = v->height();

    bool recreateWholePixmapCache = true;

    x0 = rect.left();
    x1 = rect.right() + 1;
    y0 = rect.top();
    y1 = rect.bottom() + 1;

    if (cache.validArea.width() > 0) {

	if (int(cache.zoomLevel) == zoomLevel &&
	    cache.pixmap.width() == v->width() &&
	    cache.pixmap.height() == v->height()) {

	    if (v->getXForFrame(cache.startFrame) ==
		v->getXForFrame(startFrame) &&
                cache.validArea.x() <= x0 &&
                cache.validArea.x() + cache.validArea.width() >= x1) {
	    
#ifdef DEBUG_SPECTROGRAM_REPAINT
		std::cerr << "SpectrogramLayer: pixmap cache good" << std::endl;
#endif

		paint.drawPixmap(rect, cache.pixmap, rect);
                illuminateLocalFeatures(v, paint);
		return;

	    } else {

#ifdef DEBUG_SPECTROGRAM_REPAINT
		std::cerr << "SpectrogramLayer: pixmap cache partially OK" << std::endl;
#endif

		recreateWholePixmapCache = false;

		int dx = v->getXForFrame(cache.startFrame) -
		         v->getXForFrame(startFrame);

#ifdef DEBUG_SPECTROGRAM_REPAINT
		std::cerr << "SpectrogramLayer: dx = " << dx << " (pixmap cache " << cache.pixmap.width() << "x" << cache.pixmap.height() << ")" << std::endl;
#endif

		if (dx != 0 &&
                    dx > -cache.pixmap.width() &&
                    dx <  cache.pixmap.width()) {

#if defined(Q_WS_WIN32) || defined(Q_WS_MAC)
		    // Copying a pixmap to itself doesn't work
		    // properly on Windows or Mac (it only works when
		    // moving in one direction).

		    //!!! Need a utility function for this

		    static QPixmap *tmpPixmap = 0;
		    if (!tmpPixmap ||
			tmpPixmap->width() != cache.pixmap.width() ||
			tmpPixmap->height() != cache.pixmap.height()) {
			delete tmpPixmap;
			tmpPixmap = new QPixmap(cache.pixmap.width(),
						cache.pixmap.height());
		    }
		    QPainter cachePainter;
		    cachePainter.begin(tmpPixmap);
		    cachePainter.drawPixmap(0, 0, cache.pixmap);
		    cachePainter.end();
		    cachePainter.begin(&cache.pixmap);
		    cachePainter.drawPixmap(dx, 0, *tmpPixmap);
		    cachePainter.end();
#else
		    QPainter cachePainter(&cache.pixmap);
		    cachePainter.drawPixmap(dx, 0, cache.pixmap);
		    cachePainter.end();
#endif

                    int px = cache.validArea.x();
                    int pw = cache.validArea.width();

		    if (dx < 0) {
			x0 = cache.pixmap.width() + dx;
			x1 = cache.pixmap.width();
                        px += dx;
                        if (px < 0) {
                            pw += px;
                            px = 0;
                            if (pw < 0) pw = 0;
                        }
		    } else {
			x0 = 0;
			x1 = dx;
                        px += dx;
                        if (px + pw > cache.pixmap.width()) {
                            pw = int(cache.pixmap.width()) - px;
                            if (pw < 0) pw = 0;
                        }
		    }
                    
                    cache.validArea =
                        QRect(px, cache.validArea.y(),
                              pw, cache.validArea.height());

		    paint.drawPixmap(rect & cache.validArea,
                                     cache.pixmap,
                                     rect & cache.validArea);
		}
	    }
	} else {
#ifdef DEBUG_SPECTROGRAM_REPAINT
	    std::cerr << "SpectrogramLayer: pixmap cache useless" << std::endl;
#endif
            cache.validArea = QRect();
	}
    }

/*
    if (stillCacheing) {
	x0 = rect.left();
	x1 = rect.right() + 1;
	y0 = rect.top();
	y1 = rect.bottom() + 1;
    }
*/

    if (recreateWholePixmapCache) {
        x0 = 0;
        x1 = v->width();
    }

    if (updateViewMagnitudes(v)) {
        std::cerr << "SpectrogramLayer: magnitude range changed to [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl;
    } else {
        std::cerr << "No change in magnitude range [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl;
    }

    int paintBlockWidth = (300000 / zoomLevel);
    if (paintBlockWidth < 20) paintBlockWidth = 20;

    if (cache.validArea.width() > 0) {

        int vx0 = 0, vx1 = 0;
        vx0 = cache.validArea.x();
        vx1 = cache.validArea.x() + cache.validArea.width();
        
