Mercurial > hg > svgui
diff layer/Colour3DPlotRenderer.cpp @ 1146:74f2706995b7 3.0-integration
Merge work on unified spectrogram and colour 3d plot caching renderer
author | Chris Cannam |
---|---|
date | Fri, 05 Aug 2016 15:05:02 +0100 |
parents | c53ed1a6fcbd |
children | 436df5f24bda |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/layer/Colour3DPlotRenderer.cpp Fri Aug 05 15:05:02 2016 +0100 @@ -0,0 +1,1051 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +/* + Sonic Visualiser + An audio file viewer and annotation editor. + Centre for Digital Music, Queen Mary, University of London. + This file copyright 2006-2016 Chris Cannam and QMUL. + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. See the file + COPYING included with this distribution for more information. +*/ + +#include "Colour3DPlotRenderer.h" +#include "RenderTimer.h" + +#include "base/Profiler.h" + +#include "data/model/DenseThreeDimensionalModel.h" +#include "data/model/Dense3DModelPeakCache.h" +#include "data/model/FFTModel.h" + +#include "LayerGeometryProvider.h" +#include "VerticalBinLayer.h" +#include "PaintAssistant.h" +#include "ImageRegionFinder.h" + +#include "view/ViewManager.h" // for main model sample rate. Pity + +#include <vector> + +//#define DEBUG_COLOUR_PLOT_REPAINT 1 + +using namespace std; + +Colour3DPlotRenderer::RenderResult +Colour3DPlotRenderer::render(const LayerGeometryProvider *v, QPainter &paint, QRect rect) +{ + return render(v, paint, rect, false); +} + +Colour3DPlotRenderer::RenderResult +Colour3DPlotRenderer::renderTimeConstrained(const LayerGeometryProvider *v, + QPainter &paint, QRect rect) +{ + return render(v, paint, rect, true); +} + +QRect +Colour3DPlotRenderer::getLargestUncachedRect(const LayerGeometryProvider *v) +{ + RenderType renderType = decideRenderType(v); + + if (renderType == DirectTranslucent) { + return QRect(); // never cached + } + + int h = m_cache.getSize().height(); + + QRect areaLeft(0, 0, m_cache.getValidLeft(), h); + QRect areaRight(m_cache.getValidRight(), 0, + m_cache.getSize().width() - m_cache.getValidRight(), h); + + if (areaRight.width() > areaLeft.width()) { + return areaRight; + } else { + return areaLeft; + } +} + +bool +Colour3DPlotRenderer::geometryChanged(const LayerGeometryProvider *v) +{ + RenderType renderType = decideRenderType(v); + + if (renderType == DirectTranslucent) { + return true; // never cached + } + + if (m_cache.getSize() == v->getPaintSize() && + m_cache.getZoomLevel() == v->getZoomLevel() && + m_cache.getStartFrame() == v->getStartFrame()) { + return false; + } else { + return true; + } +} + +Colour3DPlotRenderer::RenderResult +Colour3DPlotRenderer::render(const LayerGeometryProvider *v, + QPainter &paint, QRect rect, bool timeConstrained) +{ + RenderType renderType = decideRenderType(v); + + if (renderType != DrawBufferPixelResolution) { + // Rendering should be fast in bin-resolution and direct draw + // cases because we are quite well zoomed-in, and the sums are + // easier this way. Calculating boundaries later will be + // fiddly for partial paints otherwise. + timeConstrained = false; + } + + int x0 = v->getXForViewX(rect.x()); + int x1 = v->getXForViewX(rect.x() + rect.width()); + if (x0 < 0) x0 = 0; + if (x1 > v->getPaintWidth()) x1 = v->getPaintWidth(); + + sv_frame_t startFrame = v->getStartFrame(); + + m_cache.resize(v->getPaintSize()); + m_cache.setZoomLevel(v->getZoomLevel()); + + m_magCache.resize(v->getPaintSize().width()); + m_magCache.setZoomLevel(v->getZoomLevel()); + + if (renderType == DirectTranslucent) { + MagnitudeRange range = renderDirectTranslucent(v, paint, rect); + return { rect, range }; + } + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "cache start " << m_cache.getStartFrame() + << " valid left " << m_cache.getValidLeft() + << " valid right " << m_cache.getValidRight() + << endl; + cerr << " view start " << startFrame + << " x0 " << x0 + << " x1 " << x1 + << endl; +#endif + + if (m_cache.isValid()) { // some part of the cache is valid + + if (v->getXForFrame(m_cache.getStartFrame()) == + v->getXForFrame(startFrame) && + m_cache.getValidLeft() <= x0 && + m_cache.getValidRight() >= x1) { + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "cache hit" << endl; +#endif + + // cache is valid for the complete requested area + paint.drawImage(rect, m_cache.getImage(), rect); + + MagnitudeRange range = m_magCache.getRange(x0, x1 - x0); + + return { rect, range }; + + } else { +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "cache partial hit" << endl; +#endif + + // cache doesn't begin at the right frame or doesn't + // contain the complete view, but might be scrollable or + // partially usable + m_cache.scrollTo(v, startFrame); + m_magCache.scrollTo(v, startFrame); + + // if we are not time-constrained, then we want to paint + // the whole area in one go; we don't return a partial + // paint. To avoid providing the more complex logic to + // handle painting discontiguous areas, if the only valid + // part of cache is in the middle, just make the whole + // thing invalid and start again. + if (!timeConstrained) { + if (m_cache.getValidLeft() > x0 && + m_cache.getValidRight() < x1) { + m_cache.invalidate(); + } + } + } + } else { + // cache is completely invalid + m_cache.setStartFrame(startFrame); + m_magCache.setStartFrame(startFrame); + } + + bool rightToLeft = false; + + int reqx0 = x0; + int reqx1 = x1; + + if (!m_cache.isValid() && timeConstrained) { + // When rendering the whole area, in a context where we might + // not be able to complete the work, start from somewhere near + // the middle so that the region of interest appears first + + //!!! (perhaps we should avoid doing this if past repaints + //!!! have been fast enough to do the whole in one shot) + if (x0 == 0 && x1 == v->getPaintWidth()) { + x0 = int(x1 * 0.3); + } + } + + if (m_cache.isValid()) { + + // When rendering only a part of the cache, we need to make + // sure that the part we're rendering is adjacent to (or + // overlapping) a valid area of cache, if we have one. The + // alternative is to ditch the valid area of cache and render + // only the requested area, but that's risky because this can + // happen when just waving the pointer over a small part of + // the view -- if we lose the partly-built cache every time + // the user does that, we'll never finish building it. + int left = x0; + int width = x1 - x0; + bool isLeftOfValidArea = false; + m_cache.adjustToTouchValidArea(left, width, isLeftOfValidArea); + x0 = left; + x1 = x0 + width; + + // That call also told us whether we should be painting + // sub-regions of our target region in right-to-left order in + // order to ensure contiguity + rightToLeft = isLeftOfValidArea; + } + + // Note, we always paint the full height to cache. We want to + // ensure the cache is coherent without having to worry about + // vertical matching of required and valid areas as well as + // horizontal. + + if (renderType == DrawBufferBinResolution) { + + renderToCacheBinResolution(v, x0, x1 - x0); + + } else { // must be DrawBufferPixelResolution, handled DirectTranslucent earlier + + renderToCachePixelResolution(v, x0, x1 - x0, rightToLeft, timeConstrained); + } + + QRect pr = rect & m_cache.getValidArea(); + paint.drawImage(pr.x(), pr.y(), m_cache.getImage(), + pr.x(), pr.y(), pr.width(), pr.height()); + + if (!timeConstrained && (pr != rect)) { + cerr << "WARNING: failed to render entire requested rect " + << "even when not time-constrained" << endl; + } + + MagnitudeRange range = m_magCache.getRange(reqx0, reqx1 - reqx0); + + return { pr, range }; +} + +Colour3DPlotRenderer::RenderType +Colour3DPlotRenderer::decideRenderType(const LayerGeometryProvider *v) const +{ + const DenseThreeDimensionalModel *model = m_sources.source; + if (!model || !v || !(v->getViewManager())) { + return DrawBufferPixelResolution; // or anything + } + + int binResolution = model->getResolution(); + int zoomLevel = v->getZoomLevel(); + sv_samplerate_t modelRate = model->getSampleRate(); + + double rateRatio = v->getViewManager()->getMainModelSampleRate() / modelRate; + double relativeBinResolution = binResolution * rateRatio; + + if (m_params.binDisplay == BinDisplay::PeakFrequencies) { + // no alternative works here + return DrawBufferPixelResolution; + } + + if (!m_params.alwaysOpaque && !m_params.interpolate) { + + // consider translucent option -- only if not smoothing & not + // explicitly requested opaque & sufficiently zoomed-in + + if (model->getHeight() * 3 < v->getPaintHeight() && + relativeBinResolution >= 3 * zoomLevel) { + return DirectTranslucent; + } + } + + if (relativeBinResolution > zoomLevel) { + return DrawBufferBinResolution; + } else { + return DrawBufferPixelResolution; + } +} + +ColumnOp::Column +Colour3DPlotRenderer::getColumn(int sx, int minbin, int nbins) const +{ + // order: + // get column -> scale -> normalise -> record extents -> + // peak pick -> distribute/interpolate -> apply display gain + + // we do the first bit here: + // get column -> scale -> normalise + + ColumnOp::Column column; + + if (m_params.colourScale.getScale() == ColourScaleType::Phase && + m_sources.fft) { + + ColumnOp::Column fullColumn = m_sources.fft->getPhases(sx); + + column = vector<float>(fullColumn.data() + minbin, + fullColumn.data() + minbin + nbins); + + } else { + + ColumnOp::Column fullColumn = m_sources.source->getColumn(sx); + + column = vector<float>(fullColumn.data() + minbin, + fullColumn.data() + minbin + nbins); + + column = ColumnOp::applyGain(column, m_params.scaleFactor); + + column = ColumnOp::normalize(column, m_params.normalization); + } + + return column; +} + +MagnitudeRange +Colour3DPlotRenderer::renderDirectTranslucent(const LayerGeometryProvider *v, + QPainter &paint, + QRect rect) +{ + Profiler profiler("Colour3DPlotRenderer::renderDirectTranslucent"); + + MagnitudeRange magRange; + + QPoint illuminatePos; + bool illuminate = v->shouldIlluminateLocalFeatures + (m_sources.verticalBinLayer, illuminatePos); + + const DenseThreeDimensionalModel *model = m_sources.source; + + int x0 = rect.left(); + int x1 = rect.right() + 1; + + int h = v->getPaintHeight(); + + sv_frame_t modelStart = model->getStartFrame(); + sv_frame_t modelEnd = model->getEndFrame(); + int modelResolution = model->getResolution(); + + double rateRatio = + v->getViewManager()->getMainModelSampleRate() / model->getSampleRate(); + + // the