Mercurial > hg > svgui
view layer/SpectrogramLayer.cpp @ 1503:2c7a480f93ca
Set maximum frequency on FFT model to reduce cache size (experimental)
author | Chris Cannam |
---|---|
date | Thu, 12 Sep 2019 11:53:40 +0100 |
parents | 5d179afc0366 |
children | 150d4e561b07 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2009 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "SpectrogramLayer.h" #include "view/View.h" #include "base/Profiler.h" #include "base/AudioLevel.h" #include "base/Window.h" #include "base/Pitch.h" #include "base/Preferences.h" #include "base/RangeMapper.h" #include "base/LogRange.h" #include "base/ColumnOp.h" #include "base/Strings.h" #include "base/StorageAdviser.h" #include "base/Exceptions.h" #include "widgets/CommandHistory.h" #include "data/model/Dense3DModelPeakCache.h" #include "ColourMapper.h" #include "PianoScale.h" #include "PaintAssistant.h" #include "Colour3DPlotRenderer.h" #include <QPainter> #include <QImage> #include <QPixmap> #include <QRect> #include <QApplication> #include <QMessageBox> #include <QMouseEvent> #include <QTextStream> #include <QSettings> #include <iostream> #include <cassert> #include <cmath> //#define DEBUG_SPECTROGRAM 1 //#define DEBUG_SPECTROGRAM_REPAINT 1 using namespace std; SpectrogramLayer::SpectrogramLayer(Configuration config) : m_channel(0), m_windowSize(1024), m_windowType(HanningWindow), m_windowHopLevel(2), m_oversampling(1), m_gain(1.0), m_initialGain(1.0), m_threshold(1.0e-8f), m_initialThreshold(1.0e-8f), m_colourRotation(0), m_initialRotation(0), m_minFrequency(10), m_maxFrequency(8000), m_initialMaxFrequency(8000), m_colourScale(ColourScaleType::Log), m_colourScaleMultiple(1.0), m_colourMap(0), m_colourInverted(false), m_binScale(BinScale::Linear), m_binDisplay(BinDisplay::AllBins), m_normalization(ColumnNormalization::None), m_normalizeVisibleArea(false), m_lastEmittedZoomStep(-1), m_synchronous(false), m_haveDetailedScale(false), m_exiting(false), m_peakCacheDivisor(8) { QString colourConfigName = "spectrogram-colour"; int colourConfigDefault = int(ColourMapper::Green); if (config == FullRangeDb) { m_initialMaxFrequency = 0; setMaxFrequency(0); } else if (config == MelodicRange) { setWindowSize(8192); setWindowHopLevel(4); m_initialMaxFrequency = 1500; setMaxFrequency(1500); setMinFrequency(40); setColourScale(ColourScaleType::Linear); setColourMap(ColourMapper::Sunset); setBinScale(BinScale::Log); colourConfigName = "spectrogram-melodic-colour"; colourConfigDefault = int(ColourMapper::Sunset); // setGain(20); } else if (config == MelodicPeaks) { setWindowSize(4096); setWindowHopLevel(5); m_initialMaxFrequency = 2000; setMaxFrequency(2000); setMinFrequency(40); setBinScale(BinScale::Log); setColourScale(ColourScaleType::Linear); setBinDisplay(BinDisplay::PeakFrequencies); setNormalization(ColumnNormalization::Max1); colourConfigName = "spectrogram-melodic-colour"; colourConfigDefault = int(ColourMapper::Sunset); } QSettings settings; settings.beginGroup("Preferences"); setColourMap(settings.value(colourConfigName, colourConfigDefault).toInt()); settings.endGroup(); Preferences *prefs = Preferences::getInstance(); connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); setWindowType(prefs->getWindowType()); } SpectrogramLayer::~SpectrogramLayer() { invalidateRenderers(); deleteDerivedModels(); } void SpectrogramLayer::deleteDerivedModels() { ModelById::release(m_fftModel); ModelById::release(m_peakCache); ModelById::release(m_wholeCache); m_fftModel = {}; m_peakCache = {}; m_wholeCache = {}; } pair<ColourScaleType, double> SpectrogramLayer::convertToColourScale(int value) { switch (value) { case 0: return { ColourScaleType::Linear, 1.0 }; case 1: return { ColourScaleType::Meter, 1.0 }; case 2: return { ColourScaleType::Log, 2.0 }; // dB^2 (i.e. log of power) case 3: return { ColourScaleType::Log, 1.0 }; // dB (of magnitude) case 4: return { ColourScaleType::Phase, 1.0 }; default: return { ColourScaleType::Linear, 1.0 }; } } int SpectrogramLayer::convertFromColourScale(ColourScaleType scale, double multiple) { switch (scale) { case ColourScaleType::Linear: return 0; case ColourScaleType::Meter: return 1; case ColourScaleType::Log: return (multiple > 1.5 ? 2 : 3); case ColourScaleType::Phase: return 4; case ColourScaleType::PlusMinusOne: case ColourScaleType::Absolute: default: return 0; } } std::pair<ColumnNormalization, bool> SpectrogramLayer::convertToColumnNorm(int value) { switch (value) { default: case 0: return { ColumnNormalization::None, false }; case 1: return { ColumnNormalization::Max1, false }; case 2: return { ColumnNormalization::None, true }; // visible area case 3: return { ColumnNormalization::Hybrid, false }; } } int SpectrogramLayer::convertFromColumnNorm(ColumnNormalization norm, bool visible) { if (visible) return 2; switch (norm) { case ColumnNormalization::None: return 0; case ColumnNormalization::Max1: return 1; case ColumnNormalization::Hybrid: return 3; case ColumnNormalization::Sum1: case ColumnNormalization::Range01: default: return 0; } } void SpectrogramLayer::setModel(ModelId modelId) { auto newModel = ModelById::getAs<DenseTimeValueModel>(modelId); if (!modelId.isNone() && !newModel) { throw std::logic_error("Not a DenseTimeValueModel"); } if (modelId == m_model) return; m_model = modelId; if (newModel) { recreateFFTModel(); connectSignals(m_model); connect(newModel.get(), SIGNAL(modelChanged(ModelId)), this, SLOT(cacheInvalid(ModelId))); connect(newModel.get(), SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)), this, SLOT(cacheInvalid(ModelId, sv_frame_t, sv_frame_t))); } emit modelReplaced(); } Layer::PropertyList SpectrogramLayer::getProperties() const { PropertyList list; list.push_back("Colour"); list.push_back("Colour Scale"); list.push_back("Window Size"); list.push_back("Window Increment"); list.push_back("Oversampling"); list.push_back("Normalization"); list.push_back("Bin Display"); list.push_back("Threshold"); list.push_back("Gain"); list.push_back("Colour Rotation"); // list.push_back("Min Frequency"); // list.push_back("Max Frequency"); list.push_back("Frequency Scale"); return list; } QString SpectrogramLayer::getPropertyLabel(const PropertyName &name) const { if (name == "Colour") return tr("Colour"); if (name == "Colour Scale") return tr("Colour Scale"); if (name == "Window Size") return tr("Window Size"); if (name == "Window Increment") return tr("Window Overlap"); if (name == "Oversampling") return tr("Oversampling"); if (name == "Normalization") return tr("Normalization"); if (name == "Bin Display") return tr("Bin Display"); if (name == "Threshold") return tr("Threshold"); if (name == "Gain") return tr("Gain"); if (name == "Colour Rotation") return tr("Colour Rotation"); if (name == "Min Frequency") return tr("Min Frequency"); if (name == "Max Frequency") return tr("Max Frequency"); if (name == "Frequency Scale") return tr("Frequency Scale"); return ""; } QString SpectrogramLayer::getPropertyIconName(const PropertyName &) const { return ""; } Layer::PropertyType SpectrogramLayer::getPropertyType(const PropertyName &name) const { if (name == "Gain") return RangeProperty; if (name == "Colour Rotation") return RangeProperty; if (name == "Threshold") return RangeProperty; if (name == "Colour") return ColourMapProperty; return ValueProperty; } QString SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const { if (name == "Bin Display" || name == "Frequency Scale") return tr("Bins"); if (name == "Window Size" || name == "Window Increment" || name == "Oversampling") return tr("Window"); if (name == "Colour" || name == "Threshold" || name == "Colour Rotation") return tr("Colour"); if (name == "Normalization" || name == "Gain" || name == "Colour Scale") return tr("Scale"); return QString(); } int SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max, int *deflt) const { int val = 0; int garbage0, garbage1, garbage2; if (!min) min = &garbage0; if (!max) max = &garbage1; if (!deflt) deflt = &garbage2; if (name == "Gain") { *min = -50; *max = 50; *deflt = int(lrint(log10(m_initialGain) * 20.0)); if (*deflt < *min) *deflt = *min; if (*deflt > *max) *deflt = *max; val = int(lrint(log10(m_gain) * 20.0)); if (val < *min) val = *min; if (val > *max) val = *max; } else if (name == "Threshold") { *min = -81; *max = -1; *deflt = int(lrint(AudioLevel::multiplier_to_dB(m_initialThreshold))); if (*deflt < *min) *deflt = *min; if (*deflt > *max) *deflt = *max; val = int(lrint(AudioLevel::multiplier_to_dB(m_threshold))); if (val < *min) val = *min; if (val > *max) val = *max; } else if (name == "Colour Rotation") { *min = 0; *max = 256; *deflt = m_initialRotation; val = m_colourRotation; } else if (name == "Colour Scale") { // linear, meter, db^2, db, phase *min = 0; *max = 4; *deflt = 2; val = convertFromColourScale(m_colourScale, m_colourScaleMultiple); } else if (name == "Colour") { *min = 0; *max = ColourMapper::getColourMapCount() - 1; *deflt = 0; val = m_colourMap; } else if (name == "Window Size") { *min = 0; *max = 10; *deflt = 5; val = 0; int ws = m_windowSize; while (ws > 32) { ws >>= 1; val ++; } } else if (name == "Window Increment") { *min = 0; *max = 5; *deflt = 2; val = m_windowHopLevel; } else if (name == "Oversampling") { *min = 0; *max = 3; *deflt = 0; val = 0; int ov = m_oversampling; while (ov > 1) { ov >>= 1; val ++; } } else if (name == "Min Frequency") { *min = 0; *max = 9; *deflt = 1; switch (m_minFrequency) { case 0: default: val = 0; break; case 10: val = 1; break; case 20: val = 2; break; case 40: val = 3; break; case 100: val = 4; break; case 250: val = 5; break; case 500: val = 6; break; case 1000: val = 7; break; case 4000: val = 8; break; case 10000: val = 9; break; } } else if (name == "Max Frequency") { *min = 0; *max = 9; *deflt = 6; switch (m_maxFrequency) { case 500: val = 0; break; case 1000: val = 1; break; case 1500: val = 2; break; case 2000: val = 3; break; case 4000: val = 4; break; case 6000: val = 5; break; case 8000: val = 6; break; case 12000: val = 7; break; case 16000: val = 8; break; default: val = 9; break; } } else if (name == "Frequency Scale") { *min = 0; *max = 1; *deflt = int(BinScale::Linear); val = (int)m_binScale; } else if (name == "Bin Display") { *min = 0; *max = 2; *deflt = int(BinDisplay::AllBins); val = (int)m_binDisplay; } else if (name == "Normalization") { *min = 0; *max = 3; *deflt = 0; val = convertFromColumnNorm(m_normalization, m_normalizeVisibleArea); } else { val = Layer::getPropertyRangeAndValue(name, min, max, deflt); } return val; } QString SpectrogramLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == "Colour") { return ColourMapper::getColourMapLabel(value); } if (name == "Colour Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Meter"); case 2: return tr("dBV^2"); case 3: return tr("dBV"); case 4: return tr("Phase"); } } if (name == "Normalization") { switch(value) { default: case 0: return tr("None"); case 1: return tr("Col"); case 2: return tr("View"); case 3: return tr("Hybrid"); } // return ""; // icon only } if (name == "Window Size") { return QString("%1").arg(32 << value); } if (name == "Window Increment") { switch (value) { default: case 0: return tr("None"); case 1: return tr("25 %"); case 2: return tr("50 %"); case 3: return tr("75 %"); case 4: return tr("87.5 %"); case 5: return tr("93.75 %"); } } if (name == "Oversampling") { switch (value) { default: case 0: return tr("1x"); case 1: return tr("2x"); case 2: return tr("4x"); case 3: return tr("8x"); } } if (name == "Min Frequency") { switch (value) { default: case 0: return tr("No min"); case 1: return tr("10 Hz"); case 2: return tr("20 Hz"); case 3: return tr("40 Hz"); case 4: return tr("100 Hz"); case 5: return tr("250 Hz"); case 6: return tr("500 Hz"); case 7: return tr("1 KHz"); case 8: return tr("4 KHz"); case 9: return tr("10 KHz"); } } if (name == "Max Frequency") { switch (value) { default: case 0: return tr("500 Hz"); case 1: return tr("1 KHz"); case 2: return tr("1.5 KHz"); case 3: return tr("2 KHz"); case 4: return tr("4 KHz"); case 5: return tr("6 KHz"); case 6: return tr("8 KHz"); case 7: return tr("12 KHz"); case 8: return tr("16 KHz"); case 9: return tr("No max"); } } if (name == "Frequency Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Log"); } } if (name == "Bin Display") { switch (value) { default: case 0: return tr("All Bins"); case 1: return tr("Peak Bins"); case 2: return tr("Frequencies"); } } return tr("<unknown>"); } QString SpectrogramLayer::getPropertyValueIconName(const PropertyName &name, int value) const { if (name == "Normalization") { switch(value) { default: case 0: return "normalise-none"; case 1: return "normalise-columns"; case 2: return "normalise"; case 3: return "normalise-hybrid"; } } return ""; } RangeMapper * SpectrogramLayer::getNewPropertyRangeMapper(const PropertyName &name) const { if (name == "Gain") { return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); } if (name == "Threshold") { return new LinearRangeMapper(-81, -1, -81, -1, tr("dB"), false, { { -81, Strings::minus_infinity } }); } return nullptr; } void SpectrogramLayer::setProperty(const PropertyName &name, int value) { if (name == "Gain") { setGain(float(pow(10, float(value)/20.0))); } else if (name == "Threshold") { if (value == -81) setThreshold(0.0); else setThreshold(float(AudioLevel::dB_to_multiplier(value))); } else if (name == "Colour Rotation") { setColourRotation(value); } else if (name == "Colour") { setColourMap(value); } else if (name == "Window Size") { setWindowSize(32 << value); } else if (name == "Window Increment") { setWindowHopLevel(value); } else if (name == "Oversampling") { setOversampling(1 << value); } else if (name == "Min Frequency") { switch (value) { default: case 0: setMinFrequency(0); break; case 1: setMinFrequency(10); break; case 2: setMinFrequency(20); break; case 3: setMinFrequency(40); break; case 4: setMinFrequency(100); break; case 5: setMinFrequency(250); break; case 6: setMinFrequency(500); break; case 7: setMinFrequency(1000); break; case 8: setMinFrequency(4000); break; case 9: setMinFrequency(10000); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Max Frequency") { switch (value) { case 0: setMaxFrequency(500); break; case 1: setMaxFrequency(1000); break; case 2: setMaxFrequency(1500); break; case 3: setMaxFrequency(2000); break; case 4: setMaxFrequency(4000); break; case 5: setMaxFrequency(6000); break; case 6: setMaxFrequency(8000); break; case 7: setMaxFrequency(12000); break; case 8: setMaxFrequency(16000); break; default: case 9: setMaxFrequency(0); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Colour Scale") { setColourScaleMultiple(1.0); switch (value) { default: case 0: setColourScale(ColourScaleType::Linear); break; case 1: setColourScale(ColourScaleType::Meter); break; case 2: setColourScale(ColourScaleType::Log); setColourScaleMultiple(2.0); break; case 3: setColourScale(ColourScaleType::Log); break; case 4: setColourScale(ColourScaleType::Phase); break; } } else if (name == "Frequency Scale") { switch (value) { default: case 0: setBinScale(BinScale::Linear); break; case 1: setBinScale(BinScale::Log); break; } } else if (name == "Bin Display") { switch (value) { default: case 0: setBinDisplay(BinDisplay::AllBins); break; case 1: setBinDisplay(BinDisplay::PeakBins); break; case 2: setBinDisplay(BinDisplay::PeakFrequencies); break; } } else if (name == "Normalization") { auto n = convertToColumnNorm(value); setNormalization(n.first); setNormalizeVisibleArea(n.second); } } void SpectrogramLayer::invalidateRenderers() { #ifdef DEBUG_SPECTROGRAM cerr << "SpectrogramLayer::invalidateRenderers called" << endl; #endif for (ViewRendererMap::iterator i = m_renderers.begin(); i != m_renderers.end(); ++i) { delete i->second; } m_renderers.clear(); } void SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) { SVDEBUG << "SpectrogramLayer::preferenceChanged(" << name << ")" << endl; if (name == "Window Type") { setWindowType(Preferences::getInstance()->getWindowType()); return; } if (name == "Spectrogram Y Smoothing") { invalidateRenderers(); invalidateMagnitudes(); emit layerParametersChanged(); } if (name == "Spectrogram X Smoothing") { invalidateRenderers(); invalidateMagnitudes(); emit layerParametersChanged(); } if (name == "Tuning Frequency") { emit layerParametersChanged(); } } void SpectrogramLayer::setChannel(int ch) { if (m_channel == ch) return; invalidateRenderers(); m_channel = ch; recreateFFTModel(); emit layerParametersChanged(); } int SpectrogramLayer::getChannel() const { return m_channel; } int SpectrogramLayer::getFFTSize() const { return m_windowSize * m_oversampling; } void SpectrogramLayer::setWindowSize(int ws) { if (m_windowSize == ws) return; invalidateRenderers(); m_windowSize = ws; recreateFFTModel(); emit layerParametersChanged(); } int SpectrogramLayer::getWindowSize() const { return m_windowSize; } void SpectrogramLayer::setWindowHopLevel(int v) { if (m_windowHopLevel == v) return; invalidateRenderers(); m_windowHopLevel = v; recreateFFTModel(); emit layerParametersChanged(); } int SpectrogramLayer::getWindowHopLevel() const { return m_windowHopLevel; } void SpectrogramLayer::setOversampling(int oversampling) { if (m_oversampling == oversampling) return; invalidateRenderers(); m_oversampling = oversampling; recreateFFTModel(); emit layerParametersChanged(); } int SpectrogramLayer::getOversampling() const { return m_oversampling; } void SpectrogramLayer::setWindowType(WindowType w) { if (m_windowType == w) return; invalidateRenderers(); m_windowType = w; recreateFFTModel(); emit layerParametersChanged(); } WindowType SpectrogramLayer::getWindowType() const { return m_windowType; } void SpectrogramLayer::setGain(float gain) { // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " // << m_gain << ")" << endl; if (m_gain == gain) return; invalidateRenderers(); m_gain = gain; emit layerParametersChanged(); } float SpectrogramLayer::getGain() const { return m_gain; } void SpectrogramLayer::setThreshold(float threshold) { if (m_threshold == threshold) return; invalidateRenderers(); m_threshold = threshold; emit layerParametersChanged(); } float SpectrogramLayer::getThreshold() const { return m_threshold; } void SpectrogramLayer::setMinFrequency(int mf) { if (m_minFrequency == mf) return; // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; invalidateRenderers(); invalidateMagnitudes(); m_minFrequency = mf; emit layerParametersChanged(); } int SpectrogramLayer::getMinFrequency() const { return m_minFrequency; } void SpectrogramLayer::setMaxFrequency(int mf) { if (m_maxFrequency == mf) return; // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; invalidateRenderers(); invalidateMagnitudes(); m_maxFrequency = mf; if (auto fftModel = ModelById::getAs<FFTModel>(m_fftModel)) { fftModel->setMaximumFrequency(m_maxFrequency); } emit layerParametersChanged(); } int SpectrogramLayer::getMaxFrequency() const { return m_maxFrequency; } void SpectrogramLayer::setColourRotation(int r) { if (r < 0) r = 0; if (r > 256) r = 256; int distance = r - m_colourRotation; if (distance != 0) { m_colourRotation = r; } // Initially the idea with colour rotation was that we would just // rotate the palette of an already-generated cache. That's not // really practical now that cacheing is handled in a separate // class in which the main cache no longer has a palette. invalidateRenderers(); emit layerParametersChanged(); } void SpectrogramLayer::setColourScale(ColourScaleType colourScale) { if (m_colourScale == colourScale) return; invalidateRenderers(); m_colourScale = colourScale; emit layerParametersChanged(); } ColourScaleType SpectrogramLayer::getColourScale() const { return m_colourScale; } void SpectrogramLayer::setColourScaleMultiple(double multiple) { if (m_colourScaleMultiple == multiple) return; invalidateRenderers(); m_colourScaleMultiple = multiple; emit layerParametersChanged(); } double SpectrogramLayer::getColourScaleMultiple() const { return m_colourScaleMultiple; } void SpectrogramLayer::setColourMap(int map) { if (m_colourMap == map) return; invalidateRenderers(); m_colourMap = map; emit layerParametersChanged(); } int SpectrogramLayer::getColourMap() const { return m_colourMap; } void SpectrogramLayer::setBinScale(BinScale binScale) { if (m_binScale == binScale) return; invalidateRenderers(); m_binScale = binScale; emit layerParametersChanged(); } BinScale SpectrogramLayer::getBinScale() const { return m_binScale; } void SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) { if (m_binDisplay == binDisplay) return; invalidateRenderers(); m_binDisplay = binDisplay; emit layerParametersChanged(); } BinDisplay SpectrogramLayer::getBinDisplay() const { return m_binDisplay; } void SpectrogramLayer::setNormalization(ColumnNormalization n) { if (m_normalization == n) return; invalidateRenderers(); invalidateMagnitudes(); m_normalization = n; emit layerParametersChanged(); } ColumnNormalization SpectrogramLayer::getNormalization() const { return m_normalization; } void SpectrogramLayer::setNormalizeVisibleArea(bool n) { if (m_normalizeVisibleArea == n) return; invalidateRenderers(); invalidateMagnitudes(); m_normalizeVisibleArea = n; emit layerParametersChanged(); } bool SpectrogramLayer::getNormalizeVisibleArea() const { return m_normalizeVisibleArea; } void SpectrogramLayer::setLayerDormant(const LayerGeometryProvider *v, bool dormant) { if (dormant) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::setLayerDormant(" << dormant << ")" << endl; #endif if (isLayerDormant(v)) { return; } Layer::setLayerDormant(v, true); invalidateRenderers(); } else { Layer::setLayerDormant(v, false); } } bool SpectrogramLayer::isLayerScrollable(const LayerGeometryProvider *) const { // we do our own cacheing, and don't want to be responsible for // guaranteeing to get an invisible seam if someone else scrolls // us and we just fill in return false; } void SpectrogramLayer::cacheInvalid(ModelId) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::cacheInvalid()" << endl; #endif invalidateRenderers(); invalidateMagnitudes(); } void SpectrogramLayer::cacheInvalid( ModelId, #ifdef DEBUG_SPECTROGRAM_REPAINT sv_frame_t from, sv_frame_t to #else sv_frame_t , sv_frame_t #endif ) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::cacheInvalid(" << from << ", " << to << ")" << endl; #endif // We used to call invalidateMagnitudes(from, to) to invalidate // only those caches whose views contained some of the (from, to) // range. That's the right thing to do; it has been lost in // pulling out the image cache code, but it might not matter very // much, since the underlying models for spectrogram layers don't // change very often. Let's see. invalidateRenderers(); invalidateMagnitudes(); } bool SpectrogramLayer::hasLightBackground() const { return ColourMapper(m_colourMap, m_colourInverted, 1.f, 255.f) .hasLightBackground(); } double SpectrogramLayer::getEffectiveMinFrequency() const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return 0.0; sv_samplerate_t sr = model->getSampleRate(); double minf = double(sr) / getFFTSize(); if (m_minFrequency > 0.0) { int minbin = int((double(m_minFrequency) * getFFTSize()) / sr + 0.01); if (minbin < 1) minbin = 1; minf = minbin * sr / getFFTSize(); } return minf; } double SpectrogramLayer::getEffectiveMaxFrequency() const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return 0.0; sv_samplerate_t sr = model->getSampleRate(); double maxf = double(sr) / 2; if (m_maxFrequency > 0.0) { int maxbin = int((double(m_maxFrequency) * getFFTSize()) / sr + 0.1); if (maxbin > getFFTSize() / 2) maxbin = getFFTSize() / 2; maxf = maxbin * sr / getFFTSize(); } return maxf; } bool SpectrogramLayer::getYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const { Profiler profiler("SpectrogramLayer::getYBinRange"); int h = v->getPaintHeight(); if (y < 0 || y >= h) return false; q0 = getBinForY(v, y); q1 = getBinForY(v, y-1); return true; } double SpectrogramLayer::getYForBin(const LayerGeometryProvider *v, double bin) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return 0.0; double minf = getEffectiveMinFrequency(); double maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_binScale == BinScale::Log); sv_samplerate_t sr = model->getSampleRate(); double freq = (bin * sr) / getFFTSize(); double y = v->getYForFrequency(freq, minf, maxf, logarithmic); return y; } double SpectrogramLayer::getBinForY(const LayerGeometryProvider *v, double y) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return 0.0; sv_samplerate_t sr = model->getSampleRate(); double minf = getEffectiveMinFrequency(); double maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_binScale == BinScale::Log); double freq = v->getFrequencyForY(y, minf, maxf, logarithmic); // Now map on to ("proportion of") actual bins double bin = (freq * getFFTSize()) / sr; return bin; } bool SpectrogramLayer::getXBinRange(LayerGeometryProvider *v, int x, double &s0, double &s1) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return false; sv_frame_t modelStart = model->getStartFrame(); sv_frame_t modelEnd = model->getEndFrame(); // Each pixel column covers an exact range of sample frames: sv_frame_t f0 = v->getFrameForX(x) - modelStart; sv_frame_t f1 = v->getFrameForX(x + 1) - modelStart - 1; if (f1 < int(modelStart) || f0 > int(modelEnd)) { return false; } // And that range may be drawn from a possibly non-integral // range of spectrogram windows: int windowIncrement = getWindowIncrement(); s0 = double(f0) / windowIncrement; s1 = double(f1) / windowIncrement; return true; } bool SpectrogramLayer::getXBinSourceRange(LayerGeometryProvider *v, int x, RealTime &min, RealTime &max) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return false; double s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int windowIncrement = getWindowIncrement(); int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2; int w1 = s1i * windowIncrement + windowIncrement + (m_windowSize - windowIncrement)/2 - 1; min = RealTime::frame2RealTime(w0, model->getSampleRate()); max = RealTime::frame2RealTime(w1, model->getSampleRate()); return true; } bool SpectrogramLayer::getYBinSourceRange(LayerGeometryProvider *v, int y, double &freqMin, double &freqMax) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return false; double q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); sv_samplerate_t sr = model->getSampleRate(); for (int q = q0i; q <= q1i; ++q) { if (q == q0i) freqMin = (sr * q) / getFFTSize(); if (q == q1i) freqMax = (sr * (q+1)) / getFFTSize(); } return true; } bool SpectrogramLayer::getAdjustedYBinSourceRange(LayerGeometryProvider *v, int x, int y, double &freqMin, double &freqMax, double &adjFreqMin, double &adjFreqMax) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model || !model->isOK() || !model->isReady()) { return false; } auto fft = ModelById::getAs<FFTModel>(m_fftModel); if (!fft) return false; double s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; double q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int q0i = int(q0 + 0.001); int q1i = int(q1); sv_samplerate_t sr = model->getSampleRate(); bool haveAdj = false; bool peaksOnly = (m_binDisplay == BinDisplay::PeakBins || m_binDisplay == BinDisplay::PeakFrequencies); for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { double binfreq = (double(sr) * q) / getFFTSize(); if (q == q0i) freqMin = binfreq; if (q == q1i) freqMax = binfreq; if (peaksOnly && !fft->isLocalPeak(s, q)) continue; if (!fft->isOverThreshold (s, q, float(m_threshold * double(getFFTSize())/2.0))) { continue; } double freq = binfreq; if (s < int(fft->getWidth()) - 1) { fft->estimateStableFrequency(s, q, freq); if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq; if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq; haveAdj = true; } } } if (!haveAdj) { adjFreqMin = adjFreqMax = 0.0; } return haveAdj; } bool SpectrogramLayer::getXYBinSourceRange(LayerGeometryProvider *v, int x, int y, double &min, double &max, double &phaseMin, double &phaseMax) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model || !model->isOK() || !model->isReady()) { return false; } double q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; double s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int s0i = int(s0 + 0.001); int s1i = int(s1); bool rv = false; auto fft = ModelById::getAs<FFTModel>(m_fftModel); if (fft) { int cw = fft->getWidth(); int ch = fft->getHeight(); min = 0.0; max = 0.0; phaseMin = 0.0; phaseMax = 0.0; bool have = false; for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (s >= 0 && q >= 0 && s < cw && q < ch) { double value; value = fft->getPhaseAt(s, q); if (!have || value < phaseMin) { phaseMin = value; } if (!have || value > phaseMax) { phaseMax = value; } value = fft->getMagnitudeAt(s, q) / (getFFTSize()/2.0); if (!have || value < min) { min = value; } if (!have || value > max) { max = value; } have = true; } } } if (have) { rv = true; } } return rv; } void SpectrogramLayer::recreateFFTModel() { SVDEBUG << "SpectrogramLayer::recreateFFTModel called" << endl; { // scope, avoid hanging on to this pointer auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model || !model->isOK()) { deleteDerivedModels(); return; } } deleteDerivedModels(); auto newFFTModel = std::make_shared<FFTModel>(m_model, m_channel, m_windowType, m_windowSize, getWindowIncrement(), getFFTSize()); if (!newFFTModel->isOK()) { QMessageBox::critical (nullptr, tr("FFT cache failed"), tr("Failed to create the FFT model for this spectrogram.\n" "There may be insufficient memory or disc space to continue.")); return; } newFFTModel->setMaximumFrequency(getMaxFrequency()); m_fftModel = ModelById::add(newFFTModel); bool createWholeCache = false; checkCacheSpace(&m_peakCacheDivisor, &createWholeCache); if (createWholeCache) { auto whole = std::make_shared<Dense3DModelPeakCache>(m_fftModel, 1); m_wholeCache = ModelById::add(whole); auto peaks = std::make_shared<Dense3DModelPeakCache>(m_fftModel, m_peakCacheDivisor); m_peakCache = ModelById::add(peaks); } else { auto peaks = std::make_shared<Dense3DModelPeakCache>(m_fftModel, m_peakCacheDivisor); m_peakCache = ModelById::add(peaks); } } void SpectrogramLayer::checkCacheSpace(int *suggestedPeakDivisor, bool *createWholeCache) const { *suggestedPeakDivisor = 8; *createWholeCache = false; auto fftModel = ModelById::getAs<FFTModel>(m_fftModel); if (!fftModel) return; size_t sz = size_t(fftModel->getWidth()) * size_t(fftModel->getHeight()) * sizeof(float); try { SVDEBUG << "Requesting advice from StorageAdviser on whether to create whole-model cache" << endl; // The lower amount here is the amount required for the // slightly higher-resolution version of the peak cache // without a whole-model cache; the higher amount is that for // the whole-model cache. The factors of 1024 are because // StorageAdviser rather stupidly works in kilobytes StorageAdviser::Recommendation recommendation = StorageAdviser::recommend (StorageAdviser::Criteria(StorageAdviser::SpeedCritical | StorageAdviser::PrecisionCritical | StorageAdviser::FrequentLookupLikely), (sz / 8) / 1024, sz / 1024); if (recommendation & StorageAdviser::UseDisc) { SVDEBUG << "Seems inadvisable to create whole-model cache" << endl; } else if (recommendation & StorageAdviser::ConserveSpace) { SVDEBUG << "Seems inadvisable to create whole-model cache but acceptable to use the slightly higher-resolution peak cache" << endl; *suggestedPeakDivisor = 4; } else { SVDEBUG << "Seems fine to create whole-model cache" << endl; *createWholeCache = true; } } catch (const InsufficientDiscSpace &) { SVDEBUG << "Seems like a terrible idea to create whole-model