#ifdef DEBUG_SPECTROGRAM_REPAINT
        std::cerr << "x0 " << x0 << ", x1 " << x1 << ", vx0 " << vx0 << ", vx1 " << vx1 << ", paintBlockWidth " << paintBlockWidth << std::endl;
#endif            
        if (x0 < vx0) {
            if (x0 + paintBlockWidth < vx0) {
                x0 = vx0 - paintBlockWidth;
            } else {
                x0 = 0;
            }
        } else if (x0 > vx1) {
            x0 = vx1;
        }
            
        if (x1 < vx0) {
            x1 = vx0;
        } else if (x1 > vx1) {
            if (vx1 + paintBlockWidth < x1) {
                x1 = vx1 + paintBlockWidth;
            } else {
                x1 = v->width();
            }
        }
            
        cache.validArea = QRect
            (std::min(vx0, x0), cache.validArea.y(),
             std::max(vx1 - std::min(vx0, x0),
                      x1 - std::min(vx0, x0)),
             cache.validArea.height());
            
    } else {
        if (x1 > x0 + paintBlockWidth) {
            x1 = x0 + paintBlockWidth;
        }
        cache.validArea = QRect(x0, 0, x1 - x0, v->height());
    }

    int w = x1 - x0;
    int h = y1 - y0;

#ifdef DEBUG_SPECTROGRAM_REPAINT
    std::cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << std::endl;
#endif

    if (m_drawBuffer.width() < w || m_drawBuffer.height() < h) {
        m_drawBuffer = QImage(w, h, QImage::Format_RGB32);
    }

    m_drawBuffer.fill(m_colourMap.getColour(0).rgb());

    int sr = m_model->getSampleRate();

    // Set minFreq and maxFreq to the frequency extents of the possibly
    // zero-padded visible bin range, and displayMinFreq and displayMaxFreq
    // to the actual scale frequency extents (presumably not zero padded).
    
    size_t bins = fftSize / 2;
    if (m_maxFrequency > 0) {
	bins = int((double(m_maxFrequency) * fftSize) / sr + 0.1);
	if (bins > fftSize / 2) bins = fftSize / 2;
    }

    size_t minbin = 1;
    if (m_minFrequency > 0) {
	minbin = int((double(m_minFrequency) * fftSize) / sr + 0.1);
	if (minbin < 1) minbin = 1;
	if (minbin >= bins) minbin = bins - 1;
    }

    float minFreq = (float(minbin) * sr) / fftSize;
    float maxFreq = (float(bins) * sr) / fftSize;

    float displayMinFreq = minFreq;
    float displayMaxFreq = maxFreq;

    if (fftSize != m_fftSize) {
        displayMinFreq = getEffectiveMinFrequency();
        displayMaxFreq = getEffectiveMaxFrequency();
    }

    float ymag[h];
    float ydiv[h];
    float yval[bins + 1]; //!!! cache this?

    size_t increment = getWindowIncrement();
    
    bool logarithmic = (m_frequencyScale == LogFrequencyScale);

    for (size_t q = minbin; q <= bins; ++q) {
        float f0 = (float(q) * sr) / fftSize;
        yval[q] = v->getYForFrequency(f0, displayMinFreq, displayMaxFreq,
                                      logarithmic);
//        std::cerr << "min: " << minFreq << ", max: " << maxFreq << ", yval[" << q << "]: " << yval[q] << std::endl;
    }

