Mercurial > hg > svgui
comparison layer/SpectrogramLayer.cpp @ 1148:c0d841cb8ab9 tony-2.0-integration
Merge latest SV 3.0 branch code
author | Chris Cannam |
---|---|
date | Fri, 19 Aug 2016 15:58:57 +0100 |
parents | 1badacff7ab2 |
children | 0edfed2c8482 |
comparison
equal
deleted
inserted
replaced
1009:96cf499fad62 | 1148:c0d841cb8ab9 |
---|---|
21 #include "base/Window.h" | 21 #include "base/Window.h" |
22 #include "base/Pitch.h" | 22 #include "base/Pitch.h" |
23 #include "base/Preferences.h" | 23 #include "base/Preferences.h" |
24 #include "base/RangeMapper.h" | 24 #include "base/RangeMapper.h" |
25 #include "base/LogRange.h" | 25 #include "base/LogRange.h" |
26 #include "base/ColumnOp.h" | |
27 #include "base/Strings.h" | |
26 #include "widgets/CommandHistory.h" | 28 #include "widgets/CommandHistory.h" |
29 #include "data/model/Dense3DModelPeakCache.h" | |
30 | |
27 #include "ColourMapper.h" | 31 #include "ColourMapper.h" |
28 #include "ImageRegionFinder.h" | |
29 #include "data/model/Dense3DModelPeakCache.h" | |
30 #include "PianoScale.h" | 32 #include "PianoScale.h" |
33 #include "PaintAssistant.h" | |
34 #include "Colour3DPlotRenderer.h" | |
31 | 35 |
32 #include <QPainter> | 36 #include <QPainter> |
33 #include <QImage> | 37 #include <QImage> |
34 #include <QPixmap> | 38 #include <QPixmap> |
35 #include <QRect> | 39 #include <QRect> |
36 #include <QTimer> | |
37 #include <QApplication> | 40 #include <QApplication> |
38 #include <QMessageBox> | 41 #include <QMessageBox> |
39 #include <QMouseEvent> | 42 #include <QMouseEvent> |
40 #include <QTextStream> | 43 #include <QTextStream> |
44 #include <QSettings> | |
41 | 45 |
42 #include <iostream> | 46 #include <iostream> |
43 | 47 |
44 #include <cassert> | 48 #include <cassert> |
45 #include <cmath> | 49 #include <cmath> |
46 | 50 |
47 #ifndef __GNUC__ | 51 #ifndef __GNUC__ |
48 #include <alloca.h> | 52 #include <alloca.h> |
49 #endif | 53 #endif |
50 | 54 |
55 //#define DEBUG_SPECTROGRAM 1 | |
51 //#define DEBUG_SPECTROGRAM_REPAINT 1 | 56 //#define DEBUG_SPECTROGRAM_REPAINT 1 |
52 | 57 |
53 using std::vector; | 58 using namespace std; |
54 | 59 |
55 SpectrogramLayer::SpectrogramLayer(Configuration config) : | 60 SpectrogramLayer::SpectrogramLayer(Configuration config) : |
56 m_model(0), | 61 m_model(0), |
57 m_channel(0), | 62 m_channel(0), |
58 m_windowSize(1024), | 63 m_windowSize(1024), |
59 m_windowType(HanningWindow), | 64 m_windowType(HanningWindow), |
60 m_windowHopLevel(2), | 65 m_windowHopLevel(2), |
61 m_zeroPadLevel(0), | |
62 m_fftSize(1024), | |
63 m_gain(1.0), | 66 m_gain(1.0), |
64 m_initialGain(1.0), | 67 m_initialGain(1.0), |
65 m_threshold(0.0), | 68 m_threshold(1.0e-8f), |
66 m_initialThreshold(0.0), | 69 m_initialThreshold(1.0e-8f), |
67 m_colourRotation(0), | 70 m_colourRotation(0), |
68 m_initialRotation(0), | 71 m_initialRotation(0), |
69 m_minFrequency(10), | 72 m_minFrequency(10), |
70 m_maxFrequency(8000), | 73 m_maxFrequency(8000), |
71 m_initialMaxFrequency(8000), | 74 m_initialMaxFrequency(8000), |
72 m_colourScale(dBColourScale), | 75 m_colourScale(ColourScaleType::Log), |
76 m_colourScaleMultiple(1.0), | |
73 m_colourMap(0), | 77 m_colourMap(0), |
74 m_frequencyScale(LinearFrequencyScale), | 78 m_binScale(BinScale::Linear), |
75 m_binDisplay(AllBins), | 79 m_binDisplay(BinDisplay::AllBins), |
76 m_normalization(NoNormalization), | 80 m_normalization(ColumnNormalization::None), |
81 m_normalizeVisibleArea(false), | |
77 m_lastEmittedZoomStep(-1), | 82 m_lastEmittedZoomStep(-1), |
78 m_synchronous(false), | 83 m_synchronous(false), |
79 m_haveDetailedScale(false), | 84 m_haveDetailedScale(false), |
80 m_lastPaintBlockWidth(0), | |
81 m_exiting(false), | 85 m_exiting(false), |
82 m_sliceableModel(0) | 86 m_fftModel(0), |
83 { | 87 m_peakCache(0), |
88 m_peakCacheDivisor(8) | |