cache" << endl; } } ModelId SpectrogramLayer::getSliceableModel() const { return m_fftModel; } void SpectrogramLayer::invalidateMagnitudes() { #ifdef DEBUG_SPECTROGRAM cerr << "SpectrogramLayer::invalidateMagnitudes called" << endl; #endif m_viewMags.clear(); } void SpectrogramLayer::setSynchronousPainting(bool synchronous) { m_synchronous = synchronous; } Colour3DPlotRenderer * SpectrogramLayer::getRenderer(LayerGeometryProvider *v) const { int viewId = v->getId(); if (m_renderers.find(viewId) == m_renderers.end()) { Colour3DPlotRenderer::Sources sources; sources.verticalBinLayer = this; sources.fft = m_fftModel; sources.source = sources.fft; if (!m_peakCache.isNone()) sources.peakCaches.push_back(m_peakCache); if (!m_wholeCache.isNone()) sources.peakCaches.push_back(m_wholeCache); ColourScale::Parameters cparams; cparams.colourMap = m_colourMap; cparams.scaleType = m_colourScale; cparams.multiple = m_colourScaleMultiple; if (m_colourScale != ColourScaleType::Phase) { cparams.gain = m_gain; cparams.threshold = m_threshold; } double minValue = 0.0f; double maxValue = 1.0f; if (m_normalizeVisibleArea && m_viewMags[viewId].isSet()) { minValue = m_viewMags[viewId].getMin(); maxValue = m_viewMags[viewId].getMax(); } else if (m_colourScale == ColourScaleType::Linear && m_normalization == ColumnNormalization::None) { maxValue = 0.1f; } if (maxValue <= minValue) { maxValue = minValue + 0.1f; } if (maxValue <= m_threshold) { maxValue = m_threshold + 0.1f; } cparams.minValue = minValue; cparams.maxValue = maxValue; m_lastRenderedMags[viewId] = MagnitudeRange(float(minValue), float(maxValue)); Colour3DPlotRenderer::Parameters params; params.colourScale = ColourScale(cparams); params.normalization = m_normalization; params.binDisplay = m_binDisplay; params.binScale = m_binScale; params.alwaysOpaque = true; params.invertVertical = false; params.scaleFactor = 1.0; params.colourRotation = m_colourRotation; if (m_colourScale != ColourScaleType::Phase && m_normalization != ColumnNormalization::Hybrid) { params.scaleFactor *= 2.f / float(getWindowSize()); } Preferences::SpectrogramSmoothing smoothing = Preferences::getInstance()->getSpectrogramSmoothing(); params.interpolate = (smoothing != Preferences::NoSpectrogramSmoothing); m_renderers[viewId] = new Colour3DPlotRenderer(sources, params); m_crosshairColour = ColourMapper(m_colourMap, m_colourInverted, 1.f, 255.f) .getContrastingColour(); } return m_renderers[viewId]; } void SpectrogramLayer::paintWithRenderer(LayerGeometryProvider *v, QPainter &paint, QRect rect) const { Colour3DPlotRenderer *renderer = getRenderer(v); Colour3DPlotRenderer::RenderResult result; MagnitudeRange magRange; int viewId = v->getId(); bool continuingPaint = !renderer->geometryChanged(v); if (continuingPaint) { magRange = m_viewMags[viewId]; } if (m_synchronous) { result = renderer->render(v, paint, rect); } else { result = renderer->renderTimeConstrained(v, paint, rect); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "rect width from this paint: " << result.rendered.width() << ", mag range in this paint: " << result.range.getMin() << " -> " << result.range.getMax() << endl; #endif QRect uncached = renderer->getLargestUncachedRect(v); if (uncached.width() > 0) { v->updatePaintRect(uncached); } } magRange.sample(result.range); if (magRange.isSet()) { if (m_viewMags[viewId] != magRange) { m_viewMags[viewId] = magRange; #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "mag range in this view has changed: " << magRange.getMin() << " -> " << magRange.getMax() << endl; #endif } } if (!continuingPaint && m_normalizeVisibleArea && m_viewMags[viewId] != m_lastRenderedMags[viewId]) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "mag range has changed from last rendered range: re-rendering" << endl; #endif delete m_renderers[viewId]; m_renderers.erase(viewId); v->updatePaintRect(v->getPaintRect()); } } void SpectrogramLayer::paint(LayerGeometryProvider *v, QPainter &paint, QRect rect) const { Profiler profiler("SpectrogramLayer::paint", false); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paint() entering: m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << endl; cerr << "SpectrogramLayer::paint(): rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << endl; #endif auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model || !model->isOK() || !model->isReady()) { return; } paintWithRenderer(v, paint, rect); illuminateLocalFeatures(v, paint); } void SpectrogramLayer::illuminateLocalFeatures(LayerGeometryProvider *v, QPainter &paint) const { Profiler profiler("SpectrogramLayer::illuminateLocalFeatures"); auto model = ModelById::getAs<DenseTimeValueModel>(m_model); QPoint localPos; if (!v->shouldIlluminateLocalFeatures(this, localPos) || !model) { return; } #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: illuminateLocalFeatures(" << localPos.x() << "," << localPos.y() << ")" << endl; #endif double s0, s1; double f0, f1; if (getXBinRange(v, localPos.x(), s0, s1) && getYBinSourceRange(v, localPos.y(), f0, f1)) { int s0i = int(s0 + 0.001); int s1i = int(s1); int x0 = v->getXForFrame(s0i * getWindowIncrement()); int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); int y1 = int(getYForFrequency(v, f1)); int y0 = int(getYForFrequency(v, f0)); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: illuminate " << x0 << "," << y1 << " -> " << x1 << "," << y0 << endl; #endif paint.setPen(v->getForeground()); //!!! should we be using paintCrosshairs for this? paint.drawRect(x0, y1, x1 - x0 + 1, y0 - y1 + 1); } } double SpectrogramLayer::getYForFrequency(const LayerGeometryProvider *v, double frequency) const { return v->getYForFrequency(frequency, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_binScale == BinScale::Log); } double SpectrogramLayer::getFrequencyForY(const LayerGeometryProvider *v, int y) const { return v->getFrequencyForY(y, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_binScale == BinScale::Log); } int SpectrogramLayer::getCompletion(LayerGeometryProvider *) const { auto fftModel = ModelById::getAs<FFTModel>(m_fftModel); if (!fftModel) return 100; int completion = fftModel->getCompletion(); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::getCompletion: completion = " << completion << endl; #endif return completion; } QString SpectrogramLayer::getError(LayerGeometryProvider *) const { auto fftModel = ModelById::getAs<FFTModel>(m_fftModel); if (!fftModel) return ""; return fftModel->getError(); } bool SpectrogramLayer::getValueExtents(double &min, double &max, bool &logarithmic, QString &unit) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return false; sv_samplerate_t sr = model->getSampleRate(); min = double(sr) / getFFTSize(); max = double(sr) / 2; logarithmic = (m_binScale == BinScale::Log); unit = "Hz"; return true; } bool SpectrogramLayer::getDisplayExtents(double &min, double &max) const { min = getEffectiveMinFrequency(); max = getEffectiveMaxFrequency(); // SVDEBUG << "SpectrogramLayer::getDisplayExtents: " << min << "->" << max << endl; return true; } bool SpectrogramLayer::setDisplayExtents(double min, double max) { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return false; // SVDEBUG << "SpectrogramLayer::setDisplayExtents: " << min << "->" << max << endl; if (min < 0) min = 0; if (max > model->getSampleRate()/2.0) max = model->getSampleRate()/2.0; int minf = int(lrint(min)); int maxf = int(lrint(max)); if (m_minFrequency == minf && m_maxFrequency == maxf) return true; invalidateRenderers(); invalidateMagnitudes(); m_minFrequency = minf; m_maxFrequency = maxf; if (auto fftModel = ModelById::getAs<FFTModel>(m_fftModel)) { fftModel->setMaximumFrequency(m_maxFrequency); } emit layerParametersChanged(); int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } return true; } bool SpectrogramLayer::getYScaleValue(const LayerGeometryProvider *v, int y, double &value, QString &unit) const { value = getFrequencyForY(v, y); unit = "Hz"; return true; } bool SpectrogramLayer::snapToFeatureFrame(LayerGeometryProvider *, sv_frame_t &frame, int &resolution, SnapType snap) const { resolution = getWindowIncrement(); sv_frame_t left = (frame / resolution) * resolution; sv_frame_t right = left + resolution; switch (snap) { case SnapLeft: frame = left; break; case SnapRight: frame = right; break; case SnapNeighbouring: if (frame - left > right - frame) frame = right; else frame = left; break; } return true; } void SpectrogramLayer::measureDoubleClick(LayerGeometryProvider *v, QMouseEvent *e) { const Colour3DPlotRenderer *renderer = getRenderer(v); if (!renderer) return; QRect rect = renderer->findSimilarRegionExtents(e->pos()); if (rect.isValid()) { MeasureRect mr; setMeasureRectFromPixrect(v, mr, rect); CommandHistory::getInstance()->addCommand (new AddMeasurementRectCommand(this, mr)); } } bool SpectrogramLayer::getCrosshairExtents(LayerGeometryProvider *v, QPainter &paint, QPoint cursorPos, vector<QRect> &extents) const { // Qt 5.13 deprecates QFontMetrics::width(), but its suggested // replacement (horizontalAdvance) was only added in Qt 5.11 // which is too new for us #pragma GCC diagnostic ignored "-Wdeprecated-declarations" QRect vertical(cursorPos.x() - 12, 0, 12, v->getPaintHeight()); extents.push_back(vertical); QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); extents.push_back(horizontal); int sw = getVerticalScaleWidth(v, m_haveDetailedScale, paint); QRect freq(sw, cursorPos.y() - paint.fontMetrics().ascent() - 2, paint.fontMetrics().width("123456 Hz") + 2, paint.fontMetrics().height()); extents.push_back(freq); QRect pitch(sw, cursorPos.y() + 2, paint.fontMetrics().width("C#10+50c") + 2, paint.fontMetrics().height()); extents.push_back(pitch); QRect rt(cursorPos.x(), v->getPaintHeight() - paint.fontMetrics().height() - 2, paint.fontMetrics().width("1234.567 s"), paint.fontMetrics().height()); extents.push_back(rt); int w(paint.fontMetrics().width("1234567890") + 2); QRect frame(cursorPos.x() - w - 2, v->getPaintHeight() - paint.fontMetrics().height() - 2, w, paint.fontMetrics().height()); extents.push_back(frame); return true; } void SpectrogramLayer::paintCrosshairs(LayerGeometryProvider *v, QPainter &paint, QPoint cursorPos) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return; paint.save(); int sw = getVerticalScaleWidth(v, m_haveDetailedScale, paint); QFont fn = paint.font(); if (fn.pointSize() > 8) { fn.setPointSize(fn.pointSize() - 1); paint.setFont(fn); } paint.setPen(m_crosshairColour); paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->getPaintHeight()); double fundamental = getFrequencyForY(v, cursorPos.y()); PaintAssistant::drawVisibleText (v, paint, sw + 2, cursorPos.y() - 2, QString("%1 Hz").arg(fundamental), PaintAssistant::OutlinedText); if (Pitch::isFrequencyInMidiRange(fundamental)) { QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); PaintAssistant::drawVisibleText (v, paint, sw + 2, cursorPos.y() + paint.fontMetrics().ascent() + 2, pitchLabel, PaintAssistant::OutlinedText); } sv_frame_t frame = v->getFrameForX(cursorPos.x()); RealTime rt = RealTime::frame2RealTime(frame, model->getSampleRate()); QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); QString frameLabel = QString("%1").arg(frame); PaintAssistant::drawVisibleText (v, paint, cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, v->getPaintHeight() - 2, frameLabel, PaintAssistant::OutlinedText); PaintAssistant::drawVisibleText (v, paint, cursorPos.x() + 2, v->getPaintHeight() - 2, rtLabel, PaintAssistant::OutlinedText); int harmonic = 2; while (harmonic < 100) { int hy = int(lrint(getYForFrequency(v, fundamental * harmonic))); if (hy < 0 || hy > v->getPaintHeight()) break; int len = 7; if (harmonic % 2 == 0) { if (harmonic % 4 == 0) { len = 12; } else { len = 10; } } paint.drawLine(cursorPos.x() - len, hy, cursorPos.x(), hy); ++harmonic; } paint.restore(); } QString SpectrogramLayer::getFeatureDescription(LayerGeometryProvider *v, QPoint &pos) const { int x = pos.x(); int y = pos.y(); auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model || !model->isOK()) return ""; double magMin = 0, magMax = 0; double phaseMin = 0, phaseMax = 0; double freqMin = 0, freqMax = 0; double adjFreqMin = 0, adjFreqMax = 0; QString pitchMin, pitchMax; RealTime rtMin, rtMax; bool haveValues = false; if (!getXBinSourceRange(v, x, rtMin, rtMax)) { return ""; } if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) { haveValues = true; } QString adjFreqText = "", adjPitchText = ""; if (m_binDisplay == BinDisplay::PeakFrequencies) { if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, adjFreqMin, adjFreqMax)) { return ""; } if (adjFreqMin != adjFreqMax) { adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n") .arg(adjFreqMin).arg(adjFreqMax); } else { adjFreqText = tr("Peak Frequency:\t%1 Hz\n") .arg(adjFreqMin); } QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin); QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax); if (pmin != pmax) { adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax); } else { adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin); } } else { if (!getYBinSourceRange(v, y, freqMin, freqMax)) return ""; } QString text; if (rtMin != rtMax) { text += tr("Time:\t%1 - %2\n") .arg(rtMin.toText(true).c_str()) .arg(rtMax.toText(true).c_str()); } else { text += tr("Time:\t%1\n") .arg(rtMin.toText(true).c_str()); } if (freqMin != freqMax) { text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n") .arg(adjFreqText) .arg(freqMin) .arg(freqMax) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)) .arg(Pitch::getPitchLabelForFrequency(freqMax)); } else { text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n") .arg(adjFreqText) .arg(freqMin) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)); } if (haveValues) { double dbMin = AudioLevel::multiplier_to_dB(magMin); double dbMax = AudioLevel::multiplier_to_dB(magMax); QString dbMinString; QString dbMaxString; if (dbMin == AudioLevel::DB_FLOOR) { dbMinString = Strings::minus_infinity; } else { dbMinString = QString("%1").arg(lrint(dbMin)); } if (dbMax == AudioLevel::DB_FLOOR) { dbMaxString = Strings::minus_infinity; } else { dbMaxString = QString("%1").arg(lrint(dbMax)); } if (lrint(dbMin) != lrint(dbMax)) { text += tr("dB:\t%1 - %2").arg(dbMinString).arg(dbMaxString); } else { text += tr("dB:\t%1").arg(dbMinString); } if (phaseMin != phaseMax) { text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax); } else { text += tr("\nPhase:\t%1").arg(phaseMin); } } return text; } int SpectrogramLayer::getColourScaleWidth(QPainter &paint) const { int cw; cw = paint.fontMetrics().width("-80dB"); return cw; } int SpectrogramLayer::getVerticalScaleWidth(LayerGeometryProvider *, bool detailed, QPainter &paint) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model || !model->isOK()) return 0; int cw = 0; if (detailed) cw = getColourScaleWidth(paint); int tw = paint.fontMetrics().width(QString("%1") .arg(m_maxFrequency > 0 ? m_maxFrequency - 1 : model->getSampleRate() / 2)); int fw = paint.fontMetrics().width(tr("43Hz")); if (tw < fw) tw = fw; int tickw = (m_binScale == BinScale::Log ? 10 : 4); return cw + tickw + tw + 13; } void SpectrogramLayer::paintVerticalScale(LayerGeometryProvider *v, bool detailed, QPainter &paint, QRect rect) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model || !model->isOK()) { return; } Profiler profiler("SpectrogramLayer::paintVerticalScale"); //!!! cache this? int h = rect.height(), w = rect.width(); int textHeight = paint.fontMetrics().height(); if (detailed && (h > textHeight * 3 + 10)) { paintDetailedScale(v, paint, rect); } m_haveDetailedScale = detailed; int tickw = (m_binScale == BinScale::Log ? 10 : 4); int pkw = (m_binScale == BinScale::Log ? 