    MagnitudeRange overallMag = m_viewMags[v];
    bool overallMagChanged = false;

    for (int x = 0; x < w; ++x) {

	for (int y = 0; y < h; ++y) {
	    ymag[y] = 0.0;
	    ydiv[y] = 0.0;
	}

	float s0 = 0, s1 = 0;

	if (!getXBinRange(v, x0 + x, s0, s1)) {
	    assert(x <= m_drawBuffer.width());
	    continue;
	}

	int s0i = int(s0 + 0.001);
	int s1i = int(s1);

	if (s1i >= fft->getWidth()) {
	    if (s0i >= fft->getWidth()) {
		continue;
	    } else {
		s1i = s0i;
	    }
	}

        for (int s = s0i; s <= s1i; ++s) {

            if (!fft->isColumnReady(s)) continue;
            MagnitudeRange mag;

            for (size_t q = minbin; q < bins; ++q) {

                float y0 = yval[q + 1];
                float y1 = yval[q];

		if (m_binDisplay == PeakBins ||
		    m_binDisplay == PeakFrequencies) {
		    if (!fft->isLocalPeak(s, q)) continue;
		}

                if (m_threshold != 0.f &&
                    !fft->isOverThreshold(s, q, m_threshold)) {
                    continue;
                }

		float sprop = 1.0;
		if (s == s0i) sprop *= (s + 1) - s0;
		if (s == s1i) sprop *= s1 - s;
 
		if (m_binDisplay == PeakFrequencies &&
		    s < int(fft->getWidth()) - 1) {

		    bool steady = false;
                    float f = calculateFrequency(q,
						 m_windowSize,
						 increment,
						 sr,
						 fft->getPhaseAt(s, q),
						 fft->getPhaseAt(s+1, q),
						 steady);

		    y0 = y1 = v->getYForFrequency
			(f, displayMinFreq, displayMaxFreq, logarithmic);
		}
		
		int y0i = int(y0 + 0.001);
		int y1i = int(y1);

                float value;
                
                if (m_colourScale == PhaseColourScale) {
                    value = fft->getPhaseAt(s, q);
                } else if (m_normalizeColumns) {
                    value = fft->getNormalizedMagnitudeAt(s, q);
                    mag.sample(value);
                    value *= m_gain;
                } else {
                    value = fft->getMagnitudeAt(s, q);
                    mag.sample(value);
                    value *= m_gain;
                }

		for (int y = y0i; y <= y1i; ++y) {
		    
		    if (y < 0 || y >= h) continue;

		    float yprop = sprop;
		    if (y == y0i) yprop *= (y + 1) - y0;
		    if (y == y1i) yprop *= y1 - y;
		    ymag[y] += yprop * value;
		    ydiv[y] += yprop;
		}
	    }

            if (mag.isSet()) {

                m_columnMags[s].sample(mag);

                if (overallMag.sample(mag)) {
                    //!!! scaling would change here
                    overallMagChanged = true;
                    std::cerr << "Overall mag changed (again?) at column " << s << ", to [" << overallMag.getMin() << "->" << overallMag.getMax() << "]" << std::endl;
                }
            }
	}

	for (int y = 0; y < h; ++y) {

	    if (ydiv[y] > 0.0) {

		unsigned char pixel = 0;

		float avg = ymag[y] / ydiv[y];
		pixel = getDisplayValue(v, avg);

		assert(x <= m_drawBuffer.width());
		QColor c = m_colourMap.getColour(pixel);
		m_drawBuffer.setPixel(x, y,
                                      qRgb(c.red(), c.green(), c.blue()));
	    }
	}
    }

    if (overallMagChanged) {
        m_viewMags[v] = overallMag;
        std::cerr << "Overall mag is now [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "] - will be updating" << std::endl;
    } else {
        std::cerr << "Overall mag unchanged at [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl;
    }

    paint.drawImage(x0, y0, m_drawBuffer, 0, 0, w, h);

    if (recreateWholePixmapCache) {
	cache.pixmap = QPixmap(v->width(), v->height());
    }

    QPainter cachePainter(&cache.pixmap);
    cachePainter.drawImage(x0, y0, m_drawBuffer, 0, 0, w, h);
    cachePainter.end();

    if (!m_normalizeVisibleArea || !overallMagChanged) {
    
        cache.startFrame = startFrame;
        cache.zoomLevel = zoomLevel;

        if (cache.validArea.x() > 0) {
#ifdef DEBUG_SPECTROGRAM_REPAINT
            std::cerr << "SpectrogramLayer::paint() updating left" << std::endl;
#endif
            v->update(0, 0, cache.validArea.x(), v->height());
        }
        