s-prefix values are source, i.e. model, column and bin numbers + int sx0 = int((double(v->getFrameForX(x0)) / rateRatio - double(modelStart)) + / modelResolution); + int sx1 = int((double(v->getFrameForX(x1)) / rateRatio - double(modelStart)) + / modelResolution); + + int sh = model->getHeight(); + + const int buflen = 40; + char labelbuf[buflen]; + + int minbin = m_sources.verticalBinLayer->getIBinForY(v, h); + if (minbin >= sh) minbin = sh - 1; + if (minbin < 0) minbin = 0; + + int nbins = m_sources.verticalBinLayer->getIBinForY(v, 0) - minbin + 1; + if (minbin + nbins > sh) nbins = sh - minbin; + + int psx = -1; + + vector<float> preparedColumn; + + int modelWidth = model->getWidth(); + + for (int sx = sx0; sx <= sx1; ++sx) { + + if (sx < 0 || sx >= modelWidth) { + continue; + } + + if (sx != psx) { + + // order: + // get column -> scale -> normalise -> record extents -> + // peak pick -> distribute/interpolate -> apply display gain + + // this does the first three: + preparedColumn = getColumn(sx, minbin, nbins); + + magRange.sample(preparedColumn); + + if (m_params.binDisplay == BinDisplay::PeakBins) { + preparedColumn = ColumnOp::peakPick(preparedColumn); + } + + // Display gain belongs to the colour scale and is + // applied by the colour scale object when mapping it + + psx = sx; + } + + sv_frame_t fx = sx * modelResolution + modelStart; + + if (fx + modelResolution <= modelStart || fx > modelEnd) continue; + + int rx0 = v->getXForFrame(int(double(fx) * rateRatio)); + int rx1 = v->getXForFrame(int(double(fx + modelResolution + 1) * rateRatio)); + + int rw = rx1 - rx0; + if (rw < 1) rw = 1; + + bool showLabel = (rw > 10 && + paint.fontMetrics().width("0.000000") < rw - 3 && + paint.fontMetrics().height() < (h / sh)); + + for (int sy = minbin; sy < minbin + nbins; ++sy) { + + int ry0 = m_sources.verticalBinLayer->getIYForBin(v, sy); + int ry1 = m_sources.verticalBinLayer->getIYForBin(v, sy + 1); + + if (m_params.invertVertical) { + ry0 = h - ry0 - 1; + ry1 = h - ry1 - 1; + } + + QRect r(rx0, ry1, rw, ry0 - ry1); + + float value = preparedColumn[sy - minbin]; + QColor colour = m_params.colourScale.getColour(value, + m_params.colourRotation); + + if (rw == 1) { + paint.setPen(colour); + paint.setBrush(Qt::NoBrush); + paint.drawLine(r.x(), r.y(), r.x(), r.y() + r.height() - 1); + continue; + } + + QColor pen(255, 255, 255, 80); + QColor brush(colour); + + if (rw > 3 && r.height() > 3) { + brush.setAlpha(160); + } + + paint.setPen(Qt::NoPen); + paint.setBrush(brush); + + if (illuminate) { + if (r.contains(illuminatePos)) { + paint.setPen(v->getForeground()); + } + } + +#ifdef DEBUG_COLOUR_3D_PLOT_LAYER_PAINT +// cerr << "rect " << r.x() << "," << r.y() << " " +// << r.width() << "x" << r.height() << endl; +#endif + + paint.drawRect(r); + + if (showLabel) { + double value = model->getValueAt(sx, sy); + snprintf(labelbuf, buflen, "%06f", value); + QString text(labelbuf); + PaintAssistant::drawVisibleText + (v, + paint, + rx0 + 2, + ry0 - h / sh - 1 + 2 + paint.fontMetrics().ascent(), + text, + PaintAssistant::OutlinedText); + } + } + } + + return magRange; +} + +void +Colour3DPlotRenderer::renderToCachePixelResolution(const LayerGeometryProvider *v, + int x0, int repaintWidth, + bool rightToLeft, + bool timeConstrained) +{ + Profiler profiler("Colour3DPlotRenderer::renderToCachePixelResolution"); +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "renderToCachePixelResolution" << endl; +#endif + + // Draw to the draw buffer, and then copy from there. The draw + // buffer is at the same resolution as the target in the cache, so + // no extra scaling needed. + + const DenseThreeDimensionalModel *model = m_sources.source; + if (!model || !model->isOK() || !model->isReady()) { + throw std::logic_error("no source model provided, or model not ready"); + } + + int h = v->getPaintHeight(); + + clearDrawBuffer(repaintWidth, h); + + vector<int> binforx(repaintWidth); + vector<double> binfory(h); + + bool usePeaksCache = false; + int binsPerPeak = 1; + int zoomLevel = v->getZoomLevel(); + int binResolution = model->getResolution(); + + for (int x = 0; x < repaintWidth; ++x) { + sv_frame_t f0 = v->getFrameForX(x0 + x); + double s0 = double(f0 - model->getStartFrame()) / binResolution; + binforx[x] = int(s0 + 0.0001); + } + + if (m_sources.peaks) { // peaks cache exists + + binsPerPeak = m_sources.peaks->getColumnsPerPeak(); + usePeaksCache = (binResolution * binsPerPeak) < zoomLevel; + + if (m_params.colourScale.getScale() == + ColourScaleType::Phase) { + usePeaksCache = false; + } + } + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "[PIX] zoomLevel = " << zoomLevel + << ", binResolution " << binResolution + << ", binsPerPeak " << binsPerPeak + << ", peak cache " << m_sources.peaks + << ", usePeaksCache = " << usePeaksCache + << endl; +#endif + + for (int y = 0; y < h; ++y) { + binfory[y] = m_sources.verticalBinLayer->getBinForY(v, h - y - 1); + } + + int attainedWidth; + + if (m_params.binDisplay == BinDisplay::PeakFrequencies) { + attainedWidth = renderDrawBufferPeakFrequencies(v, + repaintWidth, + h, + binforx, + binfory, + rightToLeft, + timeConstrained); + + } else { + attainedWidth = renderDrawBuffer(repaintWidth, + h, + binforx, + binfory, + usePeaksCache, + rightToLeft, + timeConstrained); + } + + if (attainedWidth == 0) return; + + // draw buffer is pixel resolution, no scaling factors or padding involved + + int paintedLeft = x0; + if (rightToLeft) { + paintedLeft += (repaintWidth - attainedWidth); + } + + m_cache.drawImage(paintedLeft, attainedWidth, + m_drawBuffer, + paintedLeft - x0, attainedWidth); + + for (int i = 0; in_range_for(m_magRanges, i); ++i) { + m_magCache.sampleColumn(i, m_magRanges.at(i)); + } +} + +void +Colour3DPlotRenderer::renderToCacheBinResolution(const LayerGeometryProvider *v, + int x0, int repaintWidth) +{ + Profiler profiler("Colour3DPlotRenderer::renderToCacheBinResolution"); +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "renderToCacheBinResolution" << endl; +#endif + + // Draw to the draw buffer, and then scale-copy from there. Draw + // buffer is at bin resolution, i.e. buffer x == source column + // number. We use toolkit smooth scaling for interpolation. + + const DenseThreeDimensionalModel *model = m_sources.source; + if (!model || !model->isOK() || !model->isReady()) { + throw std::logic_error("no source model provided, or model not ready"); + } + + // The draw buffer will contain a fragment at bin resolution. We + // need to ensure that it starts and ends at points where a + // time-bin boundary occurs at an exact pixel boundary, and with a + // certain amount of overlap across existing pixels so that we can + // scale and draw from it without smoothing errors at the edges. + + // If (getFrameForX(x) / increment) * increment == + // getFrameForX(x), then x is a time-bin boundary. We want two + // such boundaries at either side of the