10 : 0); int bins = getFFTSize() / 2; sv_samplerate_t sr = model->getSampleRate(); if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * getFFTSize()) / sr + 0.1); if (bins > getFFTSize() / 2) bins = getFFTSize() / 2; } int cw = 0; if (detailed) cw = getColourScaleWidth(paint); int py = -1; int toff = -textHeight + paint.fontMetrics().ascent() + 2; paint.drawLine(cw + 7, 0, cw + 7, h); int bin = -1; for (int y = 0; y < v->getPaintHeight(); ++y) { double q0, q1; if (!getYBinRange(v, v->getPaintHeight() - y, q0, q1)) continue; int vy; if (int(q0) > bin) { vy = y; bin = int(q0); } else { continue; } int freq = int((sr * bin) / getFFTSize()); if (py >= 0 && (vy - py) < textHeight - 1) { if (m_binScale == BinScale::Linear) { paint.drawLine(w - tickw, h - vy, w, h - vy); } continue; } QString text = QString("%1").arg(freq); if (bin == 1) text = tr("%1Hz").arg(freq); // bin 0 is DC paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); if (h - vy - textHeight >= -2) { int tx = w - 3 - paint.fontMetrics().width(text) - max(tickw, pkw); paint.drawText(tx, h - vy + toff, text); } py = vy; } if (m_binScale == BinScale::Log) { // piano keyboard PianoScale().paintPianoVertical (v, paint, QRect(w - pkw - 1, 0, pkw, h), getEffectiveMinFrequency(), getEffectiveMaxFrequency()); } m_haveDetailedScale = detailed; } void SpectrogramLayer::paintDetailedScale(LayerGeometryProvider *v, QPainter &paint, QRect rect) const { // The colour scale if (m_colourScale == ColourScaleType::Phase) { paintDetailedScalePhase(v, paint, rect); return; } int h = rect.height(); int textHeight = paint.fontMetrics().height(); int toff = -textHeight + paint.fontMetrics().ascent() + 2; int cw = getColourScaleWidth(paint); int cbw = paint.fontMetrics().width("dB"); int topLines = 2; int ch = h - textHeight * (topLines + 1) - 8; // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); QString top, bottom; double min = m_viewMags[v->getId()].getMin(); double max = m_viewMags[v->getId()].getMax(); if (min < m_threshold) min = m_threshold; if (max <= min) max = min + 0.1; double dBmin = AudioLevel::multiplier_to_dB(min); double dBmax = AudioLevel::multiplier_to_dB(max); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "paintVerticalScale: for view id " << v->getId() << ": min = " << min << ", max = " << max << ", dBmin = " << dBmin << ", dBmax = " << dBmax << endl; #endif if (dBmax < -60.f) dBmax = -60.f; else top = QString("%1").arg(lrint(dBmax)); if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; bottom = QString("%1").arg(lrint(dBmin)); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "adjusted dB range to min = " << dBmin << ", max = " << dBmax << endl; #endif paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, 2 + textHeight + toff, "dBFS"); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), 2 + textHeight * topLines + toff + textHeight/2, top); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), h + toff - 3 - textHeight/2, bottom); paint.save(); paint.setBrush(Qt::NoBrush); int lasty = 0; int lastdb = 0; for (int i = 0; i < ch; ++i) { double dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); int idb = int(dBval); double value = AudioLevel::dB_to_multiplier(dBval); paint.setPen(getRenderer(v)->getColour(value)); int y = textHeight * topLines + 4 + ch - i; paint.drawLine(5 + cw - cbw, y, cw + 2, y); if (i == 0) { lasty = y; lastdb = idb; } else if (i < ch - paint.fontMetrics().ascent() && idb != lastdb && ((abs(y - lasty) > textHeight && idb % 10 == 0) || (abs(y - lasty) > paint.fontMetrics().ascent() && idb % 5 == 0))) { paint.setPen(v->getForeground()); QString text = QString("%1").arg(idb); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), y + toff + textHeight/2, text); paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); lasty = y; lastdb = idb; } } paint.restore(); } void SpectrogramLayer::paintDetailedScalePhase(LayerGeometryProvider *v, QPainter &paint, QRect rect) const { // The colour scale in phase mode int h = rect.height(); int textHeight = paint.fontMetrics().height(); int toff = -textHeight + paint.fontMetrics().ascent() + 2; int cw = getColourScaleWidth(paint); // Phase is not measured in dB of course, but this places the // scale at the same position as in the magnitude spectrogram int cbw = paint.fontMetrics().width("dB"); int topLines = 1; int ch = h - textHeight * (topLines + 1) - 8; paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); QString top = Strings::pi, bottom = Strings::minus_pi, middle = "0"; double min = -M_PI; double max = M_PI; paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), 2 + textHeight * topLines + toff + textHeight/2, top); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(middle), 2 + textHeight * topLines + ch/2 + toff + textHeight/2, middle); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), h + toff - 3 - textHeight/2, bottom); paint.save(); paint.setBrush(Qt::NoBrush); for (int i = 0; i < ch; ++i) { double val = min + (((max - min) * i) / (ch - 1)); paint.setPen(getRenderer(v)->getColour(val)); int y = textHeight * topLines + 4 + ch - i; paint.drawLine(5 + cw - cbw, y, cw + 2, y); } paint.restore(); } class SpectrogramRangeMapper : public RangeMapper { public: SpectrogramRangeMapper(sv_samplerate_t sr, int /* fftsize */) : m_dist(sr / 2), m_s2(sqrt(sqrt(2))) { } ~SpectrogramRangeMapper() override { } int getPositionForValue(double value) const override { double dist = m_dist; int n = 0; while (dist > (value + 0.00001) && dist > 0.1) { dist /= m_s2; ++n; } return n; } int getPositionForValueUnclamped(double value) const override { // We don't really support this return getPositionForValue(value); } double getValueForPosition(int position) const override { // Vertical zoom step 0 shows the entire range from DC -> // Nyquist frequency. Step 1 shows 2^(1/4) of the range of // step 0, and so on until the visible range is smaller than // the frequency step between bins at the current fft size. double dist = m_dist; int n = 0; while (n < position) { dist /= m_s2; ++n; } return dist; } double getValueForPositionUnclamped(int position) const override { // We don't really support this return getValueForPosition(position); } QString getUnit() const override { return "Hz"; } protected: double m_dist; double m_s2; }; int SpectrogramLayer::getVerticalZoomSteps(int &defaultStep) const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return 0; sv_samplerate_t sr = model->getSampleRate(); SpectrogramRangeMapper mapper(sr, getFFTSize()); // int maxStep = mapper.getPositionForValue((double(sr) / getFFTSize()) + 0.001); int maxStep = mapper.getPositionForValue(0); int minStep = mapper.getPositionForValue(double(sr) / 2); int initialMax = m_initialMaxFrequency; if (initialMax == 0) initialMax = int(sr / 2); defaultStep = mapper.getPositionForValue(initialMax) - minStep; // SVDEBUG << "SpectrogramLayer::getVerticalZoomSteps: " << maxStep - minStep << " (" << maxStep <<"-" << minStep << "), default is " << defaultStep << " (from initial max freq " << initialMax << ")" << endl; return maxStep - minStep; } int SpectrogramLayer::getCurrentVerticalZoomStep() const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return 0; double dmin, dmax; getDisplayExtents(dmin, dmax); SpectrogramRangeMapper mapper(model->getSampleRate(), getFFTSize()); int n = mapper.getPositionForValue(dmax - dmin); // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; return n; } void SpectrogramLayer::setVerticalZoomStep(int step) { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return; double dmin = m_minFrequency, dmax = m_maxFrequency; // getDisplayExtents(dmin, dmax); // cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << endl; sv_samplerate_t sr = model->getSampleRate(); SpectrogramRangeMapper mapper(sr, getFFTSize()); double newdist = mapper.getValueForPosition(step); double newmin, newmax; if (m_binScale == BinScale::Log) { // need to pick newmin and newmax such that // // (log(newmin) + log(newmax)) / 2 == logmid // and // newmax - newmin = newdist // // so log(newmax - newdist) + log(newmax) == 2logmid // log(newmax(newmax - newdist)) == 2logmid // newmax.newmax - newmax.newdist == exp(2logmid) // newmax^2 + (-newdist)newmax + -exp(2logmid) == 0 // quadratic with a = 1, b = -newdist, c = -exp(2logmid), all known // // positive root // newmax = (newdist + sqrt(newdist^2 + 4exp(2logmid))) / 2 // // but logmid = (log(dmin) + log(dmax)) / 2 // so exp(2logmid) = exp(log(dmin) + log(dmax)) // = exp(log(dmin.dmax)) // = dmin.dmax // so newmax = (newdist + sqrtf(newdist^2 + 4dmin.dmax)) / 2 newmax = (newdist + sqrt(newdist*newdist + 4*dmin*dmax)) / 2; newmin = newmax - newdist; // cerr << "newmin = " << newmin << ", newmax = " << newmax << endl; } else { double dmid = (dmax + dmin) / 2; newmin = dmid - newdist / 2; newmax = dmid + newdist / 2; } double mmin, mmax; mmin = 0; mmax = double(sr) / 2; if (newmin < mmin) { newmax += (mmin - newmin); newmin = mmin; } if (newmax > mmax) { newmax = mmax; } // SVDEBUG << "SpectrogramLayer::setVerticalZoomStep: " << step << ": " << newmin << " -> " << newmax << " (range " << newdist << ")" << endl; setMinFrequency(int(lrint(newmin))); setMaxFrequency(int(lrint(newmax))); } RangeMapper * SpectrogramLayer::getNewVerticalZoomRangeMapper() const { auto model = ModelById::getAs<DenseTimeValueModel>(m_model); if (!model) return nullptr; return new SpectrogramRangeMapper(model->getSampleRate(), getFFTSize()); } void SpectrogramLayer::updateMeasureRectYCoords(LayerGeometryProvider *v, const MeasureRect &r) const { int y0 = 0; if (r.startY > 0.0) y0 = int(getYForFrequency(v, r.startY)); int y1 = y0; if (r.endY > 0.0) y1 = int(getYForFrequency(v, r.endY)); // SVDEBUG << "SpectrogramLayer::updateMeasureRectYCoords: start " << r.startY << " -> " << y0 << ", end " << r.endY << " -> " << y1 << endl; r.pixrect = QRect(r.pixrect.x(), y0, r.pixrect.width(), y1 - y0); } void SpectrogramLayer::setMeasureRectYCoord(LayerGeometryProvider *v, MeasureRect &r, bool start, int y) const { if (start) { r.startY = getFrequencyForY(v, y); r.endY = r.startY; } else { r.endY = getFrequencyForY(v, y); } // SVDEBUG << "SpectrogramLayer::setMeasureRectYCoord: start " << r.startY << " <- " << y << ", end " << r.endY << " <- " << y << endl; } void SpectrogramLayer::toXml(QTextStream &stream, QString indent, QString extraAttributes) const { QString s; s += QString("channel=\"%1\" " "windowSize=\"%2\" " "windowHopLevel=\"%3\" " "oversampling=\"%4\" " "gain=\"%5\" " "threshold=\"%6\" ") .arg(m_channel) .arg(m_windowSize) .arg(m_windowHopLevel) .arg(m_oversampling) .arg(m_gain) .arg(m_threshold); s += QString("minFrequency=\"%1\" " "maxFrequency=\"%2\" " "colourScale=\"%3\" " "colourRotation=\"%4\" " "frequencyScale=\"%5\" " "binDisplay=\"%6\" ") .arg(m_minFrequency) .arg(m_maxFrequency) .arg(convertFromColourScale(m_colourScale, m_colourScaleMultiple)) .arg(m_colourRotation) .arg(int(m_binScale)) .arg(int(m_binDisplay)); // New-style colour map attribute, by string id rather than by // number s += QString("colourMap=\"%1\" ") .arg(ColourMapper::getColourMapId(m_colourMap)); // Old-style colour map attribute s += QString("colourScheme=\"%1\" ") .arg(ColourMapper::getBackwardCompatibilityColourMap(m_colourMap)); // New-style normalization attributes, allowing for more types of // normalization in future: write out the column normalization // type separately, and then whether we are normalizing visible // area as well afterwards s += QString("columnNormalization=\"%1\" ") .arg(m_normalization == ColumnNormalization::Max1 ? "peak" : m_normalization == ColumnNormalization::Hybrid ? "hybrid" : "none"); // Old-style normalization attribute. We *don't* write out // normalizeHybrid here because the only release that would accept // it (Tony v1.0) has a totally different scale factor for // it. We'll just have to accept that session files from Tony // v2.0+ will look odd in Tony v1.0 s += QString("normalizeColumns=\"%1\" ") .arg(m_normalization == ColumnNormalization::Max1 ? "true" : "false"); // And this applies to both old- and new-style attributes s += QString("normalizeVisibleArea=\"%1\" ") .arg(m_normalizeVisibleArea ? "true" : "false"); Layer::toXml(stream, indent, extraAttributes + " " + s); } void SpectrogramLayer::setProperties(const QXmlAttributes &attributes) { bool ok = false; int channel = attributes.value("channel").toInt(&ok); if (ok) setChannel(channel); int windowSize = attributes.value("windowSize").toUInt(&ok); if (ok) setWindowSize(windowSize); int windowHopLevel = attributes.value("windowHopLevel").toUInt(&ok); if (ok) setWindowHopLevel(windowHopLevel); else { int windowOverlap = attributes.value("windowOverlap").toUInt(&ok); // a percentage value if (ok) { if (windowOverlap == 0) setWindowHopLevel(0); else if (windowOverlap == 25) setWindowHopLevel(1); else if (windowOverlap == 50) setWindowHopLevel(2); else if (windowOverlap == 75) setWindowHopLevel(3); else if (windowOverlap == 90) setWindowHopLevel(4); } } int oversampling = attributes.value("oversampling").toUInt(&ok); if (ok) setOversampling(oversampling); float gain = attributes.value("gain").toFloat(&ok); if (ok) setGain(gain); float threshold = attributes.value("threshold").toFloat(&ok); if (ok) setThreshold(threshold); int minFrequency = attributes.value("minFrequency").toUInt(&ok); if (ok) { SVDEBUG << "SpectrogramLayer::setProperties: setting min freq to " << minFrequency << endl; setMinFrequency(minFrequency); } int maxFrequency = attributes.value("maxFrequency").toUInt(&ok); if (ok) { SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; setMaxFrequency(maxFrequency); } auto colourScale = convertToColourScale (attributes.value("colourScale").toInt(&ok)); if (ok) { setColourScale(colourScale.first); setColourScaleMultiple(colourScale.second); } QString colourMapId = attributes.value("colourMap"); int colourMap = ColourMapper::getColourMapById(colourMapId); if (colourMap >= 0) { setColourMap(colourMap); } else { colourMap = attributes.value("colourScheme").toInt(&ok); if (ok && colourMap < ColourMapper::getColourMapCount()) { setColourMap(colourMap); } } int colourRotation = attributes.value("colourRotation").toInt(&ok); if (ok) setColourRotation(colourRotation); BinScale binScale = (BinScale) attributes.value("frequencyScale").toInt(&ok); if (ok) setBinScale(binScale); BinDisplay binDisplay = (BinDisplay) attributes.value("binDisplay").toInt(&ok); if (ok) setBinDisplay(binDisplay); bool haveNewStyleNormalization = false; QString columnNormalization = attributes.value("columnNormalization"); if (columnNormalization != "") { haveNewStyleNormalization = true; if (columnNormalization == "peak") { setNormalization(ColumnNormalization::Max1); } else if (columnNormalization == "hybrid") { setNormalization(ColumnNormalization::Hybrid); } else if (columnNormalization == "none") { setNormalization(ColumnNormalization::None); } else { SVCERR << "NOTE: Unknown or unsupported columnNormalization attribute \"" << columnNormalization << "\"" << endl; } } if (!haveNewStyleNormalization) { bool normalizeColumns = (attributes.value("normalizeColumns").trimmed() == "true"); if (normalizeColumns) { setNormalization(ColumnNormalization::Max1); } bool normalizeHybrid = (attributes.value("normalizeHybrid").trimmed() == "true"); if (normalizeHybrid) { setNormalization(ColumnNormalization::Hybrid); } } bool normalizeVisibleArea = (attributes.value("normalizeVisibleArea").trimmed() == "true"); setNormalizeVisibleArea(normalizeVisibleArea); if (!haveNewStyleNormalization && m_normalization == ColumnNormalization::Hybrid) { // Tony v1.0 is (and hopefully will remain!) the only released // SV-a-like to use old-style attributes when saving sessions // that ask for hybrid normalization. It saves them with the // wrong gain factor, so hack in a fix for that here -- this // gives us backward but not forward compatibility. setGain(m_gain / float(getFFTSize() / 2)); } }