        if (cache.validArea.x() + cache.validArea.width() <
            cache.pixmap.width()) {
#ifdef DEBUG_SPECTROGRAM_REPAINT
            std::cerr << "SpectrogramLayer::paint() updating right ("
                      << cache.validArea.x() + cache.validArea.width()
                      << ", "
                      << cache.pixmap.width() - (cache.validArea.x() +
                                                 cache.validArea.width())
                      << ")" << std::endl;
#endif
            v->update(cache.validArea.x() + cache.validArea.width(),
                      0,
                      cache.pixmap.width() - (cache.validArea.x() +
                                              cache.validArea.width()),
                      v->height());
        }
    } else {
        // overallMagChanged
        cache.validArea = QRect();
        v->update();
    }

    illuminateLocalFeatures(v, paint);

#ifdef DEBUG_SPECTROGRAM_REPAINT
    std::cerr << "SpectrogramLayer::paint() returning" << std::endl;
#endif
}

void
SpectrogramLayer::illuminateLocalFeatures(View *v, QPainter &paint) const
{
    QPoint localPos;
    if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) {
        return;
    }

    std::cerr << "SpectrogramLayer: illuminateLocalFeatures("
              << localPos.x() << "," << localPos.y() << ")" << std::endl;

    float s0, s1;
    float f0, f1;

    if (getXBinRange(v, localPos.x(), s0, s1) &&
        getYBinSourceRange(v, localPos.y(), f0, f1)) {
        
        int s0i = int(s0 + 0.001);
        int s1i = int(s1);
        
        int x0 = v->getXForFrame(s0i * getWindowIncrement());
        int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement());

        int y1 = getYForFrequency(v, f1);
        int y0 = getYForFrequency(v, f0);
        
        std::cerr << "SpectrogramLayer: illuminate "
                  << x0 << "," << y1 << " -> " << x1 << "," << y0 << std::endl;
        
        paint.setPen(Qt::white);
        paint.drawRect(x0, y1, x1 - x0 + 1, y0 - y1 + 1);
    }
}

float
SpectrogramLayer::getYForFrequency(View *v, float frequency) const
{
    return v->getYForFrequency(frequency,
			       getEffectiveMinFrequency(),
			       getEffectiveMaxFrequency(),
			       m_frequencyScale == LogFrequencyScale);
}

float
SpectrogramLayer::getFrequencyForY(View *v, int y) const
{
    return v->getFrequencyForY(y,
			       getEffectiveMinFrequency(),
			       getEffectiveMaxFrequency(),
			       m_frequencyScale == LogFrequencyScale);
}

int
SpectrogramLayer::getCompletion(View *v) const
{
    if (m_updateTimer == 0) return 100;
    if (m_fftAdapters.find(v) == m_fftAdapters.end()) return 100;

    size_t completion = m_fftAdapters[v].first->getFillCompletion();
    std::cerr << "SpectrogramLayer::getCompletion: completion = " << completion << std::endl;
    return completion;
}

bool
SpectrogramLayer::getValueExtents(float &min, float &max,
                                  bool &logarithmic, QString &unit) const
{
    min = getEffectiveMinFrequency();
    max = getEffectiveMaxFrequency();
    logarithmic = (m_frequencyScale == LogFrequencyScale);
    unit = "Hz";
    return true;
}

bool
SpectrogramLayer::getDisplayExtents(float &min, float &max) const
{
    min = getEffectiveMinFrequency();
    max = getEffectiveMaxFrequency();
    return true;
}    

bool
SpectrogramLayer::setDisplayExtents(float min, float max)
{
    if (!m_model) return false;
    if (min < 0) min = 0;
    if (max > m_model->getSampleRate()/2) max = m_model->getSampleRate()/2;
    
    size_t minf = lrintf(min);
    size_t maxf = lrintf(max);

    if (m_minFrequency == minf && m_maxFrequency == maxf) return true;

    invalidatePixmapCaches();
    invalidateMagnitudes();

    m_minFrequency = minf;
    m_maxFrequency = maxf;
    
    emit layerParametersChanged();

    return true;
}

bool
SpectrogramLayer::snapToFeatureFrame(View *v, int &frame,
				     size_t &resolution,
				     SnapType snap) const
{
    resolution = getWindowIncrement();
    int left = (frame / resolution) * resolution;
    int right = left + resolution;

    switch (snap) {
    case SnapLeft:  frame = left;  break;
    case SnapRight: frame = right; break;
    case SnapNearest:
    case SnapNeighbouring:
	if (frame - left > right - frame) frame = right;
	else frame = left;
	break;
    }
    
    return true;
} 

bool
SpectrogramLayer::getCrosshairExtents(View *v, QPainter &paint,
                                      QPoint cursorPos,
                                      std::vector<QRect> &extents) const
{
    QRect vertical(cursorPos.x() - 12, 0, 12, v->height());
    extents.push_back(vertical);

    QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1);
    extents.push_back(horizontal);

    return true;
}

void
SpectrogramLayer::paintCrosshairs(View *v, QPainter &paint,
                                  QPoint cursorPos) const
{
    paint.save();
    paint.setPen(m_crosshairColour);

    paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y());
    paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->height());
    
    float fundamental = getFrequencyForY(v, cursorPos.y());

    int harmonic = 2;

    while (harmonic < 100) {

        float hy = lrintf(getYForFrequency(v, fundamental * harmonic));
        if (hy < 0 || hy > v->height()) break;
        
        int len = 7;

        if (harmonic % 2 == 0) {
            if (harmonic % 4 == 0) {
                len = 12;
            } else {
                len = 10;
            }
        }

        paint.drawLine(cursorPos.x() - len,
                       hy,
                       cursorPos.x(),
                       hy);

        ++harmonic;
    }

    paint.restore();
}

QString
SpectrogramLayer::getFeatureDescription(View *v, QPoint &pos) const
{
    int x = pos.x();
    int y = pos.y();

    if (!m_model || !m_model->isOK()) return "";

    float magMin = 0, magMax = 0;
    float phaseMin = 0, phaseMax = 0;
    float freqMin = 0, freqMax = 0;
    float adjFreqMin = 0, adjFreqMax = 0;
    QString pitchMin, pitchMax;
    RealTime rtMin, rtMax;

    bool haveValues = false;

    if (!getXBinSourceRange(v, x, rtMin, rtMax)) {
	return "";
    }
    if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) {
	haveValues = true;
    }

    QString adjFreqText = "", adjPitchText = "";

    if (m_binDisplay == PeakFrequencies) {

	if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax,
					adjFreqMin, adjFreqMax)) {
	    return "";
	}

	if (adjFreqMin != adjFreqMax) {
	    adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n")
		.arg(adjFreqMin).arg(adjFreqMax);
	} else {
	    adjFreqText = tr("Peak Frequency:\t%1 Hz\n")
		.arg(adjFreqMin);
	}

	QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin);
	QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax);

	if (pmin != pmax) {
	    adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax);
	} else {
	    adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin);
	}

    } else {
	
	if (!getYBinSourceRange(v, y, freqMin, freqMax)) return "";
    }

    QString text;

    if (rtMin != rtMax) {
	text += tr("Time:\t%1 - %2\n")
	    .arg(rtMin.toText(true).c_str())
	    .arg(rtMax.toText(true).c_str());
    } else {
	text += tr("Time:\t%1\n")
	    .arg(rtMin.toText(true).c_str());
    }

    if (freqMin != freqMax) {
	text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n")
	    .arg(adjFreqText)
	    .arg(freqMin)
	    .arg(freqMax)
	    .arg(adjPitchText)
	    .arg(Pitch::getPitchLabelForFrequency(freqMin))
	    .arg(Pitch::getPitchLabelForFrequency(freqMax));
    } else {
	text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n")
	    .arg(adjFreqText)
	    .arg(freqMin)
	    .arg(adjPitchText)
	    .arg(Pitch::getPitchLabelForFrequency(freqMin));
    }	