89 { | |
90 QString colourConfigName = "spectrogram-colour"; | |
91 int colourConfigDefault = int(ColourMapper::Green); | |
92 | |
84 if (config == FullRangeDb) { | 93 if (config == FullRangeDb) { |
85 m_initialMaxFrequency = 0; | 94 m_initialMaxFrequency = 0; |
86 setMaxFrequency(0); | 95 setMaxFrequency(0); |
87 } else if (config == MelodicRange) { | 96 } else if (config == MelodicRange) { |
88 setWindowSize(8192); | 97 setWindowSize(8192); |
89 setWindowHopLevel(4); | 98 setWindowHopLevel(4); |
90 m_initialMaxFrequency = 1500; | 99 m_initialMaxFrequency = 1500; |
91 setMaxFrequency(1500); | 100 setMaxFrequency(1500); |
92 setMinFrequency(40); | 101 setMinFrequency(40); |
93 setColourScale(LinearColourScale); | 102 setColourScale(ColourScaleType::Linear); |
94 setColourMap(ColourMapper::Sunset); | 103 setColourMap(ColourMapper::Sunset); |
95 setFrequencyScale(LogFrequencyScale); | 104 setBinScale(BinScale::Log); |
105 colourConfigName = "spectrogram-melodic-colour"; | |
106 colourConfigDefault = int(ColourMapper::Sunset); | |
96 // setGain(20); | 107 // setGain(20); |
97 } else if (config == MelodicPeaks) { | 108 } else if (config == MelodicPeaks) { |
98 setWindowSize(4096); | 109 setWindowSize(4096); |
99 setWindowHopLevel(5); | 110 setWindowHopLevel(5); |
100 m_initialMaxFrequency = 2000; | 111 m_initialMaxFrequency = 2000; |
101 setMaxFrequency(2000); | 112 setMaxFrequency(2000); |
102 setMinFrequency(40); | 113 setMinFrequency(40); |
103 setFrequencyScale(LogFrequencyScale); | 114 setBinScale(BinScale::Log); |
104 setColourScale(LinearColourScale); | 115 setColourScale(ColourScaleType::Linear); |
105 setBinDisplay(PeakFrequencies); | 116 setBinDisplay(BinDisplay::PeakFrequencies); |
106 setNormalization(NormalizeColumns); | 117 setNormalization(ColumnNormalization::Max1); |
107 } | 118 colourConfigName = "spectrogram-melodic-colour"; |
108 | 119 colourConfigDefault = int(ColourMapper::Sunset); |
120 } | |
121 | |
122 QSettings settings; | |
123 settings.beginGroup("Preferences"); | |
124 setColourMap(settings.value(colourConfigName, colourConfigDefault).toInt()); | |
125 settings.endGroup(); | |
126 | |
109 Preferences *prefs = Preferences::getInstance(); | 127 Preferences *prefs = Preferences::getInstance(); |
110 connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), | 128 connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), |
111 this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); | 129 this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); |
112 setWindowType(prefs->getWindowType()); | 130 setWindowType(prefs->getWindowType()); |
113 | |
114 initialisePalette(); | |
115 } | 131 } |
116 | 132 |
117 SpectrogramLayer::~SpectrogramLayer() | 133 SpectrogramLayer::~SpectrogramLayer() |
118 { | 134 { |
119 invalidateFFTModels(); | 135 invalidateRenderers(); |
136 invalidateFFTModel(); | |
137 } | |
138 | |
139 pair<ColourScaleType, double> | |
140 SpectrogramLayer::convertToColourScale(int value) | |
141 { | |
142 switch (value) { | |
143 case 0: return { ColourScaleType::Linear, 1.0 }; | |
144 case 1: return { ColourScaleType::Meter, 1.0 }; | |
145 case 2: return { ColourScaleType::Log, 2.0 }; // dB^2 (i.e. log of power) | |
146 case 3: return { ColourScaleType::Log, 1.0 }; // dB (of magnitude) | |
147 case 4: return { ColourScaleType::Phase, 1.0 }; | |
148 default: return { ColourScaleType::Linear, 1.0 }; | |
149 } | |
150 } | |
151 | |
152 int | |
153 SpectrogramLayer::convertFromColourScale(ColourScaleType scale, double multiple) | |
154 { | |
155 switch (scale) { | |
156 case ColourScaleType::Linear: return 0; | |
157 case ColourScaleType::Meter: return 1; | |
158 case ColourScaleType::Log: return (multiple > 1.5 ? 2 : 3); | |
159 case ColourScaleType::Phase: return 4; | |
160 case ColourScaleType::PlusMinusOne: | |
161 case ColourScaleType::Absolute: | |
162 default: return 0; | |
163 } | |
164 } | |
165 | |
166 std::pair<ColumnNormalization, bool> | |
167 SpectrogramLayer::convertToColumnNorm(int value) | |
168 { | |
169 switch (value) { | |
170 default: | |
171 case 0: return { ColumnNormalization::None, false }; | |
172 case 1: return { ColumnNormalization::Max1, false }; | |
173 case 2: return { ColumnNormalization::None, true }; // visible area | |
174 case 3: return { ColumnNormalization::Hybrid, false }; | |
175 } | |
176 } | |
177 | |
178 int | |
179 SpectrogramLayer::convertFromColumnNorm(ColumnNormalization norm, bool visible) | |
180 { | |
181 if (visible) return 2; | |
182 switch (norm) { | |
183 case ColumnNormalization::None: return 0; | |
184 case ColumnNormalization::Max1: return 1; | |
185 case ColumnNormalization::Hybrid: return 3; | |
186 | |
187 case ColumnNormalization::Sum1: | |
188 default: return 0; | |
189 } | |
120 } | 190 } |
121 | 191 |
122 void | 192 void |
123 SpectrogramLayer::setModel(const DenseTimeValueModel *model) | 193 SpectrogramLayer::setModel(const DenseTimeValueModel *model) |
124 { | 194 { |
125 // cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << endl; | 195 // cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << endl; |
126 | 196 |
127 if (model == m_model) return; | 197 if (model == m_model) return; |
128 | 198 |
129 m_model = model; | 199 m_model = model; |
130 invalidateFFTModels(); | 200 invalidateFFTModel(); |
131 | 201 |
132 if (!m_model || !m_model->isOK()) return; | 202 if (!m_model || !m_model->isOK()) return; |
133 | 203 |
134 connectSignals(m_model); | 204 connectSignals(m_model); |
135 | 205 |
154 list.push_back("Gain"); | 224 list.push_back("Gain"); |
155 list.push_back("Colour Rotation"); | 225 list.push_back("Colour Rotation"); |
156 // list.push_back("Min Frequency"); | 226 // list.push_back("Min Frequency"); |
157 // list.push_back("Max Frequency"); | 227 // list.push_back("Max Frequency"); |
158 list.push_back("Frequency Scale"); | 228 list.push_back("Frequency Scale"); |
159 //// list.push_back("Zero Padding"); | |
160 return list; | 229 return list; |
161 } | 230 } |
162 | 231 |
163 QString | 232 QString |
164 SpectrogramLayer::getPropertyLabel(const PropertyName &name) const | 233 SpectrogramLayer::getPropertyLabel(const PropertyName &name) const |
173 if (name == "Gain") return tr("Gain"); | 242 if (name == "Gain") return tr("Gain"); |
174 if (name == "Colour Rotation") return tr("Colour Rotation"); | 243 if (name == "Colour Rotation") return tr("Colour Rotation"); |
175 if (name == "Min Frequency") return tr("Min Frequency"); | 244 if (name == "Min Frequency") return tr("Min Frequency"); |
176 if (name == "Max Frequency") return tr("Max Frequency"); | 245 if (name == "Max Frequency") return tr("Max Frequency"); |
177 if (name == "Frequency Scale") return tr("Frequency Scale"); | 246 if (name == "Frequency Scale") return tr("Frequency Scale"); |
178 if (name == "Zero Padding") return tr("Smoothing"); | |
179 return ""; | 247 return ""; |
180 } | 248 } |
181 | 249 |
182 QString | 250 QString |
183 SpectrogramLayer::getPropertyIconName(const PropertyName &) const | 251 SpectrogramLayer::getPropertyIconName(const PropertyName &) const |
189 SpectrogramLayer::getPropertyType(const PropertyName &name) const | 257 SpectrogramLayer::getPropertyType(const PropertyName &name) const |
190 { | 258 { |
191 if (name == "Gain") return RangeProperty; | 259 if (name == "Gain") return RangeProperty; |
192 if (name == "Colour Rotation") return RangeProperty; | 260 if (name == "Colour Rotation") return RangeProperty; |
193 if (name == "Threshold") return RangeProperty; | 261 if (name == "Threshold") return RangeProperty; |
194 if (name == "Zero Padding") return ToggleProperty; | |
195 return ValueProperty; | 262 return ValueProperty; |
196 } | 263 } |
197 | 264 |
198 QString | 265 QString |
199 SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const | 266 SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const |
200 { | 267 { |
201 if (name == "Bin Display" || | 268 if (name == "Bin Display" || |
202 name == "Frequency Scale") return tr("Bins"); | 269 name == "Frequency Scale") return tr("Bins"); |
203 if (name == "Window Size" || | 270 if (name == "Window Size" || |
204 name == "Window Increment" || | 271 name == "Window Increment") return tr("Window"); |
205 name == "Zero Padding") return tr("Window"); | |
206 if (name == "Colour" || | 272 if (name == "Colour" || |
207 name == "Threshold" || | 273 name == "Threshold" || |
208 name == "Colour Rotation") return tr("Colour"); | 274 name == "Colour Rotation") return tr("Colour"); |
209 if (name == "Normalization" || | 275 if (name == "Normalization" || |
210 name == "Gain" || | 276 name == "Gain" || |
236 if (val < *min) val = *min; | 302 if (val < *min) val = *min; |
237 if (val > *max) val = *max; | 303 if (val > *max) val = *max; |
238 | 304 |
239 } else if (name == "Threshold") { | 305 } else if (name == "Threshold") { |
240 | 306 |
241 *min = -50; | 307 *min = -81; |
242 *max = 0; | 308 *max = -1; |
243 | 309 |
244 *deflt = int(lrint(AudioLevel::multiplier_to_dB(m_initialThreshold))); | 310 *deflt = int(lrint(AudioLevel::multiplier_to_dB(m_initialThreshold))); |
245 if (*deflt < *min) *deflt = *min; | 311 if (*deflt < *min) *deflt = *min; |
246 if (*deflt > *max) *deflt = *max; | 312 if (*deflt > *max) *deflt = *max; |
247 | 313 |
257 | 323 |
258 val = m_colourRotation; | 324 val = m_colourRotation; |
259 | 325 |
260 } else if (name == "Colour Scale") { | 326 } else if (name == "Colour Scale") { |
261 | 327 |
328 // linear, meter, db^2, db, phase | |
262 *min = 0; | 329 *min = 0; |
263 *max = 4; | 330 *max = 4; |
264 *deflt = int(dBColourScale); | 331 *deflt = 2; |
265 | 332 |
266 val = (int)m_colourScale; | 333 val = convertFromColourScale(m_colourScale, m_colourScaleMultiple); |
267 | 334 |
268 } else if (name == "Colour") { | 335 } else if (name == "Colour") { |
269 | 336 |
270 *min = 0; | 337 *min = 0; |
271 *max = ColourMapper::getColourMapCount() - 1; | 338 *max = ColourMapper::getColourMapCount() - 1; |
288 *min = 0; | 355 *min = 0; |
289 *max = 5; | 356 *max = 5; |
290 *deflt = 2; | 357 *deflt = 2; |
291 | 358 |
292 val = m_windowHopLevel; | 359 val = m_windowHopLevel; |
293 | |
294 } else if (name == "Zero Padding") { | |
295 | |
296 *min = 0; | |
297 *max = 1; | |
298 *deflt = 0; | |
299 | |
300 val = m_zeroPadLevel > 0 ? 1 : 0; | |
301 | 360 |
302 } else if (name == "Min Frequency") { | 361 } else if (name == "Min Frequency") { |
303 | 362 |
304 *min = 0; | 363 *min = 0; |
305 *max = 9; | 364 *max = 9; |
339 | 398 |
340 } else if (name == "Frequency Scale") { | 399 } else if (name == "Frequency Scale") { |
341 | 400 |
342 *min = 0; | 401 *min = 0; |
343 *max = 1; | 402 *max = 1; |
344 *deflt = int(LinearFrequencyScale); | 403 *deflt = int(BinScale::Linear); |
345 val = (int)m_frequencyScale; | 404 val = (int)m_binScale; |
346 | 405 |
347 } else if (name == "Bin Display") { | 406 } else if (name == "Bin Display") { |
348 | 407 |
349 *min = 0; | 408 *min = 0; |
350 *max = 2; | 409 *max = 2; |
351 *deflt = int(AllBins); | 410 *deflt = int(BinDisplay::AllBins); |
352 val = (int)m_binDisplay; | 411 val = (int)m_binDisplay; |
353 | 412 |
354 } else if (name == "Normalization") { | 413 } else if (name == "Normalization") { |
355 | 414 |
356 *min = 0; | 415 *min = 0; |
357 *max = 3; | 416 *max = 3; |
358 *deflt = int(NoNormalization); | 417 *deflt = 0; |
359 val = (int)m_normalization; | 418 |
419 val = convertFromColumnNorm(m_normalization, m_normalizeVisibleArea); | |
360 | 420 |
361 } else { | 421 } else { |
362 val = Layer::getPropertyRangeAndValue(name, min, max, deflt); | 422 val = Layer::getPropertyRangeAndValue(name, min, max, deflt); |
363 } | 423 } |
364 | 424 |
396 case 2: return tr("50 %"); | 456 case 2: return tr("50 %"); |
397 case 3: return tr("75 %"); | 457 case 3: return tr("75 %"); |
398 case 4: return tr("87.5 %"); | 458 case 4: return tr("87.5 %"); |
399 case 5: return tr("93.75 %"); | 459 case 5: return tr("93.75 %"); |
400 } | 460 } |
401 } | |
402 if (name == "Zero Padding") { | |
403 if (value == 0) return tr("None"); | |
404 return QString("%1x").arg(value + 1); | |
405 } | 461 } |
406 if (name == "Min Frequency") { | 462 if (name == "Min Frequency") { |
407 switch (value) { | 463 switch (value) { |
408 default: | 464 default: |
409 case 0: return tr("No min"); | 465 case 0: return tr("No min"); |
472 { | 528 { |
473 if (name == "Gain") { | 529 if (name == "Gain") { |
474 return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); | 530 return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); |
475 } | 531 } |
476 if (name == "Threshold") { | 532 if (name == "Threshold") { |
477 return new LinearRangeMapper(-50, 0, -50, 0, tr("dB")); | 533 return new LinearRangeMapper(-81, -1, -81, -1, tr("dB"), false, |
534 { { -81, Strings::minus_infinity } }); | |
478 } | 535 } |
479 return 0; | 536 return 0; |
480 } | 537 } |
481 | 538 |
482 void | 539 void |
483 SpectrogramLayer::setProperty(const PropertyName &name, int value) | 540 SpectrogramLayer::setProperty(const PropertyName &name, int value) |
484 { | 541 { |
485 if (name == "Gain") { | 542 if (name == "Gain") { |
486 setGain(float(pow(10, float(value)/20.0))); | 543 setGain(float(pow(10, float(value)/20.0))); |
487 } else if (name == "Threshold") { | 544 } else if (name == "Threshold") { |
488 if (value == -50) setThreshold(0.0); | 545 if (value == -81) setThreshold(0.0); |
489 else setThreshold(float(AudioLevel::dB_to_multiplier(value))); | 546 else setThreshold(float(AudioLevel::dB_to_multiplier(value))); |
490 } else if (name == "Colour Rotation") { | 547 } else if (name == "Colour Rotation") { |
491 setColourRotation(value); | 548 setColourRotation(value); |
492 } else if (name == "Colour") { | 549 } else if (name == "Colour") { |
493 setColourMap(value); | 550 setColourMap(value); |
494 } else if (name == "Window Size") { | 551 } else if (name == "Window Size") { |
495 setWindowSize(32 << value); | 552 setWindowSize(32 << value); |
496 } else if (name == "Window Increment") { | 553 } else if (name == "Window Increment") { |
497 setWindowHopLevel(value); | 554 setWindowHopLevel(value); |
498 } else if (name == "Zero Padding") { | |
499 setZeroPadLevel(value > 0.1 ? 3 : 0); | |
500 } else if (name == "Min Frequency") { | 555 } else if (name == "Min Frequency") { |
501 switch (value) { | 556 switch (value) { |
502 default: | 557 default: |
503 case 0: setMinFrequency(0); break; | 558 case 0: setMinFrequency(0); break; |
504 case 1: setMinFrequency(10); break; | 559 case 1: setMinFrequency(10); break; |
534 if (vs != m_lastEmittedZoomStep) { | 589 if (vs != m_lastEmittedZoomStep) { |
535 emit verticalZoomChanged(); | 590 emit verticalZoomChanged(); |
536 m_lastEmittedZoomStep = vs; | 591 m_lastEmittedZoomStep = vs; |
537 } | 592 } |
538 } else if (name == "Colour Scale") { | 593 } else if (name == "Colour Scale") { |
594 setColourScaleMultiple(1.0); | |
539 switch (value) { | 595 switch (value) { |
540 default: | 596 default: |
541 case 0: setColourScale(LinearColourScale); break; | 597 case 0: setColourScale(ColourScaleType::Linear); break; |
542 case 1: setColourScale(MeterColourScale); break; | 598 case 1: setColourScale(ColourScaleType::Meter); break; |
543 case 2: setColourScale(dBSquaredColourScale); break; | 599 case 2: |
544 case 3: setColourScale(dBColourScale); break; | 600 setColourScale(ColourScaleType::Log); |
545 case 4: setColourScale(PhaseColourScale); break; | 601 setColourScaleMultiple(2.0); |
602 break; | |
603 case 3: setColourScale(ColourScaleType::Log); break; | |
604 case 4: setColourScale(ColourScaleType::Phase); break; | |
546 } | 605 } |
547 } else if (name == "Frequency Scale") { | 606 } else if (name == "Frequency Scale") { |
548 switch (value) { | 607 switch (value) { |
549 default: | 608 default: |
550 case 0: setFrequencyScale(LinearFrequencyScale); break; | 609 case 0: setBinScale(BinScale::Linear); break; |
551 case 1: setFrequencyScale(LogFrequencyScale); break; | 610 case 1: setBinScale(BinScale::Log); break; |
552 } | 611 } |
553 } else if (name == "Bin Display") { | 612 } else if (name == "Bin Display") { |
554 switch (value) { | 613 switch (value) { |
555 default: | 614 default: |
556 case 0: setBinDisplay(AllBins); break; | 615 case 0: setBinDisplay(BinDisplay::AllBins); break; |
557 case 1: setBinDisplay(PeakBins); break; | 616 case 1: setBinDisplay(BinDisplay::PeakBins); break; |
558 case 2: setBinDisplay(PeakFrequencies); break; | 617 case 2: setBinDisplay(BinDisplay::PeakFrequencies); break; |
559 } | 618 } |
560 } else if (name == "Normalization") { | 619 } else if (name == "Normalization") { |
561 switch (value) { | 620 auto n = convertToColumnNorm(value); |
562 default: | 621 setNormalization(n.first); |
563 case 0: setNormalization(NoNormalization); break; | 622 setNormalizeVisibleArea(n.second); |
564 case 1: setNormalization(NormalizeColumns); break; | 623 } |
565 case 2: setNormalization(NormalizeVisibleArea); break; | 624 } |
566 case 3: setNormalization(NormalizeHybrid); break; | 625 |
567 } | 626 void |
568 } | 627 SpectrogramLayer::invalidateRenderers() |
569 } | 628 { |
570 | 629 #ifdef DEBUG_SPECTROGRAM |
571 void | 630 cerr << "SpectrogramLayer::invalidateRenderers called" << endl; |
572 SpectrogramLayer::invalidateImageCaches() | |
573 { | |
574 for (ViewImageCache::iterator i = m_imageCaches.begin(); | |
575 i != m_imageCaches.end(); ++i) { | |
576 i->second.validArea = QRect(); | |
577 } | |
578 } | |
579 | |
580 void | |
581 SpectrogramLayer::invalidateImageCaches(sv_frame_t startFrame, sv_frame_t endFrame) | |
582 { | |
583 for (ViewImageCache::iterator i = m_imageCaches.begin(); | |
584 i != m_imageCaches.end(); ++i) { | |
585 | |
586 //!!! when are views removed from the map? on setLayerDormant? | |
587 const LayerGeometryProvider *v = i->first; | |
588 | |
589 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
590 cerr << "SpectrogramLayer::invalidateImageCaches(" | |
591 << startFrame << ", " << endFrame << "): view range is " | |
592 << v->getStartFrame() << ", " << v->getEndFrame() | |
593 << endl; | |
594 | |
595 cerr << "Valid area was: " << i->second.validArea.x() << ", " | |
596 << i->second.validArea.y() << " " | |
597 << i->second.validArea.width() << "x" | |
598 << i->second.validArea.height() << endl; | |
599 #endif | 631 #endif |
600 | 632 |
601 if (int(startFrame) > v->getStartFrame()) { | 633 for (ViewRendererMap::iterator i = m_renderers.begin(); |
602 if (startFrame >= v->getEndFrame()) { | 634 i != m_renderers.end(); ++i) { |
603 #ifdef DEBUG_SPECTROGRAM_REPAINT | 635 delete i->second; |
604 cerr << "Modified start frame is off right of view" << endl; | 636 } |
605 #endif | 637 m_renderers.clear(); |
606 return; | |
607 } | |
608 int x = v->getXForFrame(startFrame); | |
609 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
610 cerr << "clipping from 0 to " << x-1 << endl; | |
611 #endif | |
612 if (x > 1) { | |
613 i->second.validArea &= | |
614 QRect(0, 0, x-1, v->getPaintHeight()); | |
615 } else { | |
616 i->second.validArea = QRect(); | |
617 } | |
618 } else { | |
619 if (int(endFrame) < v->getStartFrame()) { | |
620 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
621 cerr << "Modified end frame is off left of view" << endl; | |
622 #endif | |
623 return; | |
624 } | |
625 int x = v->getXForFrame(endFrame); | |
626 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
627 cerr << "clipping from " << x+1 << " to " << v->getPaintWidth() | |
628 << endl; | |
629 #endif | |
630 if (x < v->getPaintWidth()) { | |
631 i->second.validArea &= | |
632 QRect(x+1, 0, v->getPaintWidth()-(x+1), v->getPaintHeight()); | |
633 } else { | |
634 i->second.validArea = QRect(); | |
635 } | |
636 } | |
637 | |
638 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
639 cerr << "Valid area is now: " << i->second.validArea.x() << ", " | |
640 << i->second.validArea.y() << " " | |
641 << i->second.validArea.width() << "x" | |
642 << i->second.validArea.height() << endl; | |
643 #endif | |
644 } | |
645 } | 638 } |
646 | 639 |
647 void | 640 void |
648 SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) | 641 SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) |
649 { | 642 { |
652 if (name == "Window Type") { | 645 if (name == "Window Type") { |
653 setWindowType(Preferences::getInstance()->getWindowType()); | 646 setWindowType(Preferences::getInstance()->getWindowType()); |
654 return; | 647 return; |
655 } | 648 } |
656 if (name == "Spectrogram Y Smoothing") { | 649 if (name == "Spectrogram Y Smoothing") { |
657 invalidateImageCaches(); | 650 setWindowSize(m_windowSize); |
651 invalidateRenderers(); | |
658 invalidateMagnitudes(); | 652 invalidateMagnitudes(); |
659 emit layerParametersChanged(); | 653 emit layerParametersChanged(); |
660 } | 654 } |
661 if (name == "Spectrogram X Smoothing") { | 655 if (name == "Spectrogram X Smoothing") { |
662 invalidateImageCaches(); | 656 invalidateRenderers(); |
663 invalidateMagnitudes(); | 657 invalidateMagnitudes(); |
664 emit layerParametersChanged(); | 658 emit layerParametersChanged(); |
665 } | 659 } |
666 if (name == "Tuning Frequency") { | 660 if (name == "Tuning Frequency") { |
667 emit layerParametersChanged(); | 661 emit layerParametersChanged(); |
671 void | 665 void |
672 SpectrogramLayer::setChannel(int ch) | 666 SpectrogramLayer::setChannel(int ch) |
673 { | 667 { |
674 if (m_channel == ch) return; | 668 if (m_channel == ch) return; |
675 | 669 |
676 invalidateImageCaches(); | 670 invalidateRenderers(); |
677 m_channel = ch; | 671 m_channel = ch; |
678 invalidateFFTModels(); | 672 invalidateFFTModel(); |
679 | 673 |
680 emit layerParametersChanged(); | 674 emit layerParametersChanged(); |
681 } | 675 } |
682 | 676 |
683 int | 677 int |
684 SpectrogramLayer::getChannel() const | 678 SpectrogramLayer::getChannel() const |
685 { | 679 { |
686 return m_channel; | 680 return m_channel; |
687 } | 681 } |
688 | 682 |
683 int | |
684 SpectrogramLayer::getFFTOversampling() const | |
685 { | |
686 if (m_binDisplay != BinDisplay::AllBins) { | |
687 return 1; | |
688 } | |
689 | |
690 Preferences::SpectrogramSmoothing smoothing = | |
691 Preferences::getInstance()->getSpectrogramSmoothing(); | |
692 | |
693 if (smoothing == Preferences::NoSpectrogramSmoothing || | |
694 smoothing == Preferences::SpectrogramInterpolated) { | |
695 return 1; | |
696 } | |
697 | |
698 return 4; | |
699 } | |
700 | |
701 int | |
702 SpectrogramLayer::getFFTSize() const | |
703 { | |
704 return m_windowSize * getFFTOversampling(); | |
705 } | |
706 | |
689 void | 707 void |
690 SpectrogramLayer::setWindowSize(int ws) | 708 SpectrogramLayer::setWindowSize(int ws) |
691 { | 709 { |
692 if (m_windowSize == ws) return; | 710 if (m_windowSize == ws) return; |
693 | 711 |
694 invalidateImageCaches(); | 712 invalidateRenderers(); |
695 | 713 |
696 m_windowSize = ws; | 714 m_windowSize = ws; |
697 m_fftSize = ws * (m_zeroPadLevel + 1); | 715 |
698 | 716 invalidateFFTModel(); |
699 invalidateFFTModels(); | |
700 | 717 |
701 emit layerParametersChanged(); | 718 emit layerParametersChanged(); |
702 } | 719 } |
703 | 720 |
704 int | 721 int |
710 void | 727 void |
711 SpectrogramLayer::setWindowHopLevel(int v) | 728 SpectrogramLayer::setWindowHopLevel(int v) |
712 { | 729 { |
713 if (m_windowHopLevel == v) return; | 730 if (m_windowHopLevel == v) return; |
714 | 731 |
715 invalidateImageCaches(); | 732 invalidateRenderers(); |
716 | 733 |
717 m_windowHopLevel = v; | 734 m_windowHopLevel = v; |
718 | 735 |
719 invalidateFFTModels(); | 736 invalidateFFTModel(); |
720 | 737 |
721 emit layerParametersChanged(); | 738 emit layerParametersChanged(); |
722 | 739 |
723 // fillCache(); | 740 // fillCache(); |
724 } | 741 } |
728 { | 745 { |
729 return m_windowHopLevel; | 746 return m_windowHopLevel; |
730 } | 747 } |
731 | 748 |
732 void | 749 void |
733 SpectrogramLayer::setZeroPadLevel(int v) | |
734 { | |
735 if (m_zeroPadLevel == v) return; | |
736 | |
737 invalidateImageCaches(); | |
738 | |
739 m_zeroPadLevel = v; | |
740 m_fftSize = m_windowSize * (v + 1); | |
741 | |
742 invalidateFFTModels(); | |
743 | |
744 emit layerParametersChanged(); | |
745 } | |
746 | |
747 int | |
748 SpectrogramLayer::getZeroPadLevel() const | |
749 { | |
750 return m_zeroPadLevel; | |
751 } | |
752 | |
753 void | |
754 SpectrogramLayer::setWindowType(WindowType w) | 750 SpectrogramLayer::setWindowType(WindowType w) |
755 { | 751 { |
756 if (m_windowType == w) return; | 752 if (m_windowType == w) return; |
757 | 753 |
758 invalidateImageCaches(); | 754 invalidateRenderers(); |
759 | 755 |
760 m_windowType = w; | 756 m_windowType = w; |
761 | 757 |
762 invalidateFFTModels(); | 758 invalidateFFTModel(); |
763 | 759 |
764 emit layerParametersChanged(); | 760 emit layerParametersChanged(); |
765 } | 761 } |
766 | 762 |
767 WindowType | 763 WindowType |
776 // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " | 772 // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " |
777 // << m_gain << ")" << endl; | 773 // << m_gain << ")" << endl; |
778 | 774 |
779 if (m_gain == gain) return; | 775 if (m_gain == gain) return; |
780 | 776 |
781 invalidateImageCaches(); | 777 invalidateRenderers(); |
782 | 778 |
783 m_gain = gain; | 779 m_gain = gain; |
784 | 780 |
785 emit layerParametersChanged(); | 781 emit layerParametersChanged(); |
786 } | 782 } |
794 void | 790 void |
795 SpectrogramLayer::setThreshold(float threshold) | 791 SpectrogramLayer::setThreshold(float threshold) |
796 { | 792 { |
797 if (m_threshold == threshold) return; | 793 if (m_threshold == threshold) return; |
798 | 794 |
799 invalidateImageCaches(); | 795 invalidateRenderers(); |
800 | 796 |
801 m_threshold = threshold; | 797 m_threshold = threshold; |
802 | 798 |
803 emit layerParametersChanged(); | 799 emit layerParametersChanged(); |
804 } | 800 } |
814 { | 810 { |
815 if (m_minFrequency == mf) return; | 811 if (m_minFrequency == mf) return; |
816 | 812 |
817 // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; | 813 // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; |
818 | 814 |
819 invalidateImageCaches(); | 815 invalidateRenderers(); |
820 invalidateMagnitudes(); | 816 invalidateMagnitudes(); |
821 | 817 |
822 m_minFrequency = mf; | 818 m_minFrequency = mf; |
823 | 819 |
824 emit layerParametersChanged(); | 820 emit layerParametersChanged(); |
835 { | 831 { |
836 if (m_maxFrequency == mf) return; | 832 if (m_maxFrequency == mf) return; |
837 | 833 |
838 // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; | 834 // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; |
839 | 835 |
840 invalidateImageCaches(); | 836 invalidateRenderers(); |
841 invalidateMagnitudes(); | 837 invalidateMagnitudes(); |
842 | 838 |
