Mercurial > hg > svgui
view layer/SpectrogramLayer.cpp @ 196:22c99c8aa1e0
* Add separate colour mapping unit; use it in spectrogram (colour 3d plot to follow)
* Add another colour scheme resembling that of a noted commercial application
author | Chris Cannam |
---|---|
date | Wed, 31 Jan 2007 12:13:47 +0000 |
parents | 57c2350a8c40 |
children | 6b023411087b |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "SpectrogramLayer.h" #include "view/View.h" #include "base/Profiler.h" #include "base/AudioLevel.h" #include "base/Window.h" #include "base/Pitch.h" #include "base/Preferences.h" #include "base/RangeMapper.h" #include "ColourMapper.h" #include <QPainter> #include <QImage> #include <QPixmap> #include <QRect> #include <QTimer> #include <QApplication> #include <QMessageBox> #include <iostream> #include <cassert> #include <cmath> //#define DEBUG_SPECTROGRAM_REPAINT 1 SpectrogramLayer::SpectrogramLayer(Configuration config) : m_model(0), m_channel(0), m_windowSize(1024), m_windowType(HanningWindow), m_windowHopLevel(2), m_zeroPadLevel(0), m_fftSize(1024), m_gain(1.0), m_threshold(0.0), m_colourRotation(0), m_minFrequency(10), m_maxFrequency(8000), m_initialMaxFrequency(8000), m_colourScale(dBColourScale), m_colourScheme(0), m_frequencyScale(LinearFrequencyScale), m_binDisplay(AllBins), m_normalizeColumns(false), m_normalizeVisibleArea(false), m_lastEmittedZoomStep(-1), m_updateTimer(0), m_candidateFillStartFrame(0), m_exiting(false), m_sliceableModel(0) { if (config == MelodicRange) { setWindowSize(8192); setWindowHopLevel(4); // setWindowType(ParzenWindow); m_initialMaxFrequency = 1000; setMaxFrequency(1000); setColourScale(LinearColourScale); } else if (config == MelodicPeaks) { setWindowSize(4096); setWindowHopLevel(5); // setWindowType(BlackmanWindow); m_initialMaxFrequency = 2000; setMaxFrequency(2000); setMinFrequency(40); setFrequencyScale(LogFrequencyScale); setColourScale(MeterColourScale); setBinDisplay(PeakFrequencies); setNormalizeColumns(true); } Preferences *prefs = Preferences::getInstance(); connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); setWindowType(prefs->getWindowType()); setColourmap(); } SpectrogramLayer::~SpectrogramLayer() { delete m_updateTimer; m_updateTimer = 0; invalidateFFTModels(); } void SpectrogramLayer::setModel(const DenseTimeValueModel *model) { // std::cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << std::endl; if (model == m_model) return; m_model = model; invalidateFFTModels(); if (!m_model || !m_model->isOK()) return; connect(m_model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged())); connect(m_model, SIGNAL(modelChanged(size_t, size_t)), this, SIGNAL(modelChanged(size_t, size_t))); connect(m_model, SIGNAL(completionChanged()), this, SIGNAL(modelCompletionChanged())); connect(m_model, SIGNAL(modelChanged()), this, SLOT(cacheInvalid())); connect(m_model, SIGNAL(modelChanged(size_t, size_t)), this, SLOT(cacheInvalid(size_t, size_t))); emit modelReplaced(); } Layer::PropertyList SpectrogramLayer::getProperties() const { PropertyList list; list.push_back("Colour"); list.push_back("Colour Scale"); list.push_back("Window Size"); list.push_back("Window Increment"); list.push_back("Normalize Columns"); list.push_back("Normalize Visible Area"); list.push_back("Bin Display"); list.push_back("Threshold"); list.push_back("Gain"); list.push_back("Colour Rotation"); // list.push_back("Min Frequency"); // list.push_back("Max Frequency"); list.push_back("Frequency Scale"); //// list.push_back("Zero Padding"); return list; } QString SpectrogramLayer::getPropertyLabel(const PropertyName &name) const { if (name == "Colour") return tr("Colour"); if (name == "Colour Scale") return tr("Colour Scale"); if (name == "Window Size") return tr("Window Size"); if (name == "Window Increment") return tr("Window Overlap"); if (name == "Normalize Columns") return tr("Normalize Columns"); if (name == "Normalize Visible Area") return tr("Normalize Visible Area"); if (name == "Bin Display") return tr("Bin Display"); if (name == "Threshold") return tr("Threshold"); if (name == "Gain") return tr("Gain"); if (name == "Colour Rotation") return tr("Colour Rotation"); if (name == "Min Frequency") return tr("Min Frequency"); if (name == "Max Frequency") return tr("Max Frequency"); if (name == "Frequency Scale") return tr("Frequency Scale"); if (name == "Zero Padding") return tr("Smoothing"); return ""; } Layer::PropertyType SpectrogramLayer::getPropertyType(const PropertyName &name) const { if (name == "Gain") return RangeProperty; if (name == "Colour Rotation") return RangeProperty; if (name == "Normalize Columns") return ToggleProperty; if (name == "Normalize Visible Area") return ToggleProperty; if (name == "Threshold") return RangeProperty; if (name == "Zero Padding") return ToggleProperty; return ValueProperty; } QString SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const { if (name == "Bin Display" || name == "Frequency Scale") return tr("Bins"); if (name == "Window Size" || name == "Window Increment" || name == "Zero Padding") return tr("Window"); if (name == "Colour" || // name == "Gain" || name == "Threshold" || name == "Colour Rotation") return tr("Colour"); if (name == "Normalize Columns" || name == "Normalize Visible Area" || // name == "Bin Display" || name == "Gain" || name == "Colour Scale") return tr("Scale"); // if (name == "Max Frequency" || // name == "Min Frequency" || // name == "Frequency Scale" || // name == "Frequency Adjustment") return tr("Range"); return QString(); } int SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max) const { int deft = 0; int garbage0, garbage1; if (!min) min = &garbage0; if (!max) max = &garbage1; if (name == "Gain") { *min = -50; *max = 50; deft = lrint(log10(m_gain) * 20.0); if (deft < *min) deft = *min; if (deft > *max) deft = *max; } else if (name == "Threshold") { *min = -50; *max = 0; deft = lrintf(AudioLevel::multiplier_to_dB(m_threshold)); if (deft < *min) deft = *min; if (deft > *max) deft = *max; } else if (name == "Colour Rotation") { *min = 0; *max = 256; deft = m_colourRotation; } else if (name == "Colour Scale") { *min = 0; *max = 4; deft = (int)m_colourScale; } else if (name == "Colour") { *min = 0; *max = ColourMapper::getColourMapCount() - 1; deft = m_colourScheme; } else if (name == "Window Size") { *min = 0; *max = 10; deft = 0; int ws = m_windowSize; while (ws > 32) { ws >>= 1; deft ++; } } else if (name == "Window Increment") { *min = 0; *max = 5; deft = m_windowHopLevel; } else if (name == "Zero Padding") { *min = 0; *max = 1; deft = m_zeroPadLevel > 0 ? 1 : 0; } else if (name == "Min Frequency") { *min = 0; *max = 9; switch (m_minFrequency) { case 0: default: deft = 0; break; case 10: deft = 1; break; case 20: deft = 2; break; case 40: deft = 3; break; case 100: deft = 4; break; case 250: deft = 5; break; case 500: deft = 6; break; case 1000: deft = 7; break; case 4000: deft = 8; break; case 10000: deft = 9; break; } } else if (name == "Max Frequency") { *min = 0; *max = 9; switch (m_maxFrequency) { case 500: deft = 0; break; case 1000: deft = 1; break; case 1500: deft = 2; break; case 2000: deft = 3; break; case 4000: deft = 4; break; case 6000: deft = 5; break; case 8000: deft = 6; break; case 12000: deft = 7; break; case 16000: deft = 8; break; default: deft = 9; break; } } else if (name == "Frequency Scale") { *min = 0; *max = 1; deft = (int)m_frequencyScale; } else if (name == "Bin Display") { *min = 0; *max = 2; deft = (int)m_binDisplay; } else if (name == "Normalize Columns") { deft = (m_normalizeColumns ? 1 : 0); } else if (name == "Normalize Visible Area") { deft = (m_normalizeVisibleArea ? 