    if (haveValues) {
	float dbMin = AudioLevel::multiplier_to_dB(magMin);
	float dbMax = AudioLevel::multiplier_to_dB(magMax);
	QString dbMinString;
	QString dbMaxString;
	if (dbMin == AudioLevel::DB_FLOOR) {
	    dbMinString = tr("-Inf");
	} else {
	    dbMinString = QString("%1").arg(lrintf(dbMin));
	}
	if (dbMax == AudioLevel::DB_FLOOR) {
	    dbMaxString = tr("-Inf");
	} else {
	    dbMaxString = QString("%1").arg(lrintf(dbMax));
	}
	if (lrintf(dbMin) != lrintf(dbMax)) {
	    text += tr("dB:\t%1 - %2").arg(lrintf(dbMin)).arg(lrintf(dbMax));
	} else {
	    text += tr("dB:\t%1").arg(lrintf(dbMin));
	}
	if (phaseMin != phaseMax) {
	    text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax);
	} else {
	    text += tr("\nPhase:\t%1").arg(phaseMin);
	}
    }

    return text;
}

int
SpectrogramLayer::getColourScaleWidth(QPainter &paint) const
{
    int cw;

    cw = paint.fontMetrics().width("-80dB");

/*!!!
    switch (m_colourScale) {
    default:
    case LinearColourScale:
	cw = paint.fontMetrics().width(QString("0.00"));
	break;

    case MeterColourScale:
    case dBColourScale:
    case OtherColourScale:
	cw = std::max(paint.fontMetrics().width(tr("-Inf")),
		      paint.fontMetrics().width(tr("-90")));
	break;

    case PhaseColourScale:
	cw = paint.fontMetrics().width(QString("-") + QChar(0x3c0));
	break;
    }
*/


    return cw;
}

int
SpectrogramLayer::getVerticalScaleWidth(View *v, QPainter &paint) const
{
    if (!m_model || !m_model->isOK()) return 0;

    int cw = getColourScaleWidth(paint);

    int tw = paint.fontMetrics().width(QString("%1")
				     .arg(m_maxFrequency > 0 ?
					  m_maxFrequency - 1 :
					  m_model->getSampleRate() / 2));

    int fw = paint.fontMetrics().width(QString("43Hz"));
    if (tw < fw) tw = fw;

    int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4);
    
    return cw + tickw + tw + 13;
}

void
SpectrogramLayer::paintVerticalScale(View *v, QPainter &paint, QRect rect) const
{
    if (!m_model || !m_model->isOK()) {
	return;
    }

    Profiler profiler("SpectrogramLayer::paintVerticalScale", true);

    //!!! cache this?

    int h = rect.height(), w = rect.width();

    int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4);
    int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0);

    size_t bins = m_fftSize / 2;
    int sr = m_model->getSampleRate();

    if (m_maxFrequency > 0) {
	bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1);
	if (bins > m_fftSize / 2) bins = m_fftSize / 2;
    }

    int cw = getColourScaleWidth(paint);
    int cbw = paint.fontMetrics().width("dB");

    int py = -1;
    int textHeight = paint.fontMetrics().height();
    int toff = -textHeight + paint.fontMetrics().ascent() + 2;

    if (h > textHeight * 3 + 10) {

        int topLines = 2;
        if (m_colourScale == PhaseColourScale) topLines = 1;

	int ch = h - textHeight * (topLines + 1) - 8;
//	paint.drawRect(4, textHeight + 4, cw - 1, ch + 1);
	paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1);

	QString top, bottom;
/*!!!
	switch (m_colourScale) {
	default:
	case LinearColourScale:
	    top = (m_normalizeColumns ? "1.0" : "0.02");
	    bottom = (m_normalizeColumns ? "0.0" : "0.00");
	    break;

	case MeterColourScale:
	    top = (m_normalizeColumns ? QString("0") :
		   QString("%1").arg(int(AudioLevel::multiplier_to_dB(0.02))));
	    bottom = QString("%1").
		arg(int(AudioLevel::multiplier_to_dB
			(AudioLevel::preview_to_multiplier(0, 255))));
	    break;

	case dBColourScale:
	case OtherColourScale:
	    top = "0";
	    bottom = "-80";
	    break;

	case PhaseColourScale:
	    top = QChar(0x3c0);
	    bottom = "-" + top;
	    break;
	}
*/
        float min = m_viewMags[v].getMin();
        float max = m_viewMags[v].getMax();

        float dBmin = AudioLevel::multiplier_to_dB(min);
        float dBmax = AudioLevel::multiplier_to_dB(max);

        if (dBmax < -60.f) dBmax = -60.f;
        else top = QString("%1").arg(lrintf(dBmax));

        if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f;
        bottom = QString("%1").arg(lrintf(dBmin));

