Mercurial > hg > svgui
view layer/SpectrogramLayer.cpp @ 1086:163cb9b98104 spectrogram-minor-refactor
Simplify the oversampling/zero-padding logic. FFT model selection no longer depends on the view.
author | Chris Cannam |
---|---|
date | Fri, 01 Jul 2016 18:30:42 +0100 |
parents | 179ea8a2f650 |
children | 6d990a24ac1b |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2009 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "SpectrogramLayer.h" #include "view/View.h" #include "base/Profiler.h" #include "base/AudioLevel.h" #include "base/Window.h" #include "base/Pitch.h" #include "base/Preferences.h" #include "base/RangeMapper.h" #include "base/LogRange.h" #include "base/ColumnOp.h" #include "widgets/CommandHistory.h" #include "data/model/Dense3DModelPeakCache.h" #include "ColourMapper.h" #include "ImageRegionFinder.h" #include "PianoScale.h" #include "PaintAssistant.h" #include <QPainter> #include <QImage> #include <QPixmap> #include <QRect> #include <QApplication> #include <QMessageBox> #include <QMouseEvent> #include <QTextStream> #include <QSettings> #include <iostream> #include <cassert> #include <cmath> #ifndef __GNUC__ #include <alloca.h> #endif #define DEBUG_SPECTROGRAM_REPAINT 1 using namespace std; SpectrogramLayer::SpectrogramLayer(Configuration config) : m_model(0), m_channel(0), m_windowSize(1024), m_windowType(HanningWindow), m_windowHopLevel(2), m_fftSize(1024), m_gain(1.0), m_initialGain(1.0), m_threshold(0.0), m_initialThreshold(0.0), m_colourRotation(0), m_initialRotation(0), m_minFrequency(10), m_maxFrequency(8000), m_initialMaxFrequency(8000), m_colourScale(dBColourScale), m_colourMap(0), m_frequencyScale(LinearFrequencyScale), m_binDisplay(AllBins), m_normalization(ColumnOp::NoNormalization), m_lastEmittedZoomStep(-1), m_synchronous(false), m_haveDetailedScale(false), m_exiting(false), m_peakCacheDivisor(8), m_sliceableModel(0) { QString colourConfigName = "spectrogram-colour"; int colourConfigDefault = int(ColourMapper::Green); if (config == FullRangeDb) { m_initialMaxFrequency = 0; setMaxFrequency(0); } else if (config == MelodicRange) { setWindowSize(8192); setWindowHopLevel(4); m_initialMaxFrequency = 1500; setMaxFrequency(1500); setMinFrequency(40); setColourScale(LinearColourScale); setColourMap(ColourMapper::Sunset); setFrequencyScale(LogFrequencyScale); colourConfigName = "spectrogram-melodic-colour"; colourConfigDefault = int(ColourMapper::Sunset); // setGain(20); } else if (config == MelodicPeaks) { setWindowSize(4096); setWindowHopLevel(5); m_initialMaxFrequency = 2000; setMaxFrequency(2000); setMinFrequency(40); setFrequencyScale(LogFrequencyScale); setColourScale(LinearColourScale); setBinDisplay(PeakFrequencies); setNormalization(ColumnOp::NormalizeColumns); colourConfigName = "spectrogram-melodic-colour"; colourConfigDefault = int(ColourMapper::Sunset); } QSettings settings; settings.beginGroup("Preferences"); setColourMap(settings.value(colourConfigName, colourConfigDefault).toInt()); settings.endGroup(); Preferences *prefs = Preferences::getInstance(); connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); setWindowType(prefs->getWindowType()); initialisePalette(); } SpectrogramLayer::~SpectrogramLayer() { invalidateFFTModels(); } void SpectrogramLayer::setModel(const DenseTimeValueModel *model) { // cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << endl; if (model == m_model) return; m_model = model; invalidateFFTModels(); if (!m_model || !m_model->isOK()) return; connectSignals(m_model); connect(m_model, SIGNAL(modelChanged()), this, SLOT(cacheInvalid())); connect(m_model, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)), this, SLOT(cacheInvalid(sv_frame_t, sv_frame_t))); emit modelReplaced(); } Layer::PropertyList SpectrogramLayer::getProperties() const { PropertyList list; list.push_back("Colour"); list.push_back("Colour Scale"); list.push_back("Window Size"); list.push_back("Window Increment"); list.push_back("Normalization"); list.push_back("Bin Display"); list.push_back("Threshold"); list.push_back("Gain"); list.push_back("Colour Rotation"); // list.push_back("Min Frequency"); // list.push_back("Max Frequency"); list.push_back("Frequency Scale"); return list; } QString SpectrogramLayer::getPropertyLabel(const PropertyName &name) const { if (name == "Colour") return tr("Colour"); if (name == "Colour Scale") return tr("Colour Scale"); if (name == "Window Size") return tr("Window Size"); if (name == "Window Increment") return tr("Window Overlap"); if (name == "Normalization") return tr("Normalization"); if (name == "Bin Display") return tr("Bin Display"); if (name == "Threshold") return tr("Threshold"); if (name == "Gain") return tr("Gain"); if (name == "Colour Rotation") return tr("Colour Rotation"); if (name == "Min Frequency") return tr("Min Frequency"); if (name == "Max Frequency") return tr("Max Frequency"); if (name == "Frequency Scale") return tr("Frequency Scale"); return ""; } QString SpectrogramLayer::getPropertyIconName(const PropertyName &) const { return ""; } Layer::PropertyType SpectrogramLayer::getPropertyType(const PropertyName &name) const { if (name == "Gain") return RangeProperty; if (name == "Colour Rotation") return RangeProperty; if (name == "Threshold") return RangeProperty; return ValueProperty; } QString SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const { if (name == "Bin Display" || name == "Frequency Scale") return tr("Bins"); if (name == "Window Size" || name == "Window Increment") return tr("Window"); if (name == "Colour" || name == "Threshold" || name == "Colour Rotation") return tr("Colour"); if (name == "Normalization" || name == "Gain" || name == "Colour Scale") return tr("Scale"); return QString(); } int SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name, int *min, int *max, int *deflt) const { int val = 0; int garbage0, garbage1, garbage2; if (!min) min = &garbage0; if (!max) max = &garbage1; if (!deflt) deflt = &garbage2; if (name == "Gain") { *min = -50; *max = 50; *deflt = int(lrint(log10(m_initialGain) * 20.0)); if (*deflt < *min) *deflt = *min; if (*deflt > *max) *deflt = *max; val = int(lrint(log10(m_gain) * 20.0)); if (val < *min) val = *min; if (val > *max) val = *max; } else if (name == "Threshold") { *min = -50; *max = 0; *deflt = int(lrint(AudioLevel::multiplier_to_dB(m_initialThreshold))); if (*deflt < *min) *deflt = *min; if (*deflt > *max) *deflt = *max; val = int(lrint(AudioLevel::multiplier_to_dB(m_threshold))); if (val < *min) val = *min; if (val > *max) val = *max; } else if (name == "Colour Rotation") { *min = 0; *max = 256; *deflt = m_initialRotation; val = m_colourRotation; } else if (name == "Colour Scale") { *min = 0; *max = 4; *deflt = int(dBColourScale); val = (int)m_colourScale; } else if (name == "Colour") { *min = 0; *max = ColourMapper::getColourMapCount() - 1; *deflt = 0; val = m_colourMap; } else if (name == "Window Size") { *min = 0; *max = 10; *deflt = 5; val = 0; int ws = m_windowSize; while (ws > 32) { ws >>= 1; val ++; } } else if (name == "Window Increment") { *min = 0; *max = 5; *deflt = 2; val = m_windowHopLevel; } else if (name == "Min Frequency") { *min = 0; *max = 9; *deflt = 1; switch (m_minFrequency) { case 0: default: val = 0; break; case 10: val = 1; break; case 20: val = 2; break; case 40: val = 3; break; case 100: val = 4; break; case 250: val = 5; break; case 500: val = 6; break; case 1000: val = 7; break; case 4000: val = 8; break; case 10000: val = 9; break; } } else if (name == "Max Frequency") { *min = 0; *max = 9; *deflt = 6; switch (m_maxFrequency) { case 500: val = 0; break; case 1000: val = 1; break; case 1500: val = 2; break; case 2000: val = 3; break; case 4000: val = 4; break; case 6000: val = 5; break; case 8000: val = 6; break; case 12000: val = 7; break; case 16000: val = 8; break; default: val = 9; break; } } else if (name == "Frequency Scale") { *min = 0; *max = 1; *deflt = int(LinearFrequencyScale); val = (int)m_frequencyScale; } else if (name == "Bin Display") { *min = 0; *max = 2; *deflt = int(AllBins); val = (int)m_binDisplay; } else if (name == "Normalization") { *min = 0; *max = 3; *deflt = int(ColumnOp::NoNormalization); val = (int)m_normalization; } else { val = Layer::getPropertyRangeAndValue(name, min, max, deflt); } return val; } QString SpectrogramLayer::getPropertyValueLabel(const PropertyName &name, int value) const { if (name == "Colour") { return ColourMapper::getColourMapName(value); } if (name == "Colour Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Meter"); case 2: return tr("dBV^2"); case 3: return tr("dBV"); case 4: return tr("Phase"); } } if (name == "Normalization") { return ""; // icon only } if (name == "Window Size") { return QString("%1").arg(32 << value); } if (name == "Window Increment") { switch (value) { default: case 0: return tr("None"); case 1: return tr("25 %"); case 2: return tr("50 %"); case 3: return tr("75 %"); case 4: return tr("87.5 %"); case 5: return tr("93.75 %"); } } if (name == "Min Frequency") { switch (value) { default: case 0: return tr("No min"); case 1: return tr("10 Hz"); case 2: return tr("20 Hz"); case 3: return tr("40 Hz"); case 4: return tr("100 Hz"); case 5: return tr("250 Hz"); case 6: return tr("500 Hz"); case 7: return tr("1 KHz"); case 8: return tr("4 KHz"); case 9: return tr("10 KHz"); } } if (name == "Max Frequency") { switch (value) { default: case 0: return tr("500 Hz"); case 1: return tr("1 KHz"); case 2: return tr("1.5 KHz"); case 3: return tr("2 KHz"); case 4: return tr("4 KHz"); case 5: return tr("6 KHz"); case 6: return tr("8 KHz"); case 7: return tr("12 KHz"); case 8: return tr("16 KHz"); case 9: return tr("No max"); } } if (name == "Frequency Scale") { switch (value) { default: case 0: return tr("Linear"); case 1: return tr("Log"); } } if (name == "Bin Display") { switch (value) { default: case 0: return tr("All Bins"); case 1: return tr("Peak Bins"); case 2: return tr("Frequencies"); } } return tr("<unknown>"); } QString SpectrogramLayer::getPropertyValueIconName(const PropertyName &name, int value) const { if (name == "Normalization") { switch(value) { default: case 0: return "normalise-none"; case 1: return "normalise-columns"; case 2: return "normalise"; case 3: return "normalise-hybrid"; } } return ""; } RangeMapper * SpectrogramLayer::getNewPropertyRangeMapper(const PropertyName &name) const { if (name == "Gain") { return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); } if (name == "Threshold") { return new LinearRangeMapper(-50, 0, -50, 0, tr("dB")); } return 0; } void SpectrogramLayer::setProperty(const PropertyName &name, int value) { if (name == "Gain") { setGain(float(pow(10, float(value)/20.0))); } else if (name == "Threshold") { if (value == -50) setThreshold(0.0); else setThreshold(float(AudioLevel::dB_to_multiplier(value))); } else if (name == "Colour Rotation") { setColourRotation(value); } else if (name == "Colour") { setColourMap(value); } else if (name == "Window Size") { setWindowSize(32 << value); } else if (name == "Window Increment") { setWindowHopLevel(value); } else if (name == "Min Frequency") { switch (value) { default: case 0: setMinFrequency(0); break; case 1: setMinFrequency(10); break; case 2: setMinFrequency(20); break; case 3: setMinFrequency(40); break; case 4: setMinFrequency(100); break; case 5: setMinFrequency(250); break; case 6: setMinFrequency(500); break; case 7: setMinFrequency(1000); break; case 8: setMinFrequency(4000); break; case 9: setMinFrequency(10000); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Max Frequency") { switch (value) { case 0: setMaxFrequency(500); break; case 1: setMaxFrequency(1000); break; case 2: setMaxFrequency(1500); break; case 3: setMaxFrequency(2000); break; case 4: setMaxFrequency(4000); break; case 5: setMaxFrequency(6000); break; case 6: setMaxFrequency(8000); break; case 7: setMaxFrequency(12000); break; case 8: setMaxFrequency(16000); break; default: case 9: setMaxFrequency(0); break; } int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } } else if (name == "Colour Scale") { switch (value) { default: case 0: setColourScale(LinearColourScale); break; case 1: setColourScale(MeterColourScale); break; case 2: setColourScale(dBSquaredColourScale); break; case 3: setColourScale(dBColourScale); break; case 4: setColourScale(PhaseColourScale); break; } } else if (name == "Frequency Scale") { switch (value) { default: case 0: setFrequencyScale(LinearFrequencyScale); break; case 1: setFrequencyScale(LogFrequencyScale); break; } } else if (name == "Bin Display") { switch (value) { default: case 0: setBinDisplay(AllBins); break; case 1: setBinDisplay(PeakBins); break; case 2: setBinDisplay(PeakFrequencies); break; } } else if (name == "Normalization") { switch (value) { default: case 0: setNormalization(ColumnOp::NoNormalization); break; case 1: setNormalization(ColumnOp::NormalizeColumns); break; case 2: setNormalization(ColumnOp::NormalizeVisibleArea); break; case 3: setNormalization(ColumnOp::NormalizeHybrid); break; } } } void SpectrogramLayer::invalidateImageCaches() { #ifdef DEBUG_SPECTROGRAM cerr << "SpectrogramLayer::invalidateImageCaches called" << endl; #endif for (ViewImageCache::iterator i = m_imageCaches.begin(); i != m_imageCaches.end(); ++i) { i->second.invalidate(); } } void SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) { SVDEBUG << "SpectrogramLayer::preferenceChanged(" << name << ")" << endl; if (name == "Window Type") { setWindowType(Preferences::getInstance()->getWindowType()); return; } if (name == "Spectrogram Y Smoothing") { setWindowSize(m_windowSize); invalidateImageCaches(); invalidateMagnitudes(); emit layerParametersChanged(); } if (name == "Spectrogram X Smoothing") { invalidateImageCaches(); invalidateMagnitudes(); emit layerParametersChanged(); } if (name == "Tuning Frequency") { emit layerParametersChanged(); } } void SpectrogramLayer::setChannel(int ch) { if (m_channel == ch) return; invalidateImageCaches(); m_channel = ch; invalidateFFTModels(); emit layerParametersChanged(); } int SpectrogramLayer::getChannel() const { return m_channel; } int SpectrogramLayer::getFFTOversampling() const { if (m_binDisplay != AllBins) { return 1; } Preferences::SpectrogramSmoothing smoothing = Preferences::getInstance()->getSpectrogramSmoothing(); if (smoothing == Preferences::NoSpectrogramSmoothing || smoothing == Preferences::SpectrogramInterpolated) { return 1; } return 4; } void SpectrogramLayer::setWindowSize(int ws) { int fftSize = ws * getFFTOversampling(); if (m_windowSize == ws && m_fftSize == fftSize) return; invalidateImageCaches(); m_windowSize = ws; m_fftSize = fftSize; invalidateFFTModels(); emit layerParametersChanged(); } int SpectrogramLayer::getWindowSize() const { return m_windowSize; } void SpectrogramLayer::setWindowHopLevel(int v) { if (m_windowHopLevel == v) return; invalidateImageCaches(); m_windowHopLevel = v; invalidateFFTModels(); emit layerParametersChanged(); // fillCache(); } int SpectrogramLayer::getWindowHopLevel() const { return m_windowHopLevel; } void SpectrogramLayer::setWindowType(WindowType w) { if (m_windowType == w) return; invalidateImageCaches(); m_windowType = w; invalidateFFTModels(); emit layerParametersChanged(); } WindowType SpectrogramLayer::getWindowType() const { return m_windowType; } void SpectrogramLayer::setGain(float gain) { // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " // << m_gain << ")" << endl; if (m_gain == gain) return; invalidateImageCaches(); m_gain = gain; emit layerParametersChanged(); } float SpectrogramLayer::getGain() const { return m_gain; } void SpectrogramLayer::setThreshold(float threshold) { if (m_threshold == threshold) return; invalidateImageCaches(); m_threshold = threshold; emit layerParametersChanged(); } float SpectrogramLayer::getThreshold() const { return m_threshold; } void SpectrogramLayer::setMinFrequency(int mf) { if (m_minFrequency == mf) return; // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; invalidateImageCaches(); invalidateMagnitudes(); m_minFrequency = mf; emit layerParametersChanged(); } int SpectrogramLayer::getMinFrequency() const { return m_minFrequency; } void SpectrogramLayer::setMaxFrequency(int mf) { if (m_maxFrequency == mf) return; // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; invalidateImageCaches(); invalidateMagnitudes(); m_maxFrequency = mf; emit layerParametersChanged(); } int SpectrogramLayer::getMaxFrequency() const { return m_maxFrequency; } void SpectrogramLayer::setColourRotation(int r) { invalidateImageCaches(); if (r < 0) r = 0; if (r > 256) r = 256; int distance = r - m_colourRotation; if (distance != 0) { rotatePalette(-distance); m_colourRotation = r; } emit layerParametersChanged(); } void SpectrogramLayer::setColourScale(ColourScale colourScale) { if (m_colourScale == colourScale) return; invalidateImageCaches(); m_colourScale = colourScale; emit layerParametersChanged(); } SpectrogramLayer::ColourScale SpectrogramLayer::getColourScale() const { return m_colourScale; } void SpectrogramLayer::setColourMap(int map) { if (m_colourMap == map) return; invalidateImageCaches(); m_colourMap = map; initialisePalette(); emit layerParametersChanged(); } int SpectrogramLayer::getColourMap() const { return m_colourMap; } void SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale) { if (m_frequencyScale == frequencyScale) return; invalidateImageCaches(); m_frequencyScale = frequencyScale; emit layerParametersChanged(); } SpectrogramLayer::FrequencyScale SpectrogramLayer::getFrequencyScale() const { return m_frequencyScale; } void SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) { if (m_binDisplay == binDisplay) return; invalidateImageCaches(); m_binDisplay = binDisplay; emit layerParametersChanged(); } SpectrogramLayer::BinDisplay SpectrogramLayer::getBinDisplay() const { return m_binDisplay; } void SpectrogramLayer::setNormalization(ColumnOp::Normalization n) { if (m_normalization == n) return; invalidateImageCaches(); invalidateMagnitudes(); m_normalization = n; emit layerParametersChanged(); } ColumnOp::Normalization SpectrogramLayer::getNormalization() const { return m_normalization; } void SpectrogramLayer::setLayerDormant(const LayerGeometryProvider *v, bool dormant) { if (dormant) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::setLayerDormant(" << dormant << ")" << endl; #endif if (isLayerDormant(v)) { return; } Layer::setLayerDormant(v, true); const View *view = v->getView(); invalidateImageCaches(); m_imageCaches.erase(view->getId()); if (m_fftModels.find(view->getId()) != m_fftModels.end()) { if (m_sliceableModel == m_fftModels[view->getId()]) { bool replaced = false; for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { if (i->second != m_sliceableModel) { emit sliceableModelReplaced(m_sliceableModel, i->second); replaced = true; break; } } if (!replaced) emit sliceableModelReplaced(m_sliceableModel, 0); } delete m_fftModels[view->getId()]; m_fftModels.erase(view->getId()); delete m_peakCaches[view->getId()]; m_peakCaches.erase(view->getId()); } } else { Layer::setLayerDormant(v, false); } } void SpectrogramLayer::cacheInvalid() { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::cacheInvalid()" << endl; #endif invalidateImageCaches(); invalidateMagnitudes(); } void SpectrogramLayer::cacheInvalid( #ifdef DEBUG_SPECTROGRAM_REPAINT sv_frame_t from, sv_frame_t to #else sv_frame_t , sv_frame_t #endif ) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::cacheInvalid(" << from << ", " << to << ")" << endl; #endif // We used to call invalidateMagnitudes(from, to) to invalidate // only those caches whose views contained some of the (from, to) // range. That's the right thing to do; it has been lost in // pulling out the image cache code, but it might not matter very // much, since the underlying models for spectrogram layers don't // change very often. Let's see. invalidateImageCaches(); invalidateMagnitudes(); } bool SpectrogramLayer::hasLightBackground() const { return ColourMapper(m_colourMap, 1.f, 255.f).hasLightBackground(); } void SpectrogramLayer::initialisePalette() { int formerRotation = m_colourRotation; if (m_colourMap == (int)ColourMapper::BlackOnWhite) { m_palette.setColour(NO_VALUE, Qt::white); } else { m_palette.setColour(NO_VALUE, Qt::black); } ColourMapper mapper(m_colourMap, 1.f, 255.f); for (int pixel = 1; pixel < 256; ++pixel) { m_palette.setColour((unsigned char)pixel, mapper.map(pixel)); } m_crosshairColour = mapper.getContrastingColour(); m_colourRotation = 