1 : 0); } else { deft = Layer::getPropertyRangeAndValue(name, min, max); } return deft; } QString SpectrogramLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == "Colour") { return ColourMapper::getColourMapName(value); } if (name == "Colour Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Meter"); case 2: return tr("dB"); case 3: return tr("dB^2"); case 4: return tr("Phase"); } } if (name == "Window Size") { return QString("%1").arg(32 << value); } if (name == "Window Increment") { switch (value) { default: case 0: return tr("None"); case 1: return tr("25 %"); case 2: return tr("50 %"); case 3: return tr("75 %"); case 4: return tr("87.5 %"); case 5: return tr("93.75 %"); } } if (name == "Zero Padding") { if (value == 0) return tr("None"); return QString("%1x").arg(value + 1); } if (name == "Min Frequency") { switch (value) { default: case 0: return tr("No min"); case 1: return tr("10 Hz"); case 2: return tr("20 Hz"); case 3: return tr("40 Hz"); case 4: return tr("100 Hz"); case 5: return tr("250 Hz"); case 6: return tr("500 Hz"); case 7: return tr("1 KHz"); case 8: return tr("4 KHz"); case 9: return tr("10 KHz"); } } if (name == "Max Frequency") { switch (value) { default: case 0: return tr("500 Hz"); case 1: return tr("1 KHz"); case 2: return tr("1.5 KHz"); case 3: return tr("2 KHz"); case 4: return tr("4 KHz"); case 5: return tr("6 KHz"); case 6: return tr("8 KHz"); case 7: return tr("12 KHz"); case 8: return tr("16 KHz"); case 9: return tr("No max"); } } if (name == "Frequency Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Log"); } } if (name == "Bin Display") { switch (value) { default: case 0: return tr("All Bins"); case 1: return tr("Peak Bins"); case 2: return tr("Frequencies"); } } return tr("<unknown>"); } RangeMapper * SpectrogramLayer::getNewPropertyRangeMapper(const PropertyName &name) const { if (name == "Gain") { return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); } if (name == "Threshold") { return new LinearRangeMapper(-50, 0, -50, 0, tr("dB")); } return 0; } void SpectrogramLayer::setProperty(const PropertyName &name, int value) { if (name == "Gain") { setGain(pow(10, float(value)/20.0)); } else if (name == "Threshold") { if (value == -50) setThreshold(0.0); else setThreshold(AudioLevel::dB_to_multiplier(value)); } else if (name == "Colour Rotation") { setColourRotation(value); } else if (name == "Colour") { setColourScheme(value); } else if (name == "Window Size") { setWindowSize(32 << value); } else if (name == "Window Increment") { setWindowHopLevel(value); } else if (name == "Zero Padding") { setZeroPadLevel(value > 0.1 ? 3 : 0); } else if (name == "Min Frequency") { switch (value) { default: case 0: setMinFrequency(0); break; case 1: setMinFrequency(10); break; case 2: setMinFrequency(20); break; case 3: setMinFrequency(40); break; case 4: setMinFrequency(100); break; case 5: setMinFrequency(250); break; case 6: setMinFrequency(500); break; case 7: setMinFrequency(1000); break; case 8: setMinFrequency(4000); break; case 9: setMinFrequency(10000); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Max Frequency") { switch (value) { case 0: setMaxFrequency(500); break; case 1: setMaxFrequency(1000); break; case 2: setMaxFrequency(1500); break; case 3: setMaxFrequency(2000); break; case 4: setMaxFrequency(4000); break; case 5: setMaxFrequency(6000); break; case 6: setMaxFrequency(8000); break; case 7: setMaxFrequency(12000); break; case 8: setMaxFrequency(16000); break; default: case 9: setMaxFrequency(0); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Colour Scale") { switch (value) { default: case 0: setColourScale(LinearColourScale); break; case 1: setColourScale(MeterColourScale); break; case 2: setColourScale(dBColourScale); break; case 3: setColourScale(OtherColourScale); break; case 4: setColourScale(PhaseColourScale); break; } } else if (name == "Frequency Scale") { switch (value) { default: case 0: setFrequencyScale(LinearFrequencyScale); break; case 1: setFrequencyScale(LogFrequencyScale); break; } } else if (name == "Bin Display") { switch (value) { default: case 0: setBinDisplay(AllBins); break; case 1: setBinDisplay(PeakBins); break; case 2: setBinDisplay(PeakFrequencies); break; } } else if (name == "Normalize Columns") { setNormalizeColumns(value ? true : false); } else if (name == "Normalize Visible Area") { setNormalizeVisibleArea(value ? true : false); } } void SpectrogramLayer::invalidatePixmapCaches() { for (ViewPixmapCache::iterator i = m_pixmapCaches.begin(); i != m_pixmapCaches.end(); ++i) { i->second.validArea = QRect(); } } void SpectrogramLayer::invalidatePixmapCaches(size_t startFrame, size_t endFrame) { for (ViewPixmapCache::iterator i = m_pixmapCaches.begin(); i != m_pixmapCaches.end(); ++i) { //!!! when are views removed from the map? on setLayerDormant? const View *v = i->first; if (startFrame < v->getEndFrame() && int(endFrame) >= v->getStartFrame()) { i->second.validArea = QRect(); } } } void SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) { std::cerr << "SpectrogramLayer::preferenceChanged(" << name.toStdString() << ")" << std::endl; if (name == "Window Type") { setWindowType(Preferences::getInstance()->getWindowType()); return; } if (name == "Smooth Spectrogram") { invalidatePixmapCaches(); invalidateMagnitudes(); emit layerParametersChanged(); } if (name == "Tuning Frequency") { emit layerParametersChanged(); } } void SpectrogramLayer::setChannel(int ch) { if (m_channel == ch) return; invalidatePixmapCaches(); m_channel = ch; invalidateFFTModels(); emit layerParametersChanged(); } int SpectrogramLayer::getChannel() const { return m_channel; } void SpectrogramLayer::setWindowSize(size_t ws) { if (m_windowSize == ws) return; invalidatePixmapCaches(); m_windowSize = ws; m_fftSize = ws * (m_zeroPadLevel + 1); invalidateFFTModels(); emit layerParametersChanged(); } size_t SpectrogramLayer::getWindowSize() const { return m_windowSize; } void SpectrogramLayer::setWindowHopLevel(size_t v) { if (m_windowHopLevel == v) return; invalidatePixmapCaches(); m_windowHopLevel = v; invalidateFFTModels(); emit layerParametersChanged(); // fillCache(); } size_t SpectrogramLayer::getWindowHopLevel() const { return m_windowHopLevel; } void SpectrogramLayer::setZeroPadLevel(size_t v) { if (m_zeroPadLevel == v) return; invalidatePixmapCaches(); m_zeroPadLevel = v; m_fftSize = m_windowSize * (v + 1); invalidateFFTModels(); emit layerParametersChanged(); } size_t SpectrogramLayer::getZeroPadLevel() const { return m_zeroPadLevel; } void SpectrogramLayer::setWindowType(WindowType w) { if (m_windowType == w) return; invalidatePixmapCaches(); m_windowType = w; invalidateFFTModels(); emit layerParametersChanged(); } WindowType SpectrogramLayer::getWindowType() const { return m_windowType; } void SpectrogramLayer::setGain(float gain) { // std::cerr << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " // << m_gain << ")" << std::endl; if (m_gain == gain) return; invalidatePixmapCaches(); m_gain = gain; emit layerParametersChanged(); } float SpectrogramLayer::getGain() const { return m_gain; } void SpectrogramLayer::setThreshold(float threshold) { if (m_threshold == threshold) return; invalidatePixmapCaches(); m_threshold = threshold; emit layerParametersChanged(); } float SpectrogramLayer::getThreshold() const { return m_threshold; } void SpectrogramLayer::setMinFrequency(size_t mf) { if (m_minFrequency == mf) return; std::cerr << "SpectrogramLayer::setMinFrequency: " << mf << std::endl; invalidatePixmapCaches(); invalidateMagnitudes(); m_minFrequency = mf; emit layerParametersChanged(); } size_t SpectrogramLayer::getMinFrequency() const { return m_minFrequency; } void SpectrogramLayer::setMaxFrequency(size_t mf) { if (m_maxFrequency == mf) return; std::cerr << "SpectrogramLayer::setMaxFrequency: " << mf << std::endl; invalidatePixmapCaches(); invalidateMagnitudes(); m_maxFrequency = mf; emit layerParametersChanged(); } size_t SpectrogramLayer::getMaxFrequency() const { return m_maxFrequency; } void SpectrogramLayer::setColourRotation(int r) { invalidatePixmapCaches(); if (r < 0) r = 0; if (r > 256) r = 256; int distance = r - m_colourRotation; if (distance != 0) { rotateColourmap(-distance); m_colourRotation = r; } emit layerParametersChanged(); } void SpectrogramLayer::setColourScale(ColourScale colourScale) { if (m_colourScale == colourScale) return; invalidatePixmapCaches(); m_colourScale = colourScale; emit layerParametersChanged(); } SpectrogramLayer::ColourScale SpectrogramLayer::getColourScale() const { return