        //!!! & phase etc

        if (m_colourScale != PhaseColourScale) {
            paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2,
                           2 + textHeight + toff, "dBFS");
        }

//	paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2,
	paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top),
		       2 + textHeight * topLines + toff + textHeight/2, top);

	paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom),
		       h + toff - 3 - textHeight/2, bottom);

	paint.save();
	paint.setBrush(Qt::NoBrush);

        int lasty = 0;
        int lastdb = 0;

	for (int i = 0; i < ch; ++i) {

            float dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1));
            int idb = int(dBval);

            float value = AudioLevel::dB_to_multiplier(dBval);
            int colour = getDisplayValue(v, value * m_gain);
/*
            float value = min + (((max - min) * i) / (ch - 1));
            if (value < m_threshold) value = 0.f;
            int colour = getDisplayValue(v, value * m_gain);
*/
/*
	    int colour = (i * 255) / ch + 1;
*/
	    paint.setPen(m_colourMap.getColour(colour));

            int y = textHeight * topLines + 4 + ch - i;

            paint.drawLine(5 + cw - cbw, y, cw + 2, y);

//	    paint.drawLine(5, 4 + textHeight + ch - i,
//			   cw + 2, 4 + textHeight + ch - i);


            if (i == 0) {
                lasty = y;
                lastdb = idb;
            } else if (i < ch - paint.fontMetrics().ascent() &&
                       idb != lastdb &&
                       ((abs(y - lasty) > textHeight && 
                         idb % 10 == 0) ||
                        (abs(y - lasty) > paint.fontMetrics().ascent() && 
                         idb % 5 == 0))) {
                paint.setPen(Qt::black);
                QString text = QString("%1").arg(idb);
                paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text),
                               y + toff + textHeight/2, text);
                paint.setPen(Qt::white);
                paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y);
                lasty = y;
                lastdb = idb;
            }
	}
	paint.restore();
    }

    paint.drawLine(cw + 7, 0, cw + 7, h);

    int bin = -1;

    for (int y = 0; y < v->height(); ++y) {

	float q0, q1;
	if (!getYBinRange(v, v->height() - y, q0, q1)) continue;

	int vy;

	if (int(q0) > bin) {
	    vy = y;
	    bin = int(q0);
	} else {
	    continue;
	}

	int freq = (sr * bin) / m_fftSize;

	if (py >= 0 && (vy - py) < textHeight - 1) {
	    if (m_frequencyScale == LinearFrequencyScale) {
		paint.drawLine(w - tickw, h - vy, w, h - vy);
	    }
	    continue;
	}

	QString text = QString("%1").arg(freq);
	if (bin == 1) text = QString("%1Hz").arg(freq); // bin 0 is DC
	paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy);

	if (h - vy - textHeight >= -2) {
	    int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw);
	    paint.drawText(tx, h - vy + toff, text);
	}

	py = vy;
    }

    if (m_frequencyScale == LogFrequencyScale) {

	paint.drawLine(w - pkw - 1, 0, w - pkw - 1, h);

	int sr = m_model->getSampleRate();
	float minf = getEffectiveMinFrequency();
	float maxf = getEffectiveMaxFrequency();

	int py = h, ppy = h;
	paint.setBrush(paint.pen().color());

	for (int i = 0; i < 128; ++i) {

	    float f = Pitch::getFrequencyForPitch(i);
	    int y = lrintf(v->getYForFrequency(f, minf, maxf, true));

            if (y < -2) break;
            if (y > h + 2) {
                continue;
            }

	    int n = (i % 12);

            if (n == 1) {
                // C# -- fill the C from here
                if (ppy - y > 2) {
                    paint.fillRect(w - pkw,
//                                   y - (py - y) / 2 - (py - y) / 4, 
                                   y,
                                   pkw,
                                   (py + ppy) / 2 - y,
//                                   py - y + 1,
                                   Qt::gray);
                }
            }