0; rotatePalette(m_colourRotation - formerRotation); m_colourRotation = formerRotation; m_drawBuffer = QImage(); } void SpectrogramLayer::rotatePalette(int distance) { QColor newPixels[256]; newPixels[NO_VALUE] = m_palette.getColour(NO_VALUE); for (int pixel = 1; pixel < 256; ++pixel) { int target = pixel + distance; while (target < 1) target += 255; while (target > 255) target -= 255; newPixels[target] = m_palette.getColour((unsigned char)pixel); } for (int pixel = 0; pixel < 256; ++pixel) { m_palette.setColour((unsigned char)pixel, newPixels[pixel]); } m_drawBuffer = QImage(); } unsigned char SpectrogramLayer::getDisplayValue(LayerGeometryProvider *v, double input) const { int value; double min = 0.0; double max = 1.0; if (m_normalization == ColumnOp::NormalizeVisibleArea) { min = m_viewMags[v->getId()].getMin(); max = m_viewMags[v->getId()].getMax(); } else if (m_normalization != ColumnOp::NormalizeColumns) { if (m_colourScale == LinearColourScale //|| // m_colourScale == MeterColourScale) { ) { max = 0.1; } } double thresh = -80.0; if (max == 0.0) max = 1.0; if (max == min) min = max - 0.0001; switch (m_colourScale) { default: case LinearColourScale: value = int(((input - min) / (max - min)) * 255.0) + 1; break; case MeterColourScale: value = AudioLevel::multiplier_to_preview ((input - min) / (max - min), 254) + 1; break; case dBSquaredColourScale: input = ((input - min) * (input - min)) / ((max - min) * (max - min)); if (input > 0.0) { input = 10.0 * log10(input); } else { input = thresh; } if (min > 0.0) { thresh = 10.0 * log10(min * min); if (thresh < -80.0) thresh = -80.0; } input = (input - thresh) / (-thresh); if (input < 0.0) input = 0.0; if (input > 1.0) input = 1.0; value = int(input * 255.0) + 1; break; case dBColourScale: //!!! experiment with normalizing the visible area this way. //In any case, we need to have some indication of what the dB //scale is relative to. input = (input - min) / (max - min); if (input > 0.0) { input = 10.0 * log10(input); } else { input = thresh; } if (min > 0.0) { thresh = 10.0 * log10(min); if (thresh < -80.0) thresh = -80.0; } input = (input - thresh) / (-thresh); if (input < 0.0) input = 0.0; if (input > 1.0) input = 1.0; value = int(input * 255.0) + 1; break; case PhaseColourScale: value = int((input * 127.0 / M_PI) + 128); break; } if (value > UCHAR_MAX) value = UCHAR_MAX; if (value < 0) value = 0; return (unsigned char)value; } double SpectrogramLayer::getEffectiveMinFrequency() const { sv_samplerate_t sr = m_model->getSampleRate(); double minf = double(sr) / m_fftSize; if (m_minFrequency > 0.0) { int minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.01); if (minbin < 1) minbin = 1; minf = minbin * sr / m_fftSize; } return minf; } double SpectrogramLayer::getEffectiveMaxFrequency() const { sv_samplerate_t sr = m_model->getSampleRate(); double maxf = double(sr) / 2; if (m_maxFrequency > 0.0) { int maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; maxf = maxbin * sr / m_fftSize; } return maxf; } bool SpectrogramLayer::getYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const { Profiler profiler("SpectrogramLayer::getYBinRange"); int h = v->getPaintHeight(); if (y < 0 || y >= h) return false; sv_samplerate_t sr = m_model->getSampleRate(); double minf = getEffectiveMinFrequency(); double maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); // Now map these on to ("proportions of") actual bins q0 = (q0 * m_fftSize) / sr; q1 = (q1 * m_fftSize) / sr; return true; } double SpectrogramLayer::getYForBin(LayerGeometryProvider *, double bin) const { //!!! not implemented throw std::logic_error("not implemented"); } double SpectrogramLayer::getBinForY(LayerGeometryProvider *v, double y) const { //!!! overlap with range methods above (but using double arg) //!!! tidy this int h = v->getPaintHeight(); if (y < 0 || y >= h) return false; sv_samplerate_t sr = m_model->getSampleRate(); double minf = getEffectiveMinFrequency(); double maxf = getEffectiveMaxFrequency(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); double q = v->getFrequencyForY(y, minf, maxf, logarithmic); // Now map on to ("proportions of") actual bins q = (q * getFFTSize(v)) / sr; return q; } bool SpectrogramLayer::getXBinRange(LayerGeometryProvider *v, int x, double &s0, double &s1) const { sv_frame_t modelStart = m_model->getStartFrame(); sv_frame_t modelEnd = m_model->getEndFrame(); // Each pixel column covers an exact range of sample frames: sv_frame_t f0 = v->getFrameForX(x) - modelStart; sv_frame_t f1 = v->getFrameForX(x + 1) - modelStart - 1; if (f1 < int(modelStart) || f0 > int(modelEnd)) { return false; } // And that range may be drawn from a possibly non-integral // range of spectrogram windows: int windowIncrement = getWindowIncrement(); s0 = double(f0) / windowIncrement; s1 = double(f1) / windowIncrement; return true; } bool SpectrogramLayer::getXBinSourceRange(LayerGeometryProvider *v, int x, RealTime &min, RealTime &max) const { double s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int windowIncrement = getWindowIncrement(); int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2; int w1 = s1i * windowIncrement + windowIncrement + (m_windowSize - windowIncrement)/2 - 1; min = RealTime::frame2RealTime(w0, m_model->getSampleRate()); max = RealTime::frame2RealTime(w1, m_model->getSampleRate()); return true; } bool SpectrogramLayer::getYBinSourceRange(LayerGeometryProvider *v, int y, double &freqMin, double &freqMax) const { double q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); sv_samplerate_t sr = m_model->getSampleRate(); for (int q = q0i; q <= q1i; ++q) { if (q == q0i) freqMin = (sr * q) / m_fftSize; if (q == q1i) freqMax = (sr * (q+1)) / m_fftSize; } return true; } bool SpectrogramLayer::getAdjustedYBinSourceRange(LayerGeometryProvider *v, int x, int y, double &freqMin, double &freqMax, double &adjFreqMin, double &adjFreqMax) const { if (!m_model || !m_model->isOK() || !m_model->isReady()) { return false; } FFTModel *fft = getFFTModel(v); if (!fft) return false; double s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; double q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; int s0i = int(s0 + 0.001); int s1i = int(s1); int q0i = int(q0 + 0.001); int q1i = int(q1); sv_samplerate_t sr = m_model->getSampleRate(); bool haveAdj = false; bool peaksOnly = (m_binDisplay == PeakBins || m_binDisplay == PeakFrequencies); for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { double binfreq = (double(sr) * q) / m_windowSize; if (q == q0i) freqMin = binfreq; if (q == q1i) freqMax = binfreq; if (peaksOnly && !fft->isLocalPeak(s, q)) continue; if (!fft->isOverThreshold (s, q, float(m_threshold * double(m_fftSize)/2.0))) { continue; } double freq = binfreq; if (s < int(fft->getWidth()) - 1) { fft->estimateStableFrequency(s, q, freq); if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq; if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq; haveAdj = true; } } } if (!haveAdj) { adjFreqMin = adjFreqMax = 0.0; } return haveAdj; } bool SpectrogramLayer::getXYBinSourceRange(LayerGeometryProvider *v, int x, int y, double &min, double &max, double &phaseMin, double &phaseMax) const { if (!m_model || !m_model->isOK() || !m_model->isReady()) { return false; } double q0 = 0, q1 = 0; if (!getYBinRange(v, y, q0, q1)) return false; double s0 = 0, s1 = 0; if (!getXBinRange(v, x, s0, s1)) return false; int q0i = int(q0 + 0.001); int q1i = int(q1); int s0i = int(s0 + 0.001); int s1i = int(s1); bool rv = false; FFTModel *fft = getFFTModel(v); if (fft) { int cw = fft->getWidth(); int ch = fft->getHeight(); min = 0.0; max = 0.0; phaseMin = 0.0; phaseMax = 0.0; bool have = false; for (int q = q0i; q <= q1i; ++q) { for (int s = s0i; s <= s1i; ++s) { if (s >= 0 && q >= 0 && s < cw && q < ch) { double value; value = fft->getPhaseAt(s, q); if (!have || value < phaseMin) { phaseMin = value; } if (!have || value > phaseMax) { phaseMax = value; } value = fft->getMagnitudeAt(s, q) / (m_fftSize/2.0); if (!have || value < min) { min = value; } if (!have || value > max) { max = value; } have = true; } } } if (have) { rv = true; } } return rv; } int SpectrogramLayer::getFFTSize(const LayerGeometryProvider *) const { //!!! return m_fftSize; } FFTModel * SpectrogramLayer::getFFTModel(const LayerGeometryProvider *v) const { if (!m_model) return 0; int fftSize = getFFTSize(v); const View *view = v->getView(); if (m_fftModels.find(view->getId()) != m_fftModels.end()) { if (m_fftModels[view->getId()] == 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found null model" << endl; #endif return 0; } if (m_fftModels[view->getId()]->getHeight() != fftSize / 2 + 1) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found a model with the wrong height (" << m_fftModels[view->getId()]->getHeight() << ", wanted " << (fftSize / 2 + 1) << ")" << endl; #endif delete m_fftModels[view->getId()]; m_fftModels.erase(view->getId()); delete m_peakCaches[view->getId()]; m_peakCaches.erase(view->getId()); } else { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found a good model of height " << m_fftModels[view->getId()]->getHeight() << endl; #endif return m_fftModels[view->getId()]; } } if (m_fftModels.find(view->getId()) == m_fftModels.end()) { FFTModel *model = new FFTModel(m_model, m_channel, m_windowType, m_windowSize, getWindowIncrement(), fftSize); if (!model->isOK()) { QMessageBox::critical (0, tr("FFT cache failed"), tr("Failed to create the FFT model for this spectrogram.