draw buffer -- one which + // we draw up to, and one which we subsequently crop at. + + sv_frame_t leftBoundaryFrame = -1, leftCropFrame = -1; + sv_frame_t rightBoundaryFrame = -1, rightCropFrame = -1; + + int drawBufferWidth; + int binResolution = model->getResolution(); + + for (int x = x0; ; --x) { + sv_frame_t f = v->getFrameForX(x); + if ((f / binResolution) * binResolution == f) { + if (leftCropFrame == -1) leftCropFrame = f; + else if (x < x0 - 2) { + leftBoundaryFrame = f; + break; + } + } + } + for (int x = x0 + repaintWidth; ; ++x) { + sv_frame_t f = v->getFrameForX(x); + if ((f / binResolution) * binResolution == f) { + if (rightCropFrame == -1) rightCropFrame = f; + else if (x > x0 + repaintWidth + 2) { + rightBoundaryFrame = f; + break; + } + } + } + drawBufferWidth = int + ((rightBoundaryFrame - leftBoundaryFrame) / binResolution); + + int h = v->getPaintHeight(); + + // For our purposes here, the draw buffer needs to be exactly our + // target size (so we recreate always rather than just clear it) + + recreateDrawBuffer(drawBufferWidth, h); + + vector<int> binforx(drawBufferWidth); + vector<double> binfory(h); + + for (int x = 0; x < drawBufferWidth; ++x) { + binforx[x] = int(leftBoundaryFrame / binResolution) + x; + } + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "[BIN] binResolution " << binResolution + << endl; +#endif + + for (int y = 0; y < h; ++y) { + binfory[y] = m_sources.verticalBinLayer->getBinForY(v, h - y - 1); + } + + int attainedWidth = renderDrawBuffer(drawBufferWidth, + h, + binforx, + binfory, + false, + false, + false); + + if (attainedWidth == 0) return; + + int scaledLeft = v->getXForFrame(leftBoundaryFrame); + int scaledRight = v->getXForFrame(rightBoundaryFrame); + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "scaling draw buffer from width " << m_drawBuffer.width() + << " to " << (scaledRight - scaledLeft) << " (nb drawBufferWidth = " + << drawBufferWidth << ")" << endl; +#endif + + QImage scaled = m_drawBuffer.scaled + (scaledRight - scaledLeft, h, + Qt::IgnoreAspectRatio, (m_params.interpolate ? + Qt::SmoothTransformation : + Qt::FastTransformation)); + + int scaledLeftCrop = v->getXForFrame(leftCropFrame); + int scaledRightCrop = v->getXForFrame(rightCropFrame); + + int targetLeft = scaledLeftCrop; + if (targetLeft < 0) { + targetLeft = 0; + } + + int targetWidth = scaledRightCrop - targetLeft; + if (targetLeft + targetWidth > m_cache.getSize().width()) { + targetWidth = m_cache.getSize().width() - targetLeft; + } + + int sourceLeft = targetLeft - scaledLeft; + if (sourceLeft < 0) { + sourceLeft = 0; + } + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "repaintWidth = " << repaintWidth + << ", targetWidth = " << targetWidth << endl; +#endif + + if (targetWidth > 0) { + // we are copying from an image that has already been scaled, + // hence using the same width in both geometries + m_cache.drawImage(targetLeft, targetWidth, + scaled, + sourceLeft, targetWidth); + } + + for (int i = 0; i < targetWidth; ++i) { + // but the mag range vector has not been scaled + int sourceIx = int((double(i + sourceLeft) / scaled.width()) + * int(m_magRanges.size())); + if (in_range_for(m_magRanges, sourceIx)) { + m_magCache.sampleColumn(i, m_magRanges.at(sourceIx)); + } + } +} + +int +Colour3DPlotRenderer::renderDrawBuffer(int w, int h, + const vector<int> &binforx, + const vector<double> &binfory, + bool usePeaksCache, + bool rightToLeft, + bool timeConstrained) +{ + // Callers must have checked that the appropriate subset of + // Sources data members are set for the supplied flags (e.g. that + // peaks model exists if usePeaksCache) + + RenderTimer timer(timeConstrained ? + RenderTimer::FastRender : + RenderTimer::NoTimeout); + + int divisor = 1; + const DenseThreeDimensionalModel *sourceModel = m_sources.source; + if (usePeaksCache) { + divisor = m_sources.peaks->getColumnsPerPeak(); + sourceModel = m_sources.peaks; + } + + int sh = sourceModel->getHeight(); + + int minbin = int(binfory[0] + 0.0001); + if (minbin >= sh) minbin = sh - 1; + if (minbin < 0) minbin = 0; + + int nbins = int(binfory[h-1]) - minbin + 1; + if (minbin + nbins > sh) nbins = sh - minbin; + + int psx = -1; + + int start = 0; + int finish = w; + int step = 1; + + if (rightToLeft) { + start = w-1; + finish = -1; + step = -1; + } + + int columnCount = 0; + + vector<float> preparedColumn; + + int modelWidth = sourceModel->getWidth(); + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "modelWidth " << modelWidth << ", divisor " << divisor << endl; +#endif + + for (int x = start; x != finish; x += step) { + + // x is the on-canvas pixel coord; sx (later) will be the + // source column index + + ++columnCount; + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "x = " << x << ", binforx[x] = " << binforx[x] << endl; +#endif + + if (binforx[x] < 0) continue; + + int sx0 = binforx[x] / divisor; + int sx1 = sx0; + if (x+1 < w) sx1 = binforx[x+1] / divisor; + if (sx0 < 0) sx0 = sx1 - 1; + if (sx0 < 0) continue; + if (sx1 <= sx0) sx1 = sx0 + 1; + + vector<float> pixelPeakColumn; + MagnitudeRange magRange; + + for (int sx = sx0; sx < sx1; ++sx) { + +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "sx = " << sx << endl; +#endif + + if (sx < 0 || sx >= modelWidth) { + continue; + } + + if (sx != psx) { + + // order: + // get column -> scale -> normalise -> record extents -> + // peak pick -> distribute/interpolate -> apply display gain + + // this does the first three: + ColumnOp::Column column = getColumn(sx, minbin, nbins); + + magRange.sample(column); + + if (m_params.binDisplay == BinDisplay::PeakBins) { + column = ColumnOp::peakPick(column); + } + + preparedColumn = + ColumnOp::distribute(column, + h, + binfory, + minbin, + m_params.interpolate); + + // Display gain belongs to the colour scale and is + // applied by the colour scale object when mapping it + + psx = sx; + } + + if (sx == sx0) { + pixelPeakColumn = preparedColumn; + } else { + for (int i = 0; in_range_for(pixelPeakColumn, i); ++i) { + pixelPeakColumn[i] = std::max(pixelPeakColumn[i], + preparedColumn[i]); + } + } + } + + if (!pixelPeakColumn.empty()) { + + for (int y = 0; y < h; ++y) { + int py; + if (m_params.invertVertical) { + py = y; + } else { + py = h - y - 1; + } + m_drawBuffer.setPixel + (x, + py, + m_params.colourScale.getPixel(pixelPeakColumn[y])); + } + + m_magRanges.push_back(magRange); + } + + double fractionComplete = double(columnCount) / double(w); + if (timer.outOfTime(fractionComplete)) { + cerr << "out of time" << endl; + return columnCount; + } + } + + return columnCount; +} + +int +Colour3DPlotRenderer::renderDrawBufferPeakFrequencies(const LayerGeometryProvider *v, + int w, int h, + const vector<int> &binforx, + const vector<double> &binfory, + bool rightToLeft, + bool timeConstrained) +{ + // Callers must have checked that the appropriate subset of + // Sources data members are set for the supplied flags (e.g. that + // fft model exists) + + RenderTimer timer(timeConstrained ? + RenderTimer::FastRender : + RenderTimer::NoTimeout); + + const FFTModel *fft = m_sources.fft; + + int sh = fft->getHeight(); + + int minbin = int(binfory[0] + 0.0001); + if (minbin >= sh) minbin = sh - 1; + if (minbin < 0) minbin = 0; + + int nbins = int(binfory[h-1]) - minbin + 1; + if (minbin + nbins > sh) nbins = sh - minbin; + + FFTModel::PeakSet peakfreqs; + + int psx = -1; + + int start = 0; + int finish = w; + int step = 1; + + if (rightToLeft) { + start = w-1; + finish = -1; + step = -1; + } + + int columnCount = 0; + + vector<float> preparedColumn; + + int modelWidth = fft->getWidth(); +#ifdef DEBUG_COLOUR_PLOT_REPAINT + cerr << "modelWidth " << modelWidth << endl; +#endif + + double minFreq = + (double(minbin) * fft->getSampleRate()) / fft->getFFTSize(); + double maxFreq = + (double(minbin + nbins - 1) * fft->getSampleRate()) / fft->getFFTSize(); + + bool logarithmic = (m_params.binScale == BinScale::Log); + + for (int x = start; x != finish; x += step) { + + // x is the on-canvas pixel coord; sx (later) will be the + // source column index + + ++columnCount; + + if (binforx[x] < 0) continue; + + int sx0 = binforx[x]; + int sx1 = sx0; + if (x+1 < w) sx1 = binforx[x+1]; + if (sx0 < 0) sx0 = sx1 - 1; + if (sx0 < 0) continue; + if (sx1 <= sx0) sx1 = sx0 + 1; + + vector<float> pixelPeakColumn; + MagnitudeRange magRange; + + for (int sx = sx0; sx < sx1; ++sx) { + + if (sx < 0 || sx >= modelWidth) { + continue; + } + + if (sx != psx) { + preparedColumn = getColumn(sx, minbin, nbins); + magRange.sample(preparedColumn); + psx = sx; + } + + if (sx == sx0) { + pixelPeakColumn = preparedColumn; + peakfreqs = fft->getPeakFrequencies(FFTModel::AllPeaks, sx, + minbin, minbin + nbins - 1); + } else { + for (int i = 0; in_range_for(pixelPeakColumn, i); ++i) { + pixelPeakColumn[i] = std::max(pixelPeakColumn[i], + preparedColumn[i]); + } + } + } + + if (!pixelPeakColumn.empty()) { + + for (FFTModel::PeakSet::const_iterator pi = peakfreqs.begin(); + pi != peakfreqs.end(); ++pi) { + + int bin = pi->first; + double freq = pi->second; + + if (bin < minbin) continue; + if (bin >= minbin + nbins) break; + + double value = pixelPeakColumn[bin - minbin]; + + double y = v->getYForFrequency + (freq, minFreq, maxFreq, logarithmic); + + int iy = int(y + 0.5); + if (iy < 0 || iy >= h) continue; + + m_drawBuffer.setPixel + (x, + iy, + m_params.colourScale.getPixel(value)); + } + + m_magRanges.push_back(magRange); + } + + double fractionComplete = double(columnCount) / double(w); + if (timer.outOfTime(fractionComplete)) { + return columnCount; + } + } + + return columnCount; +} + +void +Colour3DPlotRenderer::recreateDrawBuffer(int w, int h) +{ + m_drawBuffer = QImage(w, h, QImage::Format_Indexed8); + + for (int pixel = 0; pixel < 256; ++pixel) { + m_drawBuffer.setColor + ((unsigned char)pixel, + m_params.colourScale.getColourForPixel + (pixel, m_params.colourRotation).rgb()); + } + + m_drawBuffer.fill(0); + m_magRanges.clear(); +} + +void +Colour3DPlotRenderer::clearDrawBuffer(int w, int h) +{ + if (m_drawBuffer.width() < w || m_drawBuffer.height() != h) { + recreateDrawBuffer(w, h); + } else { + m_drawBuffer.fill(0); + m_magRanges.clear(); + } +} + +QRect +Colour3DPlotRenderer::findSimilarRegionExtents(QPoint p) const +{ + QImage image = m_cache.getImage(); + ImageRegionFinder finder; + QRect rect = finder.findRegionExtents(&image, p); + return rect; +}