	    if (n == 1 || n == 3 || n == 6 || n == 8 || n == 10) {
		// black notes
		paint.drawLine(w - pkw, y, w, y);
		int rh = ((py - y) / 4) * 2;
		if (rh < 2) rh = 2;
		paint.drawRect(w - pkw, y - (py-y)/4, pkw/2, rh);
	    } else if (n == 0 || n == 5) {
		// C, F
		if (py < h) {
		    paint.drawLine(w - pkw, (y + py) / 2, w, (y + py) / 2);
		}
	    }

            ppy = py;
	    py = y;
	}
    }
}

QString
SpectrogramLayer::toXmlString(QString indent, QString extraAttributes) const
{
    QString s;
    
    s += QString("channel=\"%1\" "
		 "windowSize=\"%2\" "
		 "windowType=\"%3\" "
		 "windowHopLevel=\"%4\" "
		 "gain=\"%5\" "
		 "threshold=\"%6\" ")
	.arg(m_channel)
	.arg(m_windowSize)
	.arg(m_windowType)
	.arg(m_windowHopLevel)
	.arg(m_gain)
	.arg(m_threshold);

    s += QString("minFrequency=\"%1\" "
		 "maxFrequency=\"%2\" "
		 "colourScale=\"%3\" "
		 "colourScheme=\"%4\" "
		 "colourRotation=\"%5\" "
		 "frequencyScale=\"%6\" "
		 "binDisplay=\"%7\" "
		 "normalizeColumns=\"%8\"")
	.arg(m_minFrequency)
	.arg(m_maxFrequency)
	.arg(m_colourScale)
	.arg(m_colourScheme)
	.arg(m_colourRotation)
	.arg(m_frequencyScale)
	.arg(m_binDisplay)
	.arg(m_normalizeColumns ? "true" : "false");

    return Layer::toXmlString(indent, extraAttributes + " " + s);
}

void
SpectrogramLayer::setProperties(const QXmlAttributes &attributes)
{
    bool ok = false;

    int channel = attributes.value("channel").toInt(&ok);
    if (ok) setChannel(channel);

    size_t windowSize = attributes.value("windowSize").toUInt(&ok);
    if (ok) setWindowSize(windowSize);

    WindowType windowType = (WindowType)
	attributes.value("windowType").toInt(&ok);
    if (ok) setWindowType(windowType);

    size_t windowHopLevel = attributes.value("windowHopLevel").toUInt(&ok);
    if (ok) setWindowHopLevel(windowHopLevel);
    else {
        size_t windowOverlap = attributes.value("windowOverlap").toUInt(&ok);
        // a percentage value
        if (ok) {
            if (windowOverlap == 0) setWindowHopLevel(0);
            else if (windowOverlap == 25) setWindowHopLevel(1);
            else if (windowOverlap == 50) setWindowHopLevel(2);
            else if (windowOverlap == 75) setWindowHopLevel(3);
            else if (windowOverlap == 90) setWindowHopLevel(4);
        }
    }

    float gain = attributes.value("gain").toFloat(&ok);
    if (ok) setGain(gain);

    float threshold = attributes.value("threshold").toFloat(&ok);
    if (ok) setThreshold(threshold);

    size_t minFrequency = attributes.value("minFrequency").toUInt(&ok);
    if (ok) setMinFrequency(minFrequency);

    size_t maxFrequency = attributes.value("maxFrequency").toUInt(&ok);
    if (ok) setMaxFrequency(maxFrequency);

    ColourScale colourScale = (ColourScale)
	attributes.value("colourScale").toInt(&ok);
    if (ok) setColourScale(colourScale);

    ColourScheme colourScheme = (ColourScheme)
	attributes.value("colourScheme").toInt(&ok);
    if (ok) setColourScheme(colourScheme);

    int colourRotation = attributes.value("colourRotation").toInt(&ok);
    if (ok) setColourRotation(colourRotation);

    FrequencyScale frequencyScale = (FrequencyScale)
	attributes.value("frequencyScale").toInt(&ok);
    if (ok) setFrequencyScale(frequencyScale);

    BinDisplay binDisplay = (BinDisplay)
	attributes.value("binDisplay").toInt(&ok);
    if (ok) setBinDisplay(binDisplay);

    bool normalizeColumns =
	(attributes.value("normalizeColumns").trimmed() == "true");
    setNormalizeColumns(normalizeColumns);
}
    

#ifdef INCLUDE_MOCFILES
#include "SpectrogramLayer.moc.cpp"
#endif