\n" "There may be insufficient memory or disc space to continue.")); delete model; m_fftModels[view->getId()] = 0; return 0; } if (!m_sliceableModel) { #ifdef DEBUG_SPECTROGRAM cerr << "SpectrogramLayer: emitting sliceableModelReplaced(0, " << model << ")" << endl; #endif ((SpectrogramLayer *)this)->sliceableModelReplaced(0, model); m_sliceableModel = model; } m_fftModels[view->getId()] = model; } return m_fftModels[view->getId()]; } Dense3DModelPeakCache * SpectrogramLayer::getPeakCache(const LayerGeometryProvider *v) const { const View *view = v->getView(); if (!m_peakCaches[view->getId()]) { FFTModel *f = getFFTModel(v); if (!f) return 0; m_peakCaches[view->getId()] = new Dense3DModelPeakCache(f, m_peakCacheDivisor); } return m_peakCaches[view->getId()]; } const Model * SpectrogramLayer::getSliceableModel() const { if (m_sliceableModel) return m_sliceableModel; if (m_fftModels.empty()) return 0; m_sliceableModel = m_fftModels.begin()->second; return m_sliceableModel; } void SpectrogramLayer::invalidateFFTModels() { #ifdef DEBUG_SPECTROGRAM cerr << "SpectrogramLayer::invalidateFFTModels called" << endl; #endif for (ViewFFTMap::iterator i = m_fftModels.begin(); i != m_fftModels.end(); ++i) { delete i->second; } for (PeakCacheMap::iterator i = m_peakCaches.begin(); i != m_peakCaches.end(); ++i) { delete i->second; } m_fftModels.clear(); m_peakCaches.clear(); if (m_sliceableModel) { cerr << "SpectrogramLayer: emitting sliceableModelReplaced(" << m_sliceableModel << ", 0)" << endl; emit sliceableModelReplaced(m_sliceableModel, 0); m_sliceableModel = 0; } } void SpectrogramLayer::invalidateMagnitudes() { #ifdef DEBUG_SPECTROGRAM cerr << "SpectrogramLayer::invalidateMagnitudes called" << endl; #endif m_viewMags.clear(); for (vector<MagnitudeRange>::iterator i = m_columnMags.begin(); i != m_columnMags.end(); ++i) { *i = MagnitudeRange(); } } bool SpectrogramLayer::updateViewMagnitudes(LayerGeometryProvider *v) const { MagnitudeRange mag; int x0 = 0, x1 = v->getPaintWidth(); double s00 = 0, s01 = 0, s10 = 0, s11 = 0; if (!getXBinRange(v, x0, s00, s01)) { s00 = s01 = double(m_model->getStartFrame()) / getWindowIncrement(); } if (!getXBinRange(v, x1, s10, s11)) { s10 = s11 = double(m_model->getEndFrame()) / getWindowIncrement(); } int s0 = int(min(s00, s10) + 0.0001); int s1 = int(max(s01, s11) + 0.0001); // SVDEBUG << "SpectrogramLayer::updateViewMagnitudes: x0 = " << x0 << ", x1 = " << x1 << ", s00 = " << s00 << ", s11 = " << s11 << " s0 = " << s0 << ", s1 = " << s1 << endl; if (int(m_columnMags.size()) <= s1) { m_columnMags.resize(s1 + 1); } for (int s = s0; s <= s1; ++s) { if (m_columnMags[s].isSet()) { mag.sample(m_columnMags[s]); } } #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::updateViewMagnitudes returning from cols " << s0 << " -> " << s1 << " inclusive" << endl; cerr << "SpectrogramLayer::updateViewMagnitudes: for view id " << v->getId() << ": min is " << mag.getMin() << ", max is " << mag.getMax() << endl; #endif if (!mag.isSet()) return false; if (mag == m_viewMags[v->getId()]) return false; m_viewMags[v->getId()] = mag; return true; } void SpectrogramLayer::setSynchronousPainting(bool synchronous) { m_synchronous = synchronous; } ScrollableImageCache & SpectrogramLayer::getImageCacheReference(const LayerGeometryProvider *view) const { if (m_imageCaches.find(view->getId()) == m_imageCaches.end()) { m_imageCaches[view->getId()] = ScrollableImageCache(view); } return m_imageCaches.at(view->getId()); } void SpectrogramLayer::paint(LayerGeometryProvider *v, QPainter &paint, QRect rect) const { Profiler profiler("SpectrogramLayer::paint", false); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paint() entering: m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << endl; cerr << "SpectrogramLayer::paint(): rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << endl; #endif sv_frame_t startFrame = v->getStartFrame(); if (!m_model || !m_model->isOK() || !m_model->isReady()) { return; } if (isLayerDormant(v)) { SVDEBUG << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << endl; } // Need to do this even if !isLayerDormant, as that could mean v // is not in the dormancy map at all -- we need it to be present // and accountable for when determining whether we need the cache // in the cache-fill thread above. //!!! no inter use cache-fill thread const_cast<SpectrogramLayer *>(this)->Layer::setLayerDormant(v, false); int fftSize = getFFTSize(v); const View *view = v->getView(); ScrollableImageCache &cache = getImageCacheReference(view); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paint(): image cache valid area from " << cache.getValidLeft() << " width " << cache.getValidWidth() << ", height " << cache.getSize().height() << endl; if (rect.x() + rect.width() + 1 < cache.getValidLeft() || rect.x() > cache.getValidRight()) { cerr << "SpectrogramLayer: NOTE: requested rect is not contiguous with cache valid area" << endl; } #endif int zoomLevel = v->getZoomLevel(); int x0 = v->getXForViewX(rect.x()); int x1 = v->getXForViewX(rect.x() + rect.width()); if (x0 < 0) x0 = 0; if (x1 > v->getPaintWidth()) x1 = v->getPaintWidth(); if (updateViewMagnitudes(v)) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: magnitude range changed to [" << m_viewMags[v->getId()].getMin() << "->" << m_viewMags[v->getId()].getMax() << "]" << endl; #endif if (m_normalization == ColumnOp::NormalizeVisibleArea) { cache.invalidate(); } } if (cache.getZoomLevel() != zoomLevel || cache.getSize() != v->getPaintSize()) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: resizing image cache from " << cache.getSize().width() << "x" << cache.getSize().height() << " to " << v->getPaintSize().width() << "x" << v->getPaintSize().height() << " and updating zoom level from " << cache.getZoomLevel() << " to " << zoomLevel << endl; #endif cache.resize(v->getPaintSize()); cache.setZoomLevel(zoomLevel); cache.setStartFrame(startFrame); } if (cache.isValid()) { if (v->getXForFrame(cache.getStartFrame()) == v->getXForFrame(startFrame) && cache.getValidLeft() <= x0 && cache.getValidRight() >= x1) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: image cache hit!" << endl; #endif paint.drawImage(rect, cache.getImage(), rect); illuminateLocalFeatures(v, paint); return; } else { // cache doesn't begin at the right frame or doesn't // contain the complete view, but might be scrollable or // partially usable #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: scrolling the image cache if applicable" << endl; #endif cache.scrollTo(startFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: after scrolling, cache valid from " << cache.getValidLeft() << " width " << cache.getValidWidth() << endl; #endif } } bool rightToLeft = false; if (!cache.isValid()) { if (!m_synchronous) { // When rendering the whole thing, start from somewhere near // the middle so that the region of interest appears first //!!! (perhaps we should have some cunning test to avoid //!!! doing this if past repaints have appeared fast //!!! enough to do the whole width in one shot) if (x0 == 0 && x1 == v->getPaintWidth()) { x0 = int(x1 * 0.3); } } } else { // When rendering only a part of the cache, we need to make // sure that the part we're rendering is adjacent to (or // overlapping) a valid area of cache, if we have one. The // alternative is to ditch the valid area of cache and render // only the requested area, but that's risky because this can // happen when just waving the pointer over a small part of // the view -- if we lose the partly-built cache every time // the user does that, we'll never finish building it. int left = x0; int width = x1 - x0; bool isLeftOfValidArea = false; cache.adjustToTouchValidArea(left, width, isLeftOfValidArea); x0 = left; x1 = x0 + width; // That call also told us whether we should be painting // sub-regions of our target region in right-to-left order in // order to ensure contiguity rightToLeft = isLeftOfValidArea; } // We always paint the full height when refreshing the cache. // Smaller heights can be used when painting direct from cache // (further up in this function), but we want to ensure the cache // is coherent without having to worry about vertical matching of // required and valid areas as well as horizontal. int h = v->getPaintHeight(); int repaintWidth = x1 - x0; #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: x0 " << x0 << ", x1 " << x1 << ", repaintWidth " << repaintWidth << ", h " << h << ", rightToLeft " << rightToLeft << endl; #endif sv_samplerate_t sr = m_model->getSampleRate(); // Set minFreq and maxFreq to the frequency extents of the possibly // zero-padded visible bin range, and displayMinFreq and displayMaxFreq // to the actual scale frequency extents (presumably not zero padded). // If we are zero padding (i.e. oversampling) we want to use the // zero-padded equivalents of the bins that we would be using if // not zero padded, to avoid spaces at the top and bottom of the // display. int maxbin = m_fftSize / 2; if (m_maxFrequency > 0) { maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.001); if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; } int minbin = 1; if (m_minFrequency > 0) { minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.001); // cerr << "m_minFrequency = " << m_minFrequency << " -> minbin = " << minbin << endl; if (minbin < 1) minbin = 1; if (minbin >= maxbin) minbin = maxbin - 1; } int over = getFFTOversampling(); minbin = minbin * over; maxbin = (maxbin + 1) * over - 1; double minFreq = (double(minbin) * sr) / fftSize; double maxFreq = (double(maxbin) * sr) / fftSize; double displayMinFreq = minFreq; double displayMaxFreq = maxFreq; if (fftSize != m_fftSize) { displayMinFreq = getEffectiveMinFrequency(); displayMaxFreq = getEffectiveMaxFrequency(); } // cerr << "(giving actual minFreq " << minFreq << " and display minFreq " << displayMinFreq << ")" << endl; int increment = getWindowIncrement(); bool logarithmic = (m_frequencyScale == LogFrequencyScale); MagnitudeRange overallMag = m_viewMags[v->getId()]; bool overallMagChanged = false; #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: " << ((double(v->getFrameForX(1) - v->getFrameForX(0))) / increment) << " bin(s) per pixel" << endl; #endif if (repaintWidth == 0) { SVDEBUG << "*** NOTE: repaintWidth == 0" << endl; } Profiler outerprof("SpectrogramLayer::paint: all cols"); // The draw buffer contains a fragment at either our pixel // resolution (if there is more than one time-bin per pixel) or // time-bin resolution (if a time-bin spans more than one pixel). // We need to ensure that it starts and ends at points where a // time-bin boundary occurs at an exact pixel boundary, and with a // certain amount of overlap across existing pixels so that we can // scale and draw from it without smoothing errors at the edges. // If (getFrameForX(x) / increment) * increment == // getFrameForX(x), then x is a time-bin boundary. We want two // such boundaries at either side of the draw buffer -- one which // we draw up to, and one which we subsequently