m_colourScale; } void SpectrogramLayer::setColourScheme(int scheme) { if (m_colourScheme == scheme) return; invalidatePixmapCaches(); m_colourScheme = scheme; setColourmap(); emit layerParametersChanged(); } int SpectrogramLayer::getColourScheme() const { return m_colourScheme; } void SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale) { if (m_frequencyScale == frequencyScale) return; invalidatePixmapCaches(); m_frequencyScale = frequencyScale; emit layerParametersChanged(); } SpectrogramLayer::FrequencyScale SpectrogramLayer::getFrequencyScale() const { return m_frequencyScale; } void SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) { if (m_binDisplay == binDisplay) return; invalidatePixmapCaches(); m_binDisplay = binDisplay; emit layerParametersChanged(); } SpectrogramLayer::BinDisplay SpectrogramLayer::getBinDisplay() const { return m_binDisplay; } void SpectrogramLayer::setNormalizeColumns(bool n) { if (m_normalizeColumns == n) return; invalidatePixmapCaches(); invalidateMagnitudes(); m_normalizeColumns = n; emit layerParametersChanged(); } bool SpectrogramLayer::getNormalizeColumns() const { return m_normalizeColumns; } void SpectrogramLayer::setNormalizeVisibleArea(bool n) { if (m_normalizeVisibleArea == n) return; invalidatePixmapCaches(); invalidateMagnitudes(); m_normalizeVisibleArea = n; emit layerParametersChanged(); } bool SpectrogramLayer::getNormalizeVisibleArea() const { return m_normalizeVisibleArea; } void SpectrogramLayer::setLayerDormant(const View *v, bool dormant) { if (dormant) { if (isLayerDormant(v)) { return; } Layer::setLayerDormant(v, true); invalidatePixmapCaches(); m_pixmapCaches.erase(v); if (m_fftModels.find(v) != m_fftModels.end()) { if (m_sliceableModel == m_fftModels[v].first) { bool replaced = false; for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { if (i->second.first != m_sliceableModel) { emit sliceableModelReplaced(m_sliceableModel, i->second.first); replaced = true; break; } } if (!replaced) emit sliceableModelReplaced(m_sliceableModel, 0); } delete m_fftModels[v].first; m_fftModels.erase(v); } } else { Layer::setLayerDormant(v, false); } } void SpectrogramLayer::cacheInvalid() { invalidatePixmapCaches(); invalidateMagnitudes(); } void SpectrogramLayer::cacheInvalid(size_t, size_t) { // for now (or forever?) cacheInvalid(); } void SpectrogramLayer::fillTimerTimedOut() { if (!m_model) return; bool allDone = true; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::fillTimerTimedOut: have " << m_fftModels.size() << " FFT models associated with views" << std::endl; #endif for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { const View *v = i->first; const FFTModel *model = i->second.first; size_t lastFill = i->second.second; if (model) { size_t fill = model->getFillExtent(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::fillTimerTimedOut: extent for " << model << ": " << fill << ", last " << lastFill << ", total " << m_model->getEndFrame() << std::endl; #endif if (fill >= lastFill) { if (fill >= m_model->getEndFrame() && lastFill > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "complete!" << std::endl; #endif invalidatePixmapCaches(); i->second.second = -1; emit modelChanged(); } else if (fill > lastFill) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: emitting modelChanged(" << lastFill << "," << fill << ")" << std::endl; #endif invalidatePixmapCaches(lastFill, fill); i->second.second = fill; emit modelChanged(lastFill, fill); } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: going backwards, emitting modelChanged(" << m_model->getStartFrame() << "," << m_model->getEndFrame() << ")" << std::endl; #endif invalidatePixmapCaches(); i->second.second = fill; emit modelChanged(m_model->getStartFrame(), m_model->getEndFrame()); } if (i->second.second >= 0) { allDone = false; } } } if (allDone) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: all complete!" << std::endl; #endif delete m_updateTimer; m_updateTimer = 0; } } void SpectrogramLayer::setColourmap() { int formerRotation = m_colourRotation; if (m_colourScheme == (int)ColourMapper::BlackOnWhite) { m_colourMap.setColour(NO_VALUE, Qt::white); } else { m_colourMap.setColour(NO_VALUE, Qt::black); } ColourMapper mapper(m_colourScheme, 1.f, 256.f); for (int pixel = 1; pixel < 256; ++pixel) { m_colourMap.setColour(pixel, mapper.map(pixel)); } m_crosshairColour = mapper.getContrastingColour(); m_colourRotation = 0; rotateColourmap(m_colourRotation - formerRotation); m_colourRotation = formerRotation; } void SpectrogramLayer::rotateColourmap(int distance) { QColor newPixels[256]; newPixels[NO_VALUE] = m_colourMap.getColour(NO_VALUE); for (int pixel = 1; pixel < 256; ++pixel) { int target = pixel + distance; while (target < 1) target += 255; while (target > 255) target -= 255; newPixels[target] = m_colourMap.getColour(pixel); } for (int pixel = 0; pixel < 256; ++pixel) { m_colourMap.setColour(pixel, newPixels[pixel]); } } float SpectrogramLayer::calculateFrequency(size_t bin, size_t windowSize, size_t windowIncrement, size_t sampleRate, float oldPhase, float newPhase, bool &steadyState) { // At frequency f, phase shift of 2pi (one cycle) happens in 1/f sec. // At hopsize h and sample rate sr, one hop happens in h/sr sec. // At window size w, for bin b, f is b*sr/w. // thus 2pi phase shift happens in w/(b*sr) sec. // We need to know what phase shift we expect from h/sr sec. // -> 2pi * ((h/sr) / (w/(b*sr))) // = 2pi * ((h * b * sr) / (w * sr)) // = 2pi * (h * b) / w. float frequency = (float(bin) * sampleRate) / windowSize; float expectedPhase = oldPhase + (2.0 * M_PI * bin * windowIncrement) / windowSize; float phaseError = princargf(newPhase - expectedPhase); if (fabsf(phaseError) < (1.1f * (windowIncrement * M_PI) / windowSize)) { // The new frequency estimate based on the phase error // resulting from assuming the "native" frequency of this bin float newFrequency = (sampleRate * (expectedPhase + phaseError - oldPhase)) / (2 * M_PI * windowIncrement); steadyState = true; return newFrequency; } steadyState = false; return frequency; } unsigned char SpectrogramLayer::getDisplayValue(View *v, float input) const { int value; float min = 0.f; float max = 1.f; if (m_normalizeVisibleArea) { min = m_viewMags[v].getMin(); max = m_viewMags[v].getMax(); } else if (!m_normalizeColumns) { if (m_colourScale == LinearColourScale || m_colourScale == MeterColourScale) { max = 0.1f; } } float thresh = -80.f; if (max == 0.f) max = 1.f; if (max == min) min = max - 0.0001f; switch (m_colourScale) { default: case LinearColourScale: // value = int // (input * (m_normalizeColumns ? 1.0 : 50.0) * 255.0) + 1; value = int(((input - min) / (max - min)) * 255.f) + 1; break; case MeterColourScale: // value = AudioLevel::multiplier_to_preview // (input * (m_normalizeColumns ? 1.0 : 50.0), 255) + 1; value = AudioLevel::multiplier_to_preview((input - min) / (max - min), 255) + 1; break; case dBColourScale: //!!! experiment with normalizing the visible area this way. //In any case, we need to have some indication of what the dB //scale is relative to. input = input / max; if (input > 0.f) { input = 10.f * log10f(input); } else { input = thresh; } if (min > 0.f) { thresh = 10.f * log10f(min); if (thresh < -80.f) thresh = -80.f; } input = (input - thresh) / (-thresh); if (input < 0.f) input = 0.f; if (input > 1.f) input = 1.f; value = int(input * 255.f) + 1; break; case OtherColourScale: //!!! the "Other" scale is just where our current experiments go //!!! power rather than v input = (input * input) / (max * max); if (input > 0.f) { input = 10.f * log10f(input); } else { input = thresh; } if (min > 0.f) { thresh = 10.f * log10f(min * min); if (thresh < -80.f) thresh = -80.f; } input = (input - thresh) / (-thresh); if (input < 0.f) input = 0.f; if (input > 1.f) input = 1.f; value = int(input * 255.f) + 1; break; /*!!! input = 10.f * log10f(input * input); input = 1.f / (1.f + expf(- (input + 20.f) / 10.f)); if (input < 0.f) input = 0.f; if (input > 1.f) input = 1.f; value = int(input * 255.f) + 1; */ break; case PhaseColourScale: value = int((input * 127.0 / M_PI) + 128); break; } if (value > UCHAR_MAX) value = UCHAR_MAX; if (value < 0) value = 0; return value; } float SpectrogramLayer::getInputForDisplayValue(unsigned char uc) const { //!!! unused int value = uc; float input; //!!! incorrect for normalizing visible area (and also out of date) switch (m_colourScale) { default: case LinearColourScale: input = float(value - 1) / 255.0 / (m_normalizeColumns ? 1 : 50); break; case MeterColourScale: input = AudioLevel::preview_to_multiplier(value - 1, 255) / (m_normalizeColumns ? 1.0 : 50.0); break; case dBColourScale: input = float(value - 1) / 255.0; input = (input * 80.0) - 80.0; input = powf(10.0, input) / 20.0; value = int(input); break; case OtherColourScale: input = float(value - 1) / 255.0; input = (input * 80.0) - 80.0; input = powf(10.0, input) / 20.0; value = int(input); break; case PhaseColourScale: input = float(value - 128) * M_PI / 127.0; break; } return input; } float SpectrogramLayer::getEffectiveMinFrequency() const { int sr = m_model->getSampleRate(); float minf = float(sr) / m_fftSize; if (m_minFrequency > 0.0) { size_t minbin = size_t((double(m_minFrequency) * m_fftSize) / sr + 0.01); if (minbin < 1) minbin = 1; minf = minbin * sr / m_fftSize; } return minf; } float SpectrogramLayer::getEffectiveMaxFrequency() const { int sr = m_model->getSampleRate(); float maxf = float(sr) / 2; if (m_maxFrequency > 0.0) { size_t maxbin = size_t((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; maxf = maxbin * sr / m_fftSize; } return maxf; } bool SpectrogramLayer::getYBinRange(View *v, int y, float &q0, float &q1) const { int h = v->height(); if (y < 0 || y >= h) return false; int sr = m_model->getSampleRate(); float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); //!!! wrong for smoothing -- wrong fft size for fft model q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); // Now map these on to actual bins int b0 = int((q0 * m_fftSize) / sr); int b1 = int((q1 * m_fftSize) / sr); //!!! this is supposed to return fractions-of-bins, as it were, hence the floats q0 = b0; q1 = b1; // q0 = (b0 * sr) / m_fftSize; // q1 = (b1 * sr) / m_fftSize; return true; } bool SpectrogramLayer::getXBinRange(View *v, int x, float &s0, float &s1) const { size_t modelStart = m_model->getStartFrame(); size_t modelEnd = m_model->getEndFrame(); // Each pixel column covers an exact range of sample frames: int f0 = v->getFrameForX(x) - modelStart; int f1 = v->getFrameForX(x + 1) - modelStart - 1; if (f1 < int(modelStart) || f0 > int(modelEnd)) { return false; } // And that range may be drawn from a possibly non-integral // range of spectrogram windows: size_t windowIncrement = getWindowIncrement(); s0 = float(f0) / windowIncrement; s1 = float(f1) / windowIncrement; return true; } bool SpectrogramLayer::getXBinSourceRange(View *v, int x, RealTime &min, RealTime &max) const { float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int windowIncrement = getWindowIncrement(); int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2; int w1 = s1i * windowIncrement + windowIncrement + (m_windowSize - windowIncrement)/2 - 1; min = RealTime::frame2RealTime(w0, m_model->getSampleRate()); max = RealTime::frame2RealTime(w1, m_model->getSampleRate()); return true; } bool SpectrogramLayer::getYBinSourceRange(View *v, int y, float &freqMin, float &freqMax) const { float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int sr = m_model->getSampleRate(); for (int q = q0i; q <= q1i; ++q) { if (q == q0i) freqMin = (sr * q) / m_fftSize; if (q == q1i) freqMax = (sr * (q+1)) / m_fftSize; } return true; } bool SpectrogramLayer::getAdjustedYBinSourceRange(View *v, int x, int y, float &freqMin, float &freqMax, float &adjFreqMin, float &adjFreqMax) const { FFTModel *fft = getFFTModel(v); if (!fft) return false; float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int q0i = int(q0 + 0.001); int q1i = int(q1); int sr = m_model->getSampleRate(); size_t windowSize = m_windowSize; size_t windowIncrement = getWindowIncrement(); bool haveAdj = false; bool peaksOnly = (m_binDisplay == PeakBins || m_binDisplay == PeakFrequencies); for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (!fft->isColumnAvailable(s)) continue; float binfreq = (sr * q) / m_windowSize; if (q == q0i) freqMin = binfreq; if (q == q1i) freqMax = binfreq; if (peaksOnly && !fft->isLocalPeak(s, q)) continue; if (!fft->isOverThreshold(s, q, m_threshold)) continue; float freq = binfreq; bool steady = false; if (s < int(fft->getWidth()) - 1) { freq = calculateFrequency(q, windowSize, windowIncrement, sr, fft->getPhaseAt(s, q), fft->getPhaseAt(s+1, q), steady); if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq; if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq; haveAdj = true; } } } if (!haveAdj) { adjFreqMin = adjFreqMax = 0.0; } return haveAdj; } bool SpectrogramLayer::getXYBinSourceRange(View *v, int x, int y, float &min, float &max, float &phaseMin, float &phaseMax) const { float q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; float s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int s0i = int(s0 + 0.001); int s1i = int(s1); bool rv = false; size_t zp = getZeroPadLevel(v); q0i *= zp + 1; q1i *= zp + 1; FFTModel *fft = getFFTModel(v); if (fft) { int cw = fft->getWidth(); int ch = fft->getHeight(); min = 0.0; max = 0.0; phaseMin = 0.0; phaseMax = 0.0; bool have = false; for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (s >= 0 && q >= 0 && s < cw && q < ch) { if (!fft->isColumnAvailable(s)) continue; float value; value = fft->getPhaseAt(s, q); if (!have || value < phaseMin) { phaseMin = value; } if (!have || value > phaseMax) { phaseMax = value; } value = fft->getMagnitudeAt(s, q); if (!have || value < min) { min = value; } if (!have || value > max) { max = value; } have = true; } } } if (have) { rv = true; } } return rv; } size_t SpectrogramLayer::getZeroPadLevel(const View *v) const { //!!! tidy all this stuff if (m_binDisplay != AllBins) return 0; if (!Preferences::getInstance()->getSmoothSpectrogram()) return 0; if (m_frequencyScale == LogFrequencyScale) return 3; int sr = m_model->getSampleRate(); size_t maxbin = m_fftSize / 2; if (m_maxFrequency > 0) { maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; } size_t minbin = 1; if (m_minFrequency > 0) { minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.1); if (minbin < 1) minbin = 1; if (minbin >= maxbin) minbin = maxbin - 1; } float perPixel = float(v->height()) / float((maxbin - minbin) / (m_zeroPadLevel + 1)); if (perPixel > 2.8) { return 3; // 4x oversampling } else if (perPixel > 1.5) { return 1; // 2x } else { return 0; // 1x } } size_t SpectrogramLayer::getFFTSize(const View *v) const { return m_fftSize * (getZeroPadLevel(v) + 1); } FFTModel * SpectrogramLayer::getFFTModel(const View *v) const { if (!m_model) return 0; size_t fftSize = getFFTSize(v); if (m_fftModels.find(v) != m_fftModels.end()) { if (m_fftModels[v].first == 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found null model" << std::endl; #endif return 0; } if (m_fftModels[v].first->getHeight() != fftSize / 2 + 1) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found a model with the wrong height (" << m_fftModels[v].first->getHeight() << ", wanted " << (fftSize / 2 + 1) << ")" << std::endl; #endif delete m_fftModels[v].first; m_fftModels.erase(v); } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found a good model of height " << m_fftModels[v].first->getHeight() << std::endl; #endif return m_fftModels[v].first; } } if (m_fftModels.find(v) == m_fftModels.end()) { FFTModel *model = new FFTModel(m_model, m_channel, m_windowType, m_windowSize, getWindowIncrement(), fftSize, true, m_candidateFillStartFrame); if (!model->isOK()) { QMessageBox::critical (0, tr("FFT cache failed"), tr("Failed to create the FFT model for this spectrogram.\n" "There may be insufficient memory or disc space to continue.")); delete model; m_fftModels[v] = FFTFillPair(0, 0); return 0; } if (!m_sliceableModel) { std::cerr << "SpectrogramLayer: emitting sliceableModelReplaced(0, " << model << ")" << std::endl; ((SpectrogramLayer *)this)->sliceableModelReplaced(0, model); m_sliceableModel = model; } m_fftModels[v] = FFTFillPair(model, 0); model->resume(); delete m_updateTimer; m_updateTimer = new QTimer((SpectrogramLayer *)this); connect(m_updateTimer, SIGNAL(timeout()), this, SLOT(fillTimerTimedOut())); m_updateTimer->start(200); } return m_fftModels[v].first; } const Model * SpectrogramLayer::getSliceableModel() const { if (m_sliceableModel) return m_sliceableModel; if (m_fftModels.empty()) return 0; m_sliceableModel = m_fftModels.begin()->second.first; return m_sliceableModel; } void SpectrogramLayer::invalidateFFTModels() { for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { delete i->second.first; } m_fftModels.clear(); if (m_sliceableModel) { std::cerr << "SpectrogramLayer: emitting sliceableModelReplaced(" << m_sliceableModel << ", 0)" << std::endl; emit sliceableModelReplaced(m_sliceableModel, 0); m_sliceableModel = 0; } } void SpectrogramLayer::invalidateMagnitudes() { m_viewMags.clear(); for (std::vector<MagnitudeRange>::iterator i = m_columnMags.begin(); i != m_columnMags.end(); ++i) { *i = MagnitudeRange(); } } bool SpectrogramLayer::updateViewMagnitudes(View *v) const { MagnitudeRange mag; int x0 = 0, x1 = v->width(); float s00 = 0, s01 = 0, s10 = 0, s11 = 0; getXBinRange(v, x0, s00, s01); getXBinRange(v, x1, s10, s11); int s0 = int(std::min(s00, s10) + 0.0001); int s1 = int(std::max(s01, s11)); if (m_columnMags.size() <= s1) { m_columnMags.resize(s1 + 1); } for (int s = s0; s <= s1; ++s) { if (m_columnMags[s].isSet()) { mag.sample(m_columnMags[s]); } } #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::updateViewMagnitudes returning from cols " << s0 << " -> " << s1 << " inclusive" << std::endl; #endif if (!mag.isSet()) return false; if (mag == m_viewMags[v]) return false; m_viewMags[v] = mag; return true; } void SpectrogramLayer::paint(View *v, QPainter &paint, QRect rect) const { if (m_colourScheme == (int)ColourMapper::BlackOnWhite) { v->setLightBackground(true); } else { v->setLightBackground(false); } Profiler profiler("SpectrogramLayer::paint", true); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << ", m_updateTimer " << m_updateTimer << std::endl; std::cerr << "rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << std::endl; #endif long startFrame = v->getStartFrame(); if (startFrame < 0) m_candidateFillStartFrame = 0; else m_candidateFillStartFrame = startFrame; if (!m_model || !m_model->isOK() || !m_model->isReady()) { return; } if (isLayerDormant(v)) { std::cerr << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << std::endl; } // Need to do this even if !isLayerDormant, as that could mean v // is not in the dormancy map at all -- we need it to be present // and accountable for when determining whether we need the cache // in the cache-fill thread above. //!!! no longer use cache-fill thread const_cast<SpectrogramLayer *>(this)->Layer::setLayerDormant(v, false); size_t fftSize = getFFTSize(v); FFTModel *fft = getFFTModel(v); if (!fft) { std::cerr << "ERROR: SpectrogramLayer::paint(): No FFT model, returning" << std::endl; return; } PixmapCache &cache = m_pixmapCaches[v]; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): pixmap cache valid area " << cache.validArea.x() << ", " << cache.validArea.y() << ", " << cache.validArea.width() << "x" << cache.validArea.height() << std::endl; #endif bool stillCacheing = (m_updateTimer != 0); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint(): Still cacheing = " << stillCacheing << std::endl; #endif int zoomLevel = v->getZoomLevel(); int x0 = 0; int x1 = v->width(); int y0 = 0; int y1 = v->height(); bool recreateWholePixmapCache = true; x0 = rect.left(); x1 = rect.right() + 1; y0 = rect.top(); y1 = rect.bottom() + 1; if (cache.validArea.width() > 0) { if (int(cache.zoomLevel) == zoomLevel && cache.pixmap.width() == v->width() && cache.pixmap.height() == v->height()) { if (v->getXForFrame(cache.startFrame) == v->getXForFrame(startFrame) && cache.validArea.x() <= x0 && cache.validArea.x() + cache.validArea.width() >= x1) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache good" << std::endl; #endif paint.drawPixmap(rect, cache.pixmap, rect); illuminateLocalFeatures(v, paint); return; } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache partially OK" << std::endl; #endif recreateWholePixmapCache = false; int dx = v->getXForFrame(cache.startFrame) - v->getXForFrame(startFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: dx = " << dx << " (pixmap cache " << cache.pixmap.width() << "x" << cache.pixmap.height() << ")" << std::endl; #endif if (dx != 0 && dx > -cache.pixmap.width() && dx < cache.pixmap.width()) { #if defined(Q_WS_WIN32) || defined(Q_WS_MAC) // Copying a pixmap to itself doesn't work // properly on Windows or Mac (it only works when // moving in one direction). //!!! Need a utility function for this static QPixmap *tmpPixmap = 0; if (!tmpPixmap || tmpPixmap->width() != cache.pixmap.width() || tmpPixmap->height() != cache.pixmap.height()) { delete tmpPixmap; tmpPixmap = new QPixmap(cache.pixmap.width(), cache.pixmap.height()); } QPainter cachePainter; cachePainter.begin(tmpPixmap); cachePainter.drawPixmap(0, 0, cache.pixmap); cachePainter.end(); cachePainter.begin(&cache.pixmap); cachePainter.drawPixmap(dx, 0, *tmpPixmap); cachePainter.end(); #else QPainter cachePainter(&cache.pixmap); cachePainter.drawPixmap(dx, 0, cache.pixmap); cachePainter.end(); #endif int px = cache.validArea.x(); int pw = cache.validArea.width(); if (dx < 0) { x0 = cache.pixmap.width() + dx; x1 = cache.pixmap.width(); px += dx; if (px < 0) { pw += px; px = 0; if (pw < 0) pw = 0; } } else { x0 = 0; x1 = dx; px += dx; if (px + pw > cache.pixmap.width()) { pw = int(cache.pixmap.width()) - px; if (pw < 0) pw = 0; } } cache.validArea = QRect(px, cache.validArea.y(), pw, cache.validArea.height()); paint.drawPixmap(rect & cache.validArea, cache.pixmap, rect & cache.validArea); } } } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: pixmap cache useless" << std::endl; #endif cache.validArea = QRect(); } } /* if (stillCacheing) { x0 = rect.left(); x1 = rect.right() + 1; y0 = rect.top(); y1 = rect.bottom() + 1; } */ if (updateViewMagnitudes(v)) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer: magnitude range changed to [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; #endif recreateWholePixmapCache = true; } else { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "No change in magnitude range [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; #endif } if (recreateWholePixmapCache) { x0 = 0; x1 = v->width(); } //!!! This width should really depend on how fast the machine is //at redrawing the spectrogram. We could fairly easily time that, //in this function, and adjust accordingly. The following is //probably about as small as the block width should go. int paintBlockWidth = (300000 / zoomLevel); if (paintBlockWidth < 20) paintBlockWidth = 20; if (cache.validArea.width() > 0) { int vx0 = 0, vx1 = 0; vx0 = cache.validArea.x(); vx1 = cache.validArea.x() + cache.validArea.width(); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "x0 " << x0 << ", x1 " << x1 << ", vx0 " << vx0 << ", vx1 " << vx1 << ", paintBlockWidth " << paintBlockWidth << std::endl; #endif if (x0 < vx0) { if (x0 + paintBlockWidth < vx0) { x0 = vx0 - paintBlockWidth; } else { x0 = 0; } } else if (x0 > vx1) { x0 = vx1; } if (x1 < vx0) { x1 = vx0; } else if (x1 > vx1) { if (vx1 + paintBlockWidth < x1) { x1 = vx1 + paintBlockWidth; } else { x1 = v->width(); } } cache.validArea = QRect (std::min(vx0, x0), cache.validArea.y(), std::max(vx1 - std::min(vx0, x0), x1 - std::min(vx0, x0)), cache.validArea.height()); } else { if (x1 > x0 + paintBlockWidth) { int sfx = x1; if (startFrame < 0) sfx = v->getXForFrame(0); if (sfx >= x0 && sfx + paintBlockWidth <= x1) { x0 = sfx; x1 = x0 + paintBlockWidth; } else { int mid = (x1 + x0) / 2; x0 = mid - paintBlockWidth/2; x1 = x0 + paintBlockWidth; } } cache.validArea = QRect(x0, 0, x1 - x0, v->height()); } int w = x1 - x0; int h = y1 - y0; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << std::endl; #endif if (m_drawBuffer.width() < w || m_drawBuffer.height() < h) { m_drawBuffer = QImage(w, h, QImage::Format_RGB32); } m_drawBuffer.fill(m_colourMap.getColour(0).rgb()); int sr = m_model->getSampleRate(); // Set minFreq and maxFreq to the frequency extents of the possibly // zero-padded visible bin range, and displayMinFreq and displayMaxFreq // to the actual scale frequency extents (presumably not zero padded). size_t maxbin = fftSize / 2; if (m_maxFrequency > 0) { maxbin = int((double(m_maxFrequency) * fftSize) / sr + 0.1); if (maxbin > fftSize / 2) maxbin = fftSize / 2; } size_t minbin = 1; if (m_minFrequency > 0) { minbin = int((double(m_minFrequency) * fftSize) / sr + 0.1); if (minbin < 1) minbin = 1; if (minbin >= maxbin) minbin = maxbin - 1; } float minFreq = (float(minbin) * sr) / fftSize; float maxFreq = (float(maxbin) * sr) / fftSize; float displayMinFreq = minFreq; float displayMaxFreq = maxFreq; if (fftSize != m_fftSize) { displayMinFreq = getEffectiveMinFrequency(); displayMaxFreq = getEffectiveMaxFrequency(); } float ymag[h]; float ydiv[h]; float yval[maxbin + 1]; //!!! cache this? size_t increment = getWindowIncrement(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); for (size_t q = minbin; q <= maxbin; ++q) { float f0 = (float(q) * sr) / fftSize; yval[q] = v->getYForFrequency(f0, displayMinFreq, displayMaxFreq, logarithmic); // std::cerr << "min: " << minFreq << ", max: " << maxFreq << ", yval[" << q << "]: " << yval[q] << std::endl; } MagnitudeRange overallMag = m_viewMags[v]; bool overallMagChanged = false; bool fftSuspended = false; #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << (float(v->getFrameForX(1) - v->getFrameForX(0)) / increment) << " bins per pixel" << std::endl; #endif for (int x = 0; x < w; ++x) { for (int y = 0; y < h; ++y) { ymag[y] = 0.f; ydiv[y] = 0.f; } float s0 = 0, s1 = 0; if (!getXBinRange(v, x0 + x, s0, s1)) { assert(x <= m_drawBuffer.width()); continue; } int s0i = int(s0 + 0.001); int s1i = int(s1); if (s1i >= fft->getWidth()) { if (s0i >= fft->getWidth()) { continue; } else { s1i = s0i; } } for (int s = s0i; s <= s1i; ++s) { if (!fft->isColumnAvailable(s)) continue; if (!fftSuspended) { fft->suspendWrites(); fftSuspended = true; } MagnitudeRange mag; for (size_t q = minbin; q < maxbin; ++q) { float y0 = yval[q + 1]; float y1 = yval[q]; if (m_binDisplay == PeakBins || m_binDisplay == PeakFrequencies) { if (!fft->isLocalPeak(s, q)) continue; } if (m_threshold != 0.f && !fft->isOverThreshold(s, q, m_threshold)) { continue; } float sprop = 1.0; if (s == s0i) sprop *= (s + 1) - s0; if (s == s1i) sprop *= s1 - s; if (m_binDisplay == PeakFrequencies && s < int(fft->getWidth()) - 1) { bool steady = false; float f = calculateFrequency(q, m_windowSize, increment, sr, fft->getPhaseAt(s, q), fft->getPhaseAt(s+1, q), steady); y0 = y1 = v->getYForFrequency (f, displayMinFreq, displayMaxFreq, logarithmic); } int y0i = int(y0 + 0.001); int y1i = int(y1); float value; if (m_colourScale == PhaseColourScale) { value = fft->getPhaseAt(s, q); } else if (m_normalizeColumns) { value = fft->getNormalizedMagnitudeAt(s, q); mag.sample(value); value *= m_gain; } else { value = fft->getMagnitudeAt(s, q); mag.sample(value); value *= m_gain; } for (int y = y0i; y <= y1i; ++y) { if (y < 0 || y >= h) continue; float yprop = sprop; if (y == y0i) yprop *= (y + 1) - y0; if (y == y1i) yprop *= y1 - y; ymag[y] += yprop * value; ydiv[y] += yprop; } } if (mag.isSet()) { m_columnMags[s].sample(mag); if (overallMag.sample(mag)) { //!!! scaling would change here overallMagChanged = true; std::cerr << "Overall mag changed (again?) at column " << s << ", to [" << overallMag.getMin() << "->" << overallMag.getMax() << "]" << std::endl; } } } for (int y = 0; y < h; ++y) { if (ydiv[y] > 0.0) { unsigned char pixel = 0; float avg = ymag[y] / ydiv[y]; pixel = getDisplayValue(v, avg); assert(x <= m_drawBuffer.width()); QColor c = m_colourMap.getColour(pixel); m_drawBuffer.setPixel(x, y, qRgb(c.red(), c.green(), c.blue())); } } } if (overallMagChanged) { m_viewMags[v] = overallMag; std::cerr << "Overall mag is now [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "] - will be updating" << std::endl; } else { std::cerr << "Overall mag unchanged at [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << std::endl; } Profiler profiler2("SpectrogramLayer::paint: draw image", true); paint.drawImage(x0, y0, m_drawBuffer, 0, 0, w, h); if (recreateWholePixmapCache) { cache.pixmap = QPixmap(v->width(), v->height()); } QPainter cachePainter(&cache.pixmap); cachePainter.drawImage(x0, y0, m_drawBuffer, 0, 0, w, h); cachePainter.end(); if (!m_normalizeVisibleArea || !overallMagChanged) { cache.startFrame = startFrame; cache.zoomLevel = zoomLevel; if (cache.validArea.x() > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint() updating left (0, " << cache.validArea.x() << ")" << std::endl; #endif v->update(0, 0, cache.validArea.x(), v->height()); } if (cache.validArea.x() + cache.validArea.width() < cache.pixmap.width()) { #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint() updating right (" << cache.validArea.x() + cache.validArea.width() << ", " << cache.pixmap.width() - (cache.validArea.x() + cache.validArea.width()) << ")" << std::endl; #endif v->update(cache.validArea.x() + cache.validArea.width(), 0, cache.pixmap.width() - (cache.validArea.x() + cache.validArea.width()), v->height()); } } else { // overallMagChanged cache.validArea = QRect(); v->update(); } illuminateLocalFeatures(v, paint); #ifdef DEBUG_SPECTROGRAM_REPAINT std::cerr << "SpectrogramLayer::paint() returning" << std::endl; #endif if (fftSuspended) fft->resume(); } void SpectrogramLayer::illuminateLocalFeatures(View *v, QPainter &paint) const { QPoint localPos; if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { return; } // std::cerr << "SpectrogramLayer: illuminateLocalFeatures(" // << localPos.x() << "," << localPos.y() << ")" << std::endl; float s0, s1; float f0, f1; if (getXBinRange(v, localPos.x(), s0, s1) && getYBinSourceRange(v, localPos.y(), f0, f1)) { int s0i = int(s0 + 0.001); int s1i = int(s1); int x0 = v->getXForFrame(s0i * getWindowIncrement()); int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); int y1 = getYForFrequency(v, f1); int y0 = getYForFrequency(v, f0); // std::cerr << "SpectrogramLayer: illuminate " // << x0 << "," << y1 << " -> " << x1 << "," << y0 << std::endl; paint.setPen(Qt::white); //!!! should we be using paintCrosshairs for this? paint.drawRect(x0, y1, x1 - x0 + 1, y0 - y1 + 1); } } float SpectrogramLayer::getYForFrequency(View *v, float frequency) const { return v->getYForFrequency(frequency, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } float SpectrogramLayer::getFrequencyForY(View *v, int y) const { return v->getFrequencyForY(y, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } int SpectrogramLayer::getCompletion(View *v) const { if (m_updateTimer == 0) return 100; if (m_fftModels.find(v) == m_fftModels.end()) return 100; size_t completion = m_fftModels[v].first->getCompletion(); std::cerr << "SpectrogramLayer::getCompletion: completion = " << completion << std::endl; return completion; } bool SpectrogramLayer::getValueExtents(float &min, float &max, bool &logarithmic, QString &unit) const { //!!! // min = getEffectiveMinFrequency(); // max = getEffectiveMaxFrequency(); if (!m_model) return false; int sr = m_model->getSampleRate(); min = float(sr) / m_fftSize; max = float(sr) / 2; logarithmic = (m_frequencyScale == LogFrequencyScale); unit = "Hz"; return true; } bool SpectrogramLayer::getDisplayExtents(float &min, float &max) const { min = getEffectiveMinFrequency(); max = getEffectiveMaxFrequency(); std::cerr << "SpectrogramLayer::getDisplayExtents: " << min << "->" << max << std::endl; return true; } bool SpectrogramLayer::setDisplayExtents(float min, float max) { if (!m_model) return false; std::cerr << "SpectrogramLayer::setDisplayExtents: " << min << "->" << max << std::endl; if (min < 0) min = 0; if (max > m_model->getSampleRate()/2) max = m_model->getSampleRate()/2; size_t minf = lrintf(min); size_t maxf = lrintf(max); if (m_minFrequency == minf && m_maxFrequency == maxf) return true; invalidatePixmapCaches(); invalidateMagnitudes(); m_minFrequency = minf; m_maxFrequency = maxf; emit layerParametersChanged(); int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } return true; } bool SpectrogramLayer::snapToFeatureFrame(View *v, int &frame, size_t &resolution, SnapType snap) const { resolution = getWindowIncrement(); int left = (frame / resolution) * resolution; int right = left + resolution; switch (snap) { case SnapLeft: frame = left; break; case SnapRight: frame = right; break; case SnapNearest: case SnapNeighbouring: if (frame - left > right - frame) frame = right; else frame = left; break; } return true; } bool SpectrogramLayer::getCrosshairExtents(View *v, QPainter &paint, QPoint cursorPos, std::vector<QRect> &extents) const { QRect vertical(cursorPos.x() - 12, 0, 12, v->height()); extents.push_back(vertical); QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); extents.push_back(horizontal); return true; } void SpectrogramLayer::paintCrosshairs(View *v, QPainter &paint, QPoint cursorPos) const { paint.save(); paint.setPen(m_crosshairColour); paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->height()); float fundamental = getFrequencyForY(v, cursorPos.y()); int harmonic = 2; while (harmonic < 100) { float hy = lrintf(getYForFrequency(v, fundamental * harmonic)); if (hy < 0 || hy > v->height()) break; int len = 7; if (harmonic % 2 == 0) { if (harmonic % 4 == 0) { len = 12; } else { len = 10; } } paint.drawLine(cursorPos.x() - len, hy, cursorPos.x(), hy); ++harmonic; } paint.restore(); } QString SpectrogramLayer::getFeatureDescription(View *v, QPoint &pos) const { int x = pos.x(); int y = pos.y(); if (!m_model || !m_model->isOK()) return ""; float magMin = 0, magMax = 0; float phaseMin = 0, phaseMax = 0; float freqMin = 0, freqMax = 0; float adjFreqMin = 0, adjFreqMax = 0; QString pitchMin, pitchMax; RealTime rtMin, rtMax; bool haveValues = false; if (!getXBinSourceRange(v, x, rtMin, rtMax)) { return ""; } if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) { haveValues = true; } QString adjFreqText = "", adjPitchText = ""; if (m_binDisplay == PeakFrequencies) { if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, adjFreqMin, adjFreqMax)) { return ""; } if (adjFreqMin != adjFreqMax) { adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n") .arg(adjFreqMin).arg(adjFreqMax); } else { adjFreqText = tr("Peak Frequency:\t%1 Hz\n") .arg(adjFreqMin); } QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin); QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax); if (pmin != pmax) { adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax); } else { adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin); } } else { if (!getYBinSourceRange(v, y, freqMin, freqMax)) return ""; } QString text; if (rtMin != rtMax) { text += tr("Time:\t%1 - %2\n") .arg(rtMin.toText(true).c_str()) .arg(rtMax.toText(true).c_str()); } else { text += tr("Time:\t%1\n") .arg(rtMin.toText(true).c_str()); } if (freqMin != freqMax) { text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n") .arg(adjFreqText) .arg(freqMin) .arg(freqMax) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)) .arg(Pitch::getPitchLabelForFrequency(freqMax)); } else { text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n") .arg(adjFreqText) .arg(freqMin) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)); } if (haveValues) { float dbMin = AudioLevel::multiplier_to_dB(magMin); float dbMax = AudioLevel::multiplier_to_dB(magMax); QString dbMinString; QString dbMaxString; if (dbMin == AudioLevel::DB_FLOOR) { dbMinString = tr("-Inf"); } else { dbMinString = QString("%1").arg(lrintf(dbMin)); } if (dbMax == AudioLevel::DB_FLOOR) { dbMaxString = tr("-Inf"); } else { dbMaxString = QString("%1").arg(lrintf(dbMax)); } if (lrintf(dbMin) != lrintf(dbMax)) { text += tr("dB:\t%1 - %2").arg(lrintf(dbMin)).arg(lrintf(dbMax)); } else { text += tr("dB:\t%1").arg(lrintf(dbMin)); } if (phaseMin != phaseMax) { text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax); } else { text += tr("\nPhase:\t%1").arg(phaseMin); } } return text; } int SpectrogramLayer::getColourScaleWidth(QPainter &paint) const { int cw; cw = paint.fontMetrics().width("-80dB"); /*!!! switch (m_colourScale) { default: case LinearColourScale: cw = paint.fontMetrics().width(QString("0.00")); break; case MeterColourScale: case dBColourScale: case OtherColourScale: cw = std::max(paint.fontMetrics().width(tr("-Inf")), paint.fontMetrics().width(tr("-90"))); break; case PhaseColourScale: cw = paint.fontMetrics().width(QString("-") + QChar(0x3c0)); break; } */ return cw; } int SpectrogramLayer::getVerticalScaleWidth(View *v, QPainter &paint) const { if (!m_model || !m_model->isOK()) return 0; int cw = getColourScaleWidth(paint); int tw = paint.fontMetrics().width(QString("%1") .arg(m_maxFrequency > 0 ? m_maxFrequency - 1 : m_model->getSampleRate() / 2)); int fw = paint.fontMetrics().width(QString("43Hz")); if (tw < fw) tw = fw; int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); return cw + tickw + tw + 13; } void SpectrogramLayer::paintVerticalScale(View *v, QPainter &paint, QRect rect) const { if (!m_model || !m_model->isOK()) { return; } Profiler profiler("SpectrogramLayer::paintVerticalScale", true); //!!! cache this? int h = rect.height(), w = rect.width(); int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); size_t bins = m_fftSize / 2; int sr = m_model->getSampleRate(); if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (bins > m_fftSize / 2) bins = m_fftSize / 2; } int cw = getColourScaleWidth(paint); int cbw = paint.fontMetrics().width("dB"); int py = -1; int textHeight = paint.fontMetrics().height(); int toff = -textHeight + paint.fontMetrics().ascent() + 2; if (h > textHeight * 3 + 10) { int topLines = 2; if (m_colourScale == PhaseColourScale) topLines = 1; int ch = h - textHeight * (topLines + 1) - 8; // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); QString top, bottom; /*!!! switch (m_colourScale) { default: case LinearColourScale: top = (m_normalizeColumns ? "1.0" : "0.02"); bottom = (m_normalizeColumns ? "0.0" : "0.00"); break; case MeterColourScale: top = (m_normalizeColumns ? QString("0") : QString("%1").arg(int(AudioLevel::multiplier_to_dB(0.02)))); bottom = QString("%1"). arg(int(AudioLevel::multiplier_to_dB (AudioLevel::preview_to_multiplier(0, 255)))); break; case dBColourScale: case OtherColourScale: top = "0"; bottom = "-80"; break; case PhaseColourScale: top = QChar(0x3c0); bottom = "-" + top; break; } */ float min = m_viewMags[v].getMin(); float max = m_viewMags[v].getMax(); float dBmin = AudioLevel::multiplier_to_dB(min); float dBmax = AudioLevel::multiplier_to_dB(max); if (dBmax < -60.f) dBmax = -60.f; else top = QString("%1").arg(lrintf(dBmax)); if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; bottom = QString("%1").arg(lrintf(dBmin)); //!!! & phase etc if (m_colourScale != PhaseColourScale) { paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, 2 + textHeight + toff, "dBFS"); } // paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2, paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), 2 + textHeight * topLines + toff + textHeight/2, top); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), h + toff - 3 - textHeight/2, bottom); paint.save(); paint.setBrush(Qt::NoBrush); int lasty = 0; int lastdb = 0; for (int i = 0; i < ch; ++i) { float dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); int idb = int(dBval); float value = AudioLevel::dB_to_multiplier(dBval); int colour = getDisplayValue(v, value * m_gain); /* float value = min + (((max - min) * i) / (ch - 1)); if (value < m_threshold) value = 0.f; int colour = getDisplayValue(v, value * m_gain); */ /* int colour = (i * 255) / ch + 1; */ paint.setPen(m_colourMap.getColour(colour)); int y = textHeight * topLines + 4 + ch - i; paint.drawLine(5 + cw - cbw, y, cw + 2, y); // paint.drawLine(5, 4 + textHeight + ch - i, // cw + 2, 4 + textHeight + ch - i); if (i == 0) { lasty = y; lastdb = idb; } else if (i < ch - paint.fontMetrics().ascent() && idb != lastdb && ((abs(y - lasty) > textHeight && idb % 10 == 0) || (abs(y - lasty) > paint.fontMetrics().ascent() && idb % 5 == 0))) { paint.setPen(Qt::black); QString text = QString("%1").arg(idb); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), y + toff + textHeight/2, text); paint.setPen(Qt::white); paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); lasty = y; lastdb = idb; } } paint.restore(); } paint.drawLine(cw + 7, 0, cw + 7, h); int bin = -1; for (int y = 0; y < v->height(); ++y) { float q0, q1; if (!getYBinRange(v, v->height() - y, q0, q1)) continue; int vy; if (int(q0) > bin) { vy = y; bin = int(q0); } else { continue; } int freq = (sr * bin) / m_fftSize; if (py >= 0 && (vy - py) < textHeight - 1) { if (m_frequencyScale == LinearFrequencyScale) { paint.drawLine(w - tickw, h - vy, w, h - vy); } continue; } QString text = QString("%1").arg(freq); if (bin == 1) text = QString("%1Hz").arg(freq); // bin 0 is DC paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); if (h - vy - textHeight >= -2) { int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw); paint.drawText(tx, h - vy + toff, text); } py = vy; } if (m_frequencyScale == LogFrequencyScale) { paint.drawLine(w - pkw - 1, 0, w - pkw - 1, h); int sr = m_model->getSampleRate(); float minf = getEffectiveMinFrequency(); float maxf = getEffectiveMaxFrequency(); int py = h, ppy = h; paint.setBrush(paint.pen().color()); for (int i = 0; i < 128; ++i) { float f = Pitch::getFrequencyForPitch(i); int y = lrintf(v->getYForFrequency(f, minf, maxf, true)); if (y < -2) break; if (y > h + 2) { continue; } int n = (i % 12); if (n == 1) { // C# -- fill the C from here if (ppy - y > 2) { paint.fillRect(w - pkw, // y - (py - y) / 2 - (py - y) / 4, y, pkw, (py + ppy) / 2 - y, // py - y + 1, Qt::gray); } } if (n == 1 || n == 3 || n == 6 || n == 8 || n == 10) { // black notes paint.drawLine(w - pkw, y, w, y); int rh = ((py - y) / 4) * 2; if (rh < 2) rh = 2; paint.drawRect(w - pkw, y - (py-y)/4, pkw/2, rh); } else if (n == 0 || n == 5) { // C, F if (py < h) { paint.drawLine(w - pkw, (y + py) / 2, w, (y + py) / 2); } } ppy = py; py = y; } } } class SpectrogramRangeMapper : public RangeMapper { public: SpectrogramRangeMapper(int sr, int fftsize) : // m_dist((float(sr) / 2) - (float(sr) / fftsize)), m_dist(float(sr) / 2), m_s2(sqrtf(sqrtf(2))) { } ~SpectrogramRangeMapper() { } virtual int getPositionForValue(float value) const { float dist = m_dist; int n = 0; int discard = 0; while (dist > (value + 0.00001) && dist > 0.1f) { dist /= m_s2; ++n; } return n; } virtual float getValueForPosition(int position) const { // Vertical zoom step 0 shows the entire range from DC -> // Nyquist frequency. Step 1 shows 2^(1/4) of the range of // step 0, and so on until the visible range is smaller than // the frequency step between bins at the current fft size. float dist = m_dist; int n = 0; while (n < position) { dist /= m_s2; ++n; } return dist; } virtual QString getUnit() const { return "Hz"; } protected: float m_dist; float m_s2; }; int SpectrogramLayer::getVerticalZoomSteps(int &defaultStep) const { if (!m_model) return 0; int sr = m_model->getSampleRate(); SpectrogramRangeMapper mapper(sr, m_fftSize); // int maxStep = mapper.getPositionForValue((float(sr) / m_fftSize) + 0.001); int maxStep = mapper.getPositionForValue(0); int minStep = mapper.getPositionForValue(float(sr) / 2); defaultStep = mapper.getPositionForValue(m_initialMaxFrequency) - minStep; std::cerr << "SpectrogramLayer::getVerticalZoomSteps: " << maxStep - minStep << " (" << maxStep <<"-" << minStep << "), default is " << defaultStep << " (from initial max freq " << m_initialMaxFrequency << ")" << std::endl; return maxStep - minStep; } int SpectrogramLayer::getCurrentVerticalZoomStep() const { if (!m_model) return 0; float dmin, dmax; getDisplayExtents(dmin, dmax); SpectrogramRangeMapper mapper(m_model->getSampleRate(), m_fftSize); int n = mapper.getPositionForValue(dmax - dmin); std::cerr << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << std::endl; return n; } void SpectrogramLayer::setVerticalZoomStep(int step) { //!!! does not do the right thing for log scale if (!m_model) return; float dmin, dmax; getDisplayExtents(dmin, dmax); int sr = m_model->getSampleRate(); SpectrogramRangeMapper mapper(sr, m_fftSize); float ddist = mapper.getValueForPosition(step); float dmid = (dmax + dmin) / 2; float newmin = dmid - ddist / 2; float newmax = dmid + ddist / 2; float mmin, mmax; mmin = 0; mmax = float(sr) / 2; if (newmin < mmin) { newmax += (mmin - newmin); newmin = mmin; } if (newmax > mmax) { newmax = mmax; } std::cerr << "SpectrogramLayer::setVerticalZoomStep: " << step << ": " << newmin << " -> " << newmax << " (range " << ddist << ")" << std::endl; setMinFrequency(int(newmin)); setMaxFrequency(int(newmax)); } RangeMapper * SpectrogramLayer::getNewVerticalZoomRangeMapper() const { if (!m_model) return 0; return new SpectrogramRangeMapper(m_model->getSampleRate(), m_fftSize); } QString SpectrogramLayer::toXmlString(QString indent, QString extraAttributes) const { QString s; s += QString("channel=\"%1\" " "windowSize=\"%2\" " "windowHopLevel=\"%3\" " "gain=\"%4\" " "threshold=\"%5\" ") .arg(m_channel) .arg(m_windowSize) .arg(m_windowHopLevel) .arg(m_gain) .arg(m_threshold); s += QString("minFrequency=\"%1\" " "maxFrequency=\"%2\" " "colourScale=\"%3\" " "colourScheme=\"%4\" " "colourRotation=\"%5\" " "frequencyScale=\"%6\" " "binDisplay=\"%7\" " "normalizeColumns=\"%8\" " "normalizeVisibleArea=\"%9\"") .arg(m_minFrequency) .arg(m_maxFrequency) .arg(m_colourScale) .arg(m_colourScheme) .arg(m_colourRotation) .arg(m_frequencyScale) .arg(m_binDisplay) .arg(m_normalizeColumns ? "true" : "false") .arg(m_normalizeVisibleArea ? "true" : "false"); return Layer::toXmlString(indent, extraAttributes + " " + s); } void SpectrogramLayer::setProperties(const QXmlAttributes &attributes) { bool ok = false; int channel = attributes.value("channel").toInt(&ok); if (ok) setChannel(channel); size_t windowSize = attributes.value("windowSize").toUInt(&ok); if (ok) setWindowSize(windowSize); size_t windowHopLevel = attributes.value("windowHopLevel").toUInt(&ok); if (ok) setWindowHopLevel(windowHopLevel); else { size_t windowOverlap = attributes.value("windowOverlap").toUInt(&ok); // a percentage value if (ok) { if (windowOverlap == 0) setWindowHopLevel(0); else if (windowOverlap == 25) setWindowHopLevel(1); else if (windowOverlap == 50) setWindowHopLevel(2); else if (windowOverlap == 75) setWindowHopLevel(3); else if (windowOverlap == 90) setWindowHopLevel(4); } } float gain = attributes.value("gain").toFloat(&ok); if (ok) setGain(gain); float threshold = attributes.value("threshold").toFloat(&ok); if (ok) setThreshold(threshold); size_t minFrequency = attributes.value("minFrequency").toUInt(&ok); if (ok) { std::cerr << "SpectrogramLayer::setProperties: setting min freq to " << minFrequency << std::endl; setMinFrequency(minFrequency); } size_t maxFrequency = attributes.value("maxFrequency").toUInt(&ok); if (ok) { std::cerr << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << std::endl; setMaxFrequency(maxFrequency); } ColourScale colourScale = (ColourScale) attributes.value("colourScale").toInt(&ok); if (ok) setColourScale(colourScale); int colourScheme = attributes.value("colourScheme").toInt(&ok); if (ok) setColourScheme(colourScheme); int colourRotation = attributes.value("colourRotation").toInt(&ok); if (ok) setColourRotation(colourRotation); FrequencyScale frequencyScale = (FrequencyScale) attributes.value("frequencyScale").toInt(&ok); if (ok) setFrequencyScale(frequencyScale); BinDisplay binDisplay = (BinDisplay) attributes.value("binDisplay").toInt(&ok); if (ok) setBinDisplay(binDisplay); bool normalizeColumns = (attributes.value("normalizeColumns").trimmed() == "true"); setNormalizeColumns(normalizeColumns); bool normalizeVisibleArea = (attributes.value("normalizeVisibleArea").trimmed() == "true"); setNormalizeVisibleArea(normalizeVisibleArea); }