crop at. bool bufferIsBinResolution = false; if (increment > zoomLevel) bufferIsBinResolution = true; sv_frame_t leftBoundaryFrame = -1, leftCropFrame = -1; sv_frame_t rightBoundaryFrame = -1, rightCropFrame = -1; int bufwid; if (bufferIsBinResolution) { for (int x = x0; ; --x) { sv_frame_t f = v->getFrameForX(x); if ((f / increment) * increment == f) { if (leftCropFrame == -1) leftCropFrame = f; else if (x < x0 - 2) { leftBoundaryFrame = f; break; } } } for (int x = x0 + repaintWidth; ; ++x) { sv_frame_t f = v->getFrameForX(x); if ((f / increment) * increment == f) { if (rightCropFrame == -1) rightCropFrame = f; else if (x > x0 + repaintWidth + 2) { rightBoundaryFrame = f; break; } } } #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "Left: crop: " << leftCropFrame << " (bin " << leftCropFrame/increment << "); boundary: " << leftBoundaryFrame << " (bin " << leftBoundaryFrame/increment << ")" << endl; cerr << "Right: crop: " << rightCropFrame << " (bin " << rightCropFrame/increment << "); boundary: " << rightBoundaryFrame << " (bin " << rightBoundaryFrame/increment << ")" << endl; #endif bufwid = int((rightBoundaryFrame - leftBoundaryFrame) / increment); } else { bufwid = repaintWidth; } vector<int> binforx(bufwid); vector<double> binfory(h); bool usePeaksCache = false; if (bufferIsBinResolution) { for (int x = 0; x < bufwid; ++x) { binforx[x] = int(leftBoundaryFrame / increment) + x; } m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); } else { for (int x = 0; x < bufwid; ++x) { double s0 = 0, s1 = 0; if (getXBinRange(v, x + x0, s0, s1)) { binforx[x] = int(s0 + 0.0001); } else { binforx[x] = -1; //??? } } if (m_drawBuffer.width() < bufwid || m_drawBuffer.height() != h) { m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); } usePeaksCache = (increment * m_peakCacheDivisor) < zoomLevel; if (m_colourScale == PhaseColourScale) usePeaksCache = false; } for (int pixel = 0; pixel < 256; ++pixel) { m_drawBuffer.setColor((unsigned char)pixel, m_palette.getColour((unsigned char)pixel).rgb()); } m_drawBuffer.fill(0); int attainedBufwid = bufwid; double softTimeLimit; if (m_synchronous) { // must paint the whole thing for synchronous mode, so give // "no timeout" softTimeLimit = 0.0; } else if (bufferIsBinResolution) { // calculating boundaries later will be too fiddly for partial // paints, and painting should be fast anyway when this is the // case because it means we're well zoomed in softTimeLimit = 0.0; } else { // neither limitation applies, so use a short soft limit if (m_binDisplay == PeakFrequencies) { softTimeLimit = 0.15; } else { softTimeLimit = 0.1; } } if (m_binDisplay != PeakFrequencies) { for (int y = 0; y < h; ++y) { double q0 = 0, q1 = 0; if (!getYBinRange(v, h-y-1, q0, q1)) { binfory[y] = -1; } else { binfory[y] = q0; } } attainedBufwid = paintDrawBuffer(v, bufwid, h, binforx, binfory, usePeaksCache, overallMag, overallMagChanged, rightToLeft, softTimeLimit); } else { attainedBufwid = paintDrawBufferPeakFrequencies(v, bufwid, h, binforx, minbin, maxbin, displayMinFreq, displayMaxFreq, logarithmic, overallMag, overallMagChanged, rightToLeft, softTimeLimit); } int failedToRepaint = bufwid - attainedBufwid; int paintedLeft = x0; int paintedWidth = x1 - x0; if (failedToRepaint > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paint(): Failed to repaint " << failedToRepaint << " of " << bufwid << " columns in time (so managed to repaint " << bufwid - failedToRepaint << ")" << endl; #endif if (rightToLeft) { paintedLeft += failedToRepaint; } paintedWidth -= failedToRepaint; if (paintedWidth < 0) { paintedWidth = 0; } } else if (failedToRepaint < 0) { cerr << "WARNING: failedToRepaint < 0 (= " << failedToRepaint << ")" << endl; failedToRepaint = 0; } if (overallMagChanged) { m_viewMags[v->getId()] = overallMag; #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: Overall mag is now [" << m_viewMags[v->getId()].getMin() << "->" << m_viewMags[v->getId()].getMax() << "] - will be updating" << endl; #endif } outerprof.end(); Profiler profiler2("SpectrogramLayer::paint: draw image"); if (paintedWidth > 0) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: Copying " << paintedWidth << "x" << h << " from draw buffer at " << paintedLeft - x0 << "," << 0 << " to " << paintedWidth << "x" << h << " on cache at " << x0 << "," << 0 << endl; #endif if (bufferIsBinResolution) { int scaledLeft = v->getXForFrame(leftBoundaryFrame); int scaledRight = v->getXForFrame(rightBoundaryFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: Rescaling image from " << bufwid << "x" << h << " to " << scaledRight-scaledLeft << "x" << h << endl; #endif Preferences::SpectrogramXSmoothing xsmoothing = Preferences::getInstance()->getSpectrogramXSmoothing(); QImage scaled = m_drawBuffer.scaled (scaledRight - scaledLeft, h, Qt::IgnoreAspectRatio, ((xsmoothing == Preferences::SpectrogramXInterpolated) ? Qt::SmoothTransformation : Qt::FastTransformation)); int scaledLeftCrop = v->getXForFrame(leftCropFrame); int scaledRightCrop = v->getXForFrame(rightCropFrame); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: Drawing image region of width " << scaledRightCrop - scaledLeftCrop << " to " << scaledLeftCrop << " from " << scaledLeftCrop - scaledLeft << endl; #endif int targetLeft = scaledLeftCrop; if (targetLeft < 0) { targetLeft = 0; } int targetWidth = scaledRightCrop - targetLeft; if (targetLeft + targetWidth > cache.getSize().width()) { targetWidth = cache.getSize().width() - targetLeft; } int sourceLeft = targetLeft - scaledLeft; if (sourceLeft < 0) { sourceLeft = 0; } int sourceWidth = targetWidth; if (targetWidth > 0) { cache.drawImage (targetLeft, targetWidth, scaled, sourceLeft, sourceWidth); } } else { cache.drawImage(paintedLeft, paintedWidth, m_drawBuffer, paintedLeft - x0, paintedWidth); } } #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: Cache valid area now from " << cache.getValidLeft() << " width " << cache.getValidWidth() << ", height " << cache.getSize().height() << endl; #endif QRect pr = rect & cache.getValidArea(); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer: Copying " << pr.width() << "x" << pr.height() << " from cache at " << pr.x() << "," << pr.y() << " to window" << endl; #endif paint.drawImage(pr.x(), pr.y(), cache.getImage(), pr.x(), pr.y(), pr.width(), pr.height()); if (!m_synchronous) { if ((m_normalization != ColumnOp::NormalizeVisibleArea) || !overallMagChanged) { QRect areaLeft(0, 0, cache.getValidLeft(), h); QRect areaRight(cache.getValidRight(), 0, cache.getSize().width() - cache.getValidRight(), h); bool haveSpaceLeft = (areaLeft.width() > 0); bool haveSpaceRight = (areaRight.width() > 0); bool updateLeft = haveSpaceLeft; bool updateRight = haveSpaceRight; if (updateLeft && updateRight) { if (rightToLeft) { // we just did something adjoining the cache on // its left side, so now do something on its right updateLeft = false; } else { updateRight = false; } } if (updateLeft) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paint() updating left (" << areaLeft.x() << ", " << areaLeft.width() << ")" << endl; #endif v->updatePaintRect(areaLeft); } if (updateRight) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paint() updating right (" << areaRight.x() << ", " << areaRight.width() << ")" << endl; #endif v->updatePaintRect(areaRight); } } else { // overallMagChanged cerr << "\noverallMagChanged - updating all\n" << endl; cache.invalidate(); v->updatePaintRect(v->getPaintRect()); } } illuminateLocalFeatures(v, paint); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paint() returning" << endl; #endif } int SpectrogramLayer::paintDrawBufferPeakFrequencies(LayerGeometryProvider *v, int w, int h, const vector<int> &binforx, int minbin, int maxbin, double displayMinFreq, double displayMaxFreq, bool logarithmic, MagnitudeRange &overallMag, bool &overallMagChanged, bool rightToLeft, double softTimeLimit) const { Profiler profiler("SpectrogramLayer::paintDrawBufferPeakFrequencies"); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paintDrawBufferPeakFrequencies: minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; #endif if (minbin < 0) minbin = 0; if (maxbin < 0) maxbin = minbin+1; FFTModel *fft = getFFTModel(v); if (!fft) return 0; FFTModel::PeakSet peakfreqs; vector<float> preparedColumn; int psx = -1; int minColumns = 4; bool haveTimeLimits = (softTimeLimit > 0.0); double hardTimeLimit = softTimeLimit * 2.0; bool overridingSoftLimit = false; auto startTime = chrono::steady_clock::now(); int start = 0; int finish = w; int step = 1; if (rightToLeft) { start = w-1; finish = -1; step = -1; } int columnCount = 0; for (int x = start; x != finish; x += step) { ++columnCount; if (binforx[x] < 0) continue; int sx0 = binforx[x]; int sx1 = sx0; if (x+1 < w) sx1 = binforx[x+1]; if (sx0 < 0) sx0 = sx1 - 1; if (sx0 < 0) continue; if (sx1 <= sx0) sx1 = sx0 + 1; vector<float> pixelPeakColumn; for (int sx = sx0; sx < sx1; ++sx) { if (sx < 0 || sx >= int(fft->getWidth())) { continue; } if (sx != psx) { ColumnOp::Column column; column = getColumnFromFFTModel(fft, sx, minbin, maxbin - minbin + 1); if (m_colourScale != PhaseColourScale) { column = ColumnOp::fftScale(column, m_fftSize); } recordColumnExtents(column, sx, overallMag, overallMagChanged); if (m_colourScale != PhaseColourScale) { column = ColumnOp::normalize(column, m_normalization); } preparedColumn = ColumnOp::applyGain(column, m_gain); psx = sx; } if (sx == sx0) { pixelPeakColumn = preparedColumn; peakfreqs = fft->getPeakFrequencies(FFTModel::AllPeaks, sx, minbin, maxbin - 1); } else { for (int i = 0; in_range_for(pixelPeakColumn, i); ++i) { pixelPeakColumn[i] = std::max(pixelPeakColumn[i], preparedColumn[i]); } } } if (!pixelPeakColumn.empty()) { for (FFTModel::PeakSet::const_iterator pi = peakfreqs.begin(); pi != peakfreqs.end(); ++pi) { int bin = pi->first; double freq = pi->second; if (bin < minbin) continue; if (bin > maxbin) break; double value = pixelPeakColumn[bin - minbin]; double y = v->getYForFrequency (freq, displayMinFreq, displayMaxFreq, logarithmic); int iy = int(y + 0.5); if (iy < 0 || iy >= h) continue; m_drawBuffer.setPixel(x, iy, getDisplayValue(v, value)); } } if (haveTimeLimits) { if (columnCount >= minColumns) { auto t = chrono::steady_clock::now(); double diff = chrono::duration<double>(t - startTime).count(); if (diff > hardTimeLimit) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paintDrawBufferPeakFrequencies: hard limit " << hardTimeLimit << " sec exceeded after " << columnCount << " columns with time " << diff << endl; #endif return columnCount; } else if (diff > softTimeLimit && !overridingSoftLimit) { // If we're more than half way through by the time // we reach the soft limit, ignore it (though // still respect the hard limit, above). Otherwise // respect the soft limit and return now. if (columnCount > w/2) { overridingSoftLimit = true; } else { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paintDrawBufferPeakFrequencies: soft limit " << softTimeLimit << " sec exceeded after " << columnCount << " columns with time " << diff << endl; #endif return columnCount; } } } } } return columnCount; } vector<float> SpectrogramLayer::getColumnFromFFTModel(FFTModel *fft, int sx, // column number in model int minbin, int bincount) const { vector<float> values(bincount, 0.f); if (m_colourScale == PhaseColourScale) { fft->getPhasesAt(sx, values.data(), minbin, bincount); } else { fft->getMagnitudesAt(sx, values.data(), minbin, bincount); } return values; } vector<float> SpectrogramLayer::getColumnFromGenericModel(DenseThreeDimensionalModel *model, int sx, // column number in model int minbin, int bincount) const { if (m_colourScale == PhaseColourScale) { throw std::logic_error("can't use phase scale with generic 3d model"); } auto col = model->getColumn(sx); return vector<float>(col.data() + minbin, col.data() + minbin + bincount); } void SpectrogramLayer::recordColumnExtents(const vector<float> &col, int sx, // column index, for m_columnMags MagnitudeRange &overallMag, bool &overallMagChanged) const { if (!in_range_for(m_columnMags, sx)) { m_columnMags.resize(sx + 1); } MagnitudeRange mr; for (auto v: col) { mr.sample(v); } m_columnMags[sx] = mr; if (overallMag.sample(mr)) { overallMagChanged = true; } } int SpectrogramLayer::paintDrawBuffer(LayerGeometryProvider *v, int w, int h, const vector<int> &binforx, const vector<double> &binfory, bool usePeaksCache, MagnitudeRange &overallMag, bool &overallMagChanged, bool rightToLeft, double softTimeLimit) const { Profiler profiler("SpectrogramLayer::paintDrawBuffer"); int minbin = int(binfory[0] + 0.0001); int maxbin = int(binfory[h-1]); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paintDrawBuffer: minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; #endif if (minbin < 0) minbin = 0; if (maxbin < 0) maxbin = minbin+1; DenseThreeDimensionalModel *peakCacheModel = 0; FFTModel *fftModel = 0; DenseThreeDimensionalModel *sourceModel = 0; #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paintDrawBuffer: Note: bin display = " << m_binDisplay << ", w = " << w << ", binforx[" << w-1 << "] = " << binforx[w-1] << ", binforx[0] = " << binforx[0] << endl; #endif int divisor = 1; if (usePeaksCache) { peakCacheModel = getPeakCache(v); divisor = m_peakCacheDivisor; sourceModel = peakCacheModel; } else { fftModel = getFFTModel(v); sourceModel = fftModel; } if (!sourceModel) return 0; bool interpolate = false; Preferences::SpectrogramSmoothing smoothing = Preferences::getInstance()->getSpectrogramSmoothing(); if (smoothing == Preferences::SpectrogramInterpolated || smoothing == Preferences::SpectrogramZeroPaddedAndInterpolated) { if (m_binDisplay != PeakBins && m_binDisplay != PeakFrequencies) { interpolate = true; } } int psx = -1; int minColumns = 4; bool haveTimeLimits = (softTimeLimit > 0.0); double hardTimeLimit = softTimeLimit * 2.0; bool overridingSoftLimit = false; auto startTime = chrono::steady_clock::now(); int start = 0; int finish = w; int step = 1; if (rightToLeft) { start = w-1; finish = -1; step = -1; } int columnCount = 0; vector<float> preparedColumn; for (int x = start; x != finish; x += step) { // x is the on-canvas pixel coord; sx (later) will be the // source column index ++columnCount; if (binforx[x] < 0) continue; int sx0 = binforx[x] / divisor; int sx1 = sx0; if (x+1 < w) sx1 = binforx[x+1] / divisor; if (sx0 < 0) sx0 = sx1 - 1; if (sx0 < 0) continue; if (sx1 <= sx0) sx1 = sx0 + 1; vector<float> pixelPeakColumn; for (int sx = sx0; sx < sx1; ++sx) { #ifdef DEBUG_SPECTROGRAM_REPAINT // cerr << "sx = " << sx << endl; #endif if (sx < 0 || sx >= sourceModel->getWidth()) { continue; } if (sx != psx) { // order: // get column -> scale -> record extents -> // normalise -> peak pick -> apply display gain -> // distribute/interpolate ColumnOp::Column column; if (peakCacheModel) { column = getColumnFromGenericModel(peakCacheModel, sx, minbin, maxbin - minbin + 1); } else { column = getColumnFromFFTModel(fftModel, sx, minbin, maxbin - minbin + 1); } if (m_colourScale != PhaseColourScale) { column = ColumnOp::fftScale(column, m_fftSize); } recordColumnExtents(column, sx, overallMag, overallMagChanged); if (m_colourScale != PhaseColourScale) { column = ColumnOp::normalize(column, m_normalization); } if (m_binDisplay == PeakBins) { column = ColumnOp::peakPick(column); } preparedColumn = ColumnOp::distribute(ColumnOp::applyGain(column, m_gain), h, binfory, minbin, interpolate); psx = sx; } if (sx == sx0) { pixelPeakColumn = preparedColumn; } else { for (int i = 0; in_range_for(pixelPeakColumn, i); ++i) { pixelPeakColumn[i] = std::max(pixelPeakColumn[i], preparedColumn[i]); } } } if (!pixelPeakColumn.empty()) { for (int y = 0; y < h; ++y) { m_drawBuffer.setPixel(x, h-y-1, getDisplayValue(v, pixelPeakColumn[y])); } } if (haveTimeLimits) { if (columnCount >= minColumns) { auto t = chrono::steady_clock::now(); double diff = chrono::duration<double>(t - startTime).count(); if (diff > hardTimeLimit) { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paintDrawBuffer: hard limit " << hardTimeLimit << " sec exceeded after " << columnCount << " columns with time " << diff << endl; #endif return columnCount; } else if (diff > softTimeLimit && !overridingSoftLimit) { // If we're more than half way through by the time // we reach the soft limit, ignore it (though // still respect the hard limit, above). Otherwise // respect the soft limit and return now. if (columnCount > w/2) { overridingSoftLimit = true; } else { #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::paintDrawBuffer: soft limit " << softTimeLimit << " sec exceeded after " << columnCount << " columns with time " << diff << endl; #endif return columnCount; } } } } } return columnCount; } void SpectrogramLayer::illuminateLocalFeatures(LayerGeometryProvider *v, QPainter &paint) const { Profiler profiler("SpectrogramLayer::illuminateLocalFeatures"); QPoint localPos; if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { return; } // cerr << "SpectrogramLayer: illuminateLocalFeatures(" // << localPos.x() << "," << localPos.y() << ")" << endl; double s0, s1; double f0, f1; if (getXBinRange(v, localPos.x(), s0, s1) && getYBinSourceRange(v, localPos.y(), f0, f1)) { int s0i = int(s0 + 0.001); int s1i = int(s1); int x0 = v->getXForFrame(s0i * getWindowIncrement()); int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); int y1 = int(getYForFrequency(v, f1)); int y0 = int(getYForFrequency(v, f0)); // cerr << "SpectrogramLayer: illuminate " // << x0 << "," << y1 << " -> " << x1 << "," << y0 << endl; paint.setPen(v->getForeground()); //!!! should we be using paintCrosshairs for this? paint.drawRect(x0, y1, x1 - x0 + 1, y0 - y1 + 1); } } double SpectrogramLayer::getYForFrequency(const LayerGeometryProvider *v, double frequency) const { return v->getYForFrequency(frequency, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } double SpectrogramLayer::getFrequencyForY(const LayerGeometryProvider *v, int y) const { return v->getFrequencyForY(y, getEffectiveMinFrequency(), getEffectiveMaxFrequency(), m_frequencyScale == LogFrequencyScale); } int SpectrogramLayer::getCompletion(LayerGeometryProvider *v) const { const View *view = v->getView(); if (m_fftModels.find(view->getId()) == m_fftModels.end()) return 100; int completion = m_fftModels[view->getId()]->getCompletion(); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "SpectrogramLayer::getCompletion: completion = " << completion << endl; #endif return completion; } QString SpectrogramLayer::getError(LayerGeometryProvider *v) const { const View *view = v->getView(); if (m_fftModels.find(view->getId()) == m_fftModels.end()) return ""; return m_fftModels[view->getId()]->getError(); } bool SpectrogramLayer::getValueExtents(double &min, double &max, bool &logarithmic, QString &unit) const { if (!m_model) return false; sv_samplerate_t sr = m_model->getSampleRate(); min = double(sr) / m_fftSize; max = double(sr) / 2; logarithmic = (m_frequencyScale == LogFrequencyScale); unit = "Hz"; return true; } bool SpectrogramLayer::getDisplayExtents(double &min, double &max) const { min = getEffectiveMinFrequency(); max = getEffectiveMaxFrequency(); // SVDEBUG << "SpectrogramLayer::getDisplayExtents: " << min << "->" << max << endl; return true; } bool SpectrogramLayer::setDisplayExtents(double min, double max) { if (!m_model) return false; // SVDEBUG << "SpectrogramLayer::setDisplayExtents: " << min << "->" << max << endl; if (min < 0) min = 0; if (max > m_model->getSampleRate()/2.0) max = m_model->getSampleRate()/2.0; int minf = int(lrint(min)); int maxf = int(lrint(max)); if (m_minFrequency == minf && m_maxFrequency == maxf) return true; invalidateImageCaches(); invalidateMagnitudes(); m_minFrequency = minf; m_maxFrequency = maxf; emit layerParametersChanged(); int vs = getCurrentVerticalZoomStep(); if (vs != m_lastEmittedZoomStep) { emit verticalZoomChanged(); m_lastEmittedZoomStep = vs; } return true; } bool SpectrogramLayer::getYScaleValue(const LayerGeometryProvider *v, int y, double &value, QString &unit) const { value = getFrequencyForY(v, y); unit = "Hz"; return true; } bool SpectrogramLayer::snapToFeatureFrame(LayerGeometryProvider *, sv_frame_t &frame, int &resolution, SnapType snap) const { resolution = getWindowIncrement(); sv_frame_t left = (frame / resolution) * resolution; sv_frame_t right = left + resolution; switch (snap) { case SnapLeft: frame = left; break; case SnapRight: frame = right; break; case SnapNearest: case SnapNeighbouring: if (frame - left > right - frame) frame = right; else frame = left; break; } return true; } void SpectrogramLayer::measureDoubleClick(LayerGeometryProvider *v, QMouseEvent *e) { const View *view = v->getView(); ScrollableImageCache &cache = getImageCacheReference(view); cerr << "cache width: " << cache.getSize().width() << ", height: " << cache.getSize().height() << endl; QImage image = cache.getImage(); ImageRegionFinder finder; QRect rect = finder.findRegionExtents(&image, e->pos()); if (rect.isValid()) { MeasureRect mr; setMeasureRectFromPixrect(v, mr, rect); CommandHistory::getInstance()->addCommand (new AddMeasurementRectCommand(this, mr)); } } bool SpectrogramLayer::getCrosshairExtents(LayerGeometryProvider *v, QPainter &paint, QPoint cursorPos, vector<QRect> &extents) const { QRect vertical(cursorPos.x() - 12, 0, 12, v->getPaintHeight()); extents.push_back(vertical); QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); extents.push_back(horizontal); int sw = getVerticalScaleWidth(v, m_haveDetailedScale, paint); QRect freq(sw, cursorPos.y() - paint.fontMetrics().ascent() - 2, paint.fontMetrics().width("123456 Hz") + 2, paint.fontMetrics().height()); extents.push_back(freq); QRect pitch(sw, cursorPos.y() + 2, paint.fontMetrics().width("C#10+50c") + 2, paint.fontMetrics().height()); extents.push_back(pitch); QRect rt(cursorPos.x(), v->getPaintHeight() - paint.fontMetrics().height() - 2, paint.fontMetrics().width("1234.567 s"), paint.fontMetrics().height()); extents.push_back(rt); int w(paint.fontMetrics().width("1234567890") + 2); QRect frame(cursorPos.x() - w - 2, v->getPaintHeight() - paint.fontMetrics().height() - 2, w, paint.fontMetrics().height()); extents.push_back(frame); return true; } void SpectrogramLayer::paintCrosshairs(LayerGeometryProvider *v, QPainter &paint, QPoint cursorPos) const { paint.save(); int sw = getVerticalScaleWidth(v, m_haveDetailedScale, paint); QFont fn = paint.font(); if (fn.pointSize() > 8) { fn.setPointSize(fn.pointSize() - 1); paint.setFont(fn); } paint.setPen(m_crosshairColour); paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->getPaintHeight()); double fundamental = getFrequencyForY(v, cursorPos.y()); PaintAssistant::drawVisibleText(v, paint, sw + 2, cursorPos.y() - 2, QString("%1 Hz").arg(fundamental), PaintAssistant::OutlinedText); if (Pitch::isFrequencyInMidiRange(fundamental)) { QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); PaintAssistant::drawVisibleText(v, paint, sw + 2, cursorPos.y() + paint.fontMetrics().ascent() + 2, pitchLabel, PaintAssistant::OutlinedText); } sv_frame_t frame = v->getFrameForX(cursorPos.x()); RealTime rt = RealTime::frame2RealTime(frame, m_model->getSampleRate()); QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); QString frameLabel = QString("%1").arg(frame); PaintAssistant::drawVisibleText(v, paint, cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, v->getPaintHeight() - 2, frameLabel, PaintAssistant::OutlinedText); PaintAssistant::drawVisibleText(v, paint, cursorPos.x() + 2, v->getPaintHeight() - 2, rtLabel, PaintAssistant::OutlinedText); int harmonic = 2; while (harmonic < 100) { int hy = int(lrint(getYForFrequency(v, fundamental * harmonic))); if (hy < 0 || hy > v->getPaintHeight()) break; int len = 7; if (harmonic % 2 == 0) { if (harmonic % 4 == 0) { len = 12; } else { len = 10; } } paint.drawLine(cursorPos.x() - len, hy, cursorPos.x(), hy); ++harmonic; } paint.restore(); } QString SpectrogramLayer::getFeatureDescription(LayerGeometryProvider *v, QPoint &pos) const { int x = pos.x(); int y = pos.y(); if (!m_model || !m_model->isOK()) return ""; double magMin = 0, magMax = 0; double phaseMin = 0, phaseMax = 0; double freqMin = 0, freqMax = 0; double adjFreqMin = 0, adjFreqMax = 0; QString pitchMin, pitchMax; RealTime rtMin, rtMax; bool haveValues = false; if (!getXBinSourceRange(v, x, rtMin, rtMax)) { return ""; } if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) { haveValues = true; } QString adjFreqText = "", adjPitchText = ""; if (m_binDisplay == PeakFrequencies) { if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, adjFreqMin, adjFreqMax)) { return ""; } if (adjFreqMin != adjFreqMax) { adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n") .arg(adjFreqMin).arg(adjFreqMax); } else { adjFreqText = tr("Peak Frequency:\t%1 Hz\n") .arg(adjFreqMin); } QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin); QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax); if (pmin != pmax) { adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax); } else { adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin); } } else { if (!getYBinSourceRange(v, y, freqMin, freqMax)) return ""; } QString text; if (rtMin != rtMax) { text += tr("Time:\t%1 - %2\n") .arg(rtMin.toText(true).c_str()) .arg(rtMax.toText(true).c_str()); } else { text += tr("Time:\t%1\n") .arg(rtMin.toText(true).c_str()); } if (freqMin != freqMax) { text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n") .arg(adjFreqText) .arg(freqMin) .arg(freqMax) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)) .arg(Pitch::getPitchLabelForFrequency(freqMax)); } else { text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n") .arg(adjFreqText) .arg(freqMin) .arg(adjPitchText) .arg(Pitch::getPitchLabelForFrequency(freqMin)); } if (haveValues) { double dbMin = AudioLevel::multiplier_to_dB(magMin); double dbMax = AudioLevel::multiplier_to_dB(magMax); QString dbMinString; QString dbMaxString; if (dbMin == AudioLevel::DB_FLOOR) { dbMinString = tr("-Inf"); } else { dbMinString = QString("%1").arg(lrint(dbMin)); } if (dbMax == AudioLevel::DB_FLOOR) { dbMaxString = tr("-Inf"); } else { dbMaxString = QString("%1").arg(lrint(dbMax)); } if (lrint(dbMin) != lrint(dbMax)) { text += tr("dB:\t%1 - %2").arg(dbMinString).arg(dbMaxString); } else { text += tr("dB:\t%1").arg(dbMinString); } if (phaseMin != phaseMax) { text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax); } else { text += tr("\nPhase:\t%1").arg(phaseMin); } } return text; } int SpectrogramLayer::getColourScaleWidth(QPainter &paint) const { int cw; cw = paint.fontMetrics().width("-80dB"); return cw; } int SpectrogramLayer::getVerticalScaleWidth(LayerGeometryProvider *, bool detailed, QPainter &paint) const { if (!m_model || !m_model->isOK()) return 0; int cw = 0; if (detailed) cw = getColourScaleWidth(paint); int tw = paint.fontMetrics().width(QString("%1") .arg(m_maxFrequency > 0 ? m_maxFrequency - 1 : m_model->getSampleRate() / 2)); int fw = paint.fontMetrics().width(tr("43Hz")); if (tw < fw) tw = fw; int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); return cw + tickw + tw + 13; } void SpectrogramLayer::paintVerticalScale(LayerGeometryProvider *v, bool detailed, QPainter &paint, QRect rect) const { if (!m_model || !m_model->isOK()) { return; } Profiler profiler("SpectrogramLayer::paintVerticalScale"); //!!! cache this? int h = rect.height(), w = rect.width(); int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); int bins = m_fftSize / 2; sv_samplerate_t sr = m_model->getSampleRate(); if (m_maxFrequency > 0) { bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); if (bins > m_fftSize / 2) bins = m_fftSize / 2; } int cw = 0; if (detailed) cw = getColourScaleWidth(paint); int cbw = paint.fontMetrics().width("dB"); int py = -1; int textHeight = paint.fontMetrics().height(); int toff = -textHeight + paint.fontMetrics().ascent() + 2; if (detailed && (h > textHeight * 3 + 10)) { int topLines = 2; if (m_colourScale == PhaseColourScale) topLines = 1; int ch = h - textHeight * (topLines + 1) - 8; // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); QString top, bottom; double min = m_viewMags[v->getId()].getMin(); double max = m_viewMags[v->getId()].getMax(); double dBmin = AudioLevel::multiplier_to_dB(min); double dBmax = AudioLevel::multiplier_to_dB(max); #ifdef DEBUG_SPECTROGRAM_REPAINT cerr << "paintVerticalScale: for view id " << v->getId() << ": min = " << min << ", max = " << max << ", dBmin = " << dBmin << ", dBmax = " << dBmax << endl; #endif if (dBmax < -60.f) dBmax = -60.f; else top = QString("%1").arg(lrint(dBmax)); if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; bottom = QString("%1").arg(lrint(dBmin)); //!!! & phase etc if (m_colourScale != PhaseColourScale) { paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, 2 + textHeight + toff, "dBFS"); } // paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2, paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), 2 + textHeight * topLines + toff + textHeight/2, top); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), h + toff - 3 - textHeight/2, bottom); paint.save(); paint.setBrush(Qt::NoBrush); int lasty = 0; int lastdb = 0; for (int i = 0; i < ch; ++i) { double dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); int idb = int(dBval); double value = AudioLevel::dB_to_multiplier(dBval); int colour = getDisplayValue(v, value * m_gain); paint.setPen(m_palette.getColour((unsigned char)colour)); int y = textHeight * topLines + 4 + ch - i; paint.drawLine(5 + cw - cbw, y, cw + 2, y); if (i == 0) { lasty = y; lastdb = idb; } else if (i < ch - paint.fontMetrics().ascent() && idb != lastdb && ((abs(y - lasty) > textHeight && idb % 10 == 0) || (abs(y - lasty) > paint.fontMetrics().ascent() && idb % 5 == 0))) { paint.setPen(v->getBackground()); QString text = QString("%1").arg(idb); paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), y + toff + textHeight/2, text); paint.setPen(v->getForeground()); paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); lasty = y; lastdb = idb; } } paint.restore(); } paint.drawLine(cw + 7, 0, cw + 7, h); int bin = -1; for (int y = 0; y < v->getPaintHeight(); ++y) { double q0, q1; if (!getYBinRange(v, v->getPaintHeight() - y, q0, q1)) continue; int vy; if (int(q0) > bin) { vy = y; bin = int(q0); } else { continue; } int freq = int((sr * bin) / m_fftSize); if (py >= 0 && (vy - py) < textHeight - 1) { if (m_frequencyScale == LinearFrequencyScale) { paint.drawLine(w - tickw, h - vy, w, h - vy); } continue; } QString text = QString("%1").arg(freq); if (bin == 1) text = tr("%1Hz").arg(freq); // bin 0 is DC paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); if (h - vy - textHeight >= -2) { int tx = w - 3 - paint.fontMetrics().width(text) - max(tickw, pkw); paint.drawText(tx, h - vy + toff, text); } py = vy; } if (m_frequencyScale == LogFrequencyScale) { // piano keyboard PianoScale().paintPianoVertical (v, paint, QRect(w - pkw - 1, 0, pkw, h), getEffectiveMinFrequency(), getEffectiveMaxFrequency()); } m_haveDetailedScale = detailed; } class SpectrogramRangeMapper : public RangeMapper { public: SpectrogramRangeMapper(sv_samplerate_t sr, int /* fftsize */) : m_dist(sr / 2), m_s2(sqrt(sqrt(2))) { } ~SpectrogramRangeMapper() { } virtual int getPositionForValue(double value) const { double dist = m_dist; int n = 0; while (dist > (value + 0.00001) && dist > 0.1) { dist /= m_s2; ++n; } return n; } virtual int getPositionForValueUnclamped(double value) const { // We don't really support this return getPositionForValue(value); } virtual double getValueForPosition(int position) const { // Vertical zoom step 0 shows the entire range from DC -> // Nyquist frequency. Step 1 shows 2^(1/4) of the range of // step 0, and so on until the visible range is smaller than // the frequency step between bins at the current fft size. double dist = m_dist; int n = 0; while (n < position) { dist /= m_s2; ++n; } return dist; } virtual double getValueForPositionUnclamped(int position) const { // We don't really support this return getValueForPosition(position); } virtual QString getUnit() const { return "Hz"; } protected: double m_dist; double m_s2; }; int SpectrogramLayer::getVerticalZoomSteps(int &defaultStep) const { if (!m_model) return 0; sv_samplerate_t sr = m_model->getSampleRate(); SpectrogramRangeMapper mapper(sr, m_fftSize); // int maxStep = mapper.getPositionForValue((double(sr) / m_fftSize) + 0.001); int maxStep = mapper.getPositionForValue(0); int minStep = mapper.getPositionForValue(double(sr) / 2); int initialMax = m_initialMaxFrequency; if (initialMax == 0) initialMax = int(sr / 2); defaultStep = mapper.getPositionForValue(initialMax) - minStep; // SVDEBUG << "SpectrogramLayer::getVerticalZoomSteps: " << maxStep - minStep << " (" << maxStep <<"-" << minStep << "), default is " << defaultStep << " (from initial max freq " << initialMax << ")" << endl; return maxStep - minStep; } int SpectrogramLayer::getCurrentVerticalZoomStep() const { if (!m_model) return 0; double dmin, dmax; getDisplayExtents(dmin, dmax); SpectrogramRangeMapper mapper(m_model->getSampleRate(), m_fftSize); int n = mapper.getPositionForValue(dmax - dmin); // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; return n; } void SpectrogramLayer::setVerticalZoomStep(int step) { if (!m_model) return; double dmin = m_minFrequency, dmax = m_maxFrequency; // getDisplayExtents(dmin, dmax); // cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << endl; sv_samplerate_t sr = m_model->getSampleRate(); SpectrogramRangeMapper mapper(sr, m_fftSize); double newdist = mapper.getValueForPosition(step); double newmin, newmax; if (m_frequencyScale == LogFrequencyScale) { // need to pick newmin and newmax such that // // (log(newmin) + log(newmax)) / 2 == logmid // and // newmax - newmin = newdist // // so log(newmax - newdist) + log(newmax) == 2logmid // log(newmax(newmax - newdist)) == 2logmid // newmax.newmax - newmax.newdist == exp(2logmid) // newmax^2 + (-newdist)newmax + -exp(2logmid) == 0 // quadratic with a = 1, b = -newdist, c = -exp(2logmid), all known // // positive root // newmax = (newdist + sqrt(newdist^2 + 4exp(2logmid))) / 2 // // but logmid = (log(dmin) + log(dmax)) / 2 // so exp(2logmid) = exp(log(dmin) + log(dmax)) // = exp(log(dmin.dmax)) // = dmin.dmax // so newmax = (newdist + sqrtf(newdist^2 + 4dmin.dmax)) / 2 newmax = (newdist + sqrt(newdist*newdist + 4*dmin*dmax)) / 2; newmin = newmax - newdist; // cerr << "newmin = " << newmin << ", newmax = " << newmax << endl; } else { double dmid = (dmax + dmin) / 2; newmin = dmid - newdist / 2; newmax = dmid + newdist / 2; } double mmin, mmax; mmin = 0; mmax = double(sr) / 2; if (newmin < mmin) { newmax += (mmin - newmin); newmin = mmin; } if (newmax > mmax) { newmax = mmax; } // SVDEBUG << "SpectrogramLayer::setVerticalZoomStep: " << step << ": " << newmin << " -> " << newmax << " (range " << newdist << ")" << endl; setMinFrequency(int(lrint(newmin))); setMaxFrequency(int(lrint(newmax))); } RangeMapper * SpectrogramLayer::getNewVerticalZoomRangeMapper() const { if (!m_model) return 0; return new SpectrogramRangeMapper(m_model->getSampleRate(), m_fftSize); } void SpectrogramLayer::updateMeasureRectYCoords(LayerGeometryProvider *v, const MeasureRect &r) const { int y0 = 0; if (r.startY > 0.0) y0 = int(getYForFrequency(v, r.startY)); int y1 = y0; if (r.endY > 0.0) y1 = int(getYForFrequency(v, r.endY)); // SVDEBUG << "SpectrogramLayer::updateMeasureRectYCoords: start " << r.startY << " -> " << y0 << ", end " << r.endY << " -> " << y1 << endl; r.pixrect = QRect(r.pixrect.x(), y0, r.pixrect.width(), y1 - y0); } void SpectrogramLayer::setMeasureRectYCoord(LayerGeometryProvider *v, MeasureRect &r, bool start, int y) const { if (start) { r.startY = getFrequencyForY(v, y); r.endY = r.startY; } else { r.endY = getFrequencyForY(v, y); } // SVDEBUG << "SpectrogramLayer::setMeasureRectYCoord: start " << r.startY << " <- " << y << ", end " << r.endY << " <- " << y << endl; } void SpectrogramLayer::toXml(QTextStream &stream, QString indent, QString extraAttributes) const { QString s; s += QString("channel=\"%1\" " "windowSize=\"%2\" " "windowHopLevel=\"%3\" " "gain=\"%4\" " "threshold=\"%5\" ") .arg(m_channel) .arg(m_windowSize) .arg(m_windowHopLevel) .arg(m_gain) .arg(m_threshold); s += QString("minFrequency=\"%1\" " "maxFrequency=\"%2\" " "colourScale=\"%3\" " "colourScheme=\"%4\" " "colourRotation=\"%5\" " "frequencyScale=\"%6\" " "binDisplay=\"%7\" ") .arg(m_minFrequency) .arg(m_maxFrequency) .arg(m_colourScale) .arg(m_colourMap) .arg(m_colourRotation) .arg(m_frequencyScale) .arg(m_binDisplay); // New-style normalization attributes, allowing for more types of // normalization in future: write out the column normalization // type separately, and then whether we are normalizing visible // area as well afterwards s += QString("columnNormalization=\"%1\" ") .arg(m_normalization == ColumnOp::NormalizeColumns ? "peak" : m_normalization == ColumnOp::NormalizeHybrid ? "hybrid" : "none"); // Old-style normalization attribute. We *don't* write out // normalizeHybrid here because the only release that would accept // it (Tony v1.0) has a totally different scale factor for // it. We'll just have to accept that session files from Tony // v2.0+ will look odd in Tony v1.0 s += QString("normalizeColumns=\"%1\" ") .arg(m_normalization == ColumnOp::NormalizeColumns ? "true" : "false"); // And this applies to both old- and new-style attributes s += QString("normalizeVisibleArea=\"%1\" ") .arg(m_normalization == ColumnOp::NormalizeVisibleArea ? "true" : "false"); Layer::toXml(stream, indent, extraAttributes + " " + s); } void SpectrogramLayer::setProperties(const QXmlAttributes &attributes) { bool ok = false; int channel = attributes.value("channel").toInt(&ok); if (ok) setChannel(channel); int windowSize = attributes.value("windowSize").toUInt(&ok); if (ok) setWindowSize(windowSize); int windowHopLevel = attributes.value("windowHopLevel").toUInt(&ok); if (ok) setWindowHopLevel(windowHopLevel); else { int windowOverlap = attributes.value("windowOverlap").toUInt(&ok); // a percentage value if (ok) { if (windowOverlap == 0) setWindowHopLevel(0); else if (windowOverlap == 25) setWindowHopLevel(1); else if (windowOverlap == 50) setWindowHopLevel(2); else if (windowOverlap == 75) setWindowHopLevel(3); else if (windowOverlap == 90) setWindowHopLevel(4); } } float gain = attributes.value("gain").toFloat(&ok); if (ok) setGain(gain); float threshold = attributes.value("threshold").toFloat(&ok); if (ok) setThreshold(threshold); int minFrequency = attributes.value("minFrequency").toUInt(&ok); if (ok) { SVDEBUG << "SpectrogramLayer::setProperties: setting min freq to " << minFrequency << endl; setMinFrequency(minFrequency); } int maxFrequency = attributes.value("maxFrequency").toUInt(&ok); if (ok) { SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; setMaxFrequency(maxFrequency); } ColourScale colourScale = (ColourScale) attributes.value("colourScale").toInt(&ok); if (ok) setColourScale(colourScale); int colourMap = attributes.value("colourScheme").toInt(&ok); if (ok) setColourMap(colourMap); int colourRotation = attributes.value("colourRotation").toInt(&ok); if (ok) setColourRotation(colourRotation); FrequencyScale frequencyScale = (FrequencyScale) attributes.value("frequencyScale").toInt(&ok); if (ok) setFrequencyScale(frequencyScale); BinDisplay binDisplay = (BinDisplay) attributes.value("binDisplay").toInt(&ok); if (ok) setBinDisplay(binDisplay); bool haveNewStyleNormalization = false; QString columnNormalization = attributes.value("columnNormalization"); if (columnNormalization != "") { haveNewStyleNormalization = true; if (columnNormalization == "peak") { setNormalization(ColumnOp::NormalizeColumns); } else if (columnNormalization == "hybrid") { setNormalization(ColumnOp::NormalizeHybrid); } else if (columnNormalization == "none") { // do nothing } else { cerr << "NOTE: Unknown or unsupported columnNormalization attribute \"" << columnNormalization << "\"" << endl; } } if (!haveNewStyleNormalization) { bool normalizeColumns = (attributes.value("normalizeColumns").trimmed() == "true"); if (normalizeColumns) { setNormalization(ColumnOp::NormalizeColumns); } bool normalizeHybrid = (attributes.value("normalizeHybrid").trimmed() == "true"); if (normalizeHybrid) { setNormalization(ColumnOp::NormalizeHybrid); } } bool normalizeVisibleArea = (attributes.value("normalizeVisibleArea").trimmed() == "true"); if (normalizeVisibleArea) { setNormalization(ColumnOp::NormalizeVisibleArea); } if (!haveNewStyleNormalization && m_normalization == ColumnOp::NormalizeHybrid) { // Tony v1.0 is (and hopefully will remain!) the only released // SV-a-like to use old-style attributes when saving sessions // that ask for hybrid normalization. It saves them with the // wrong gain factor, so hack in a fix for that here -- this // gives us backward but not forward compatibility. setGain(m_gain / float(m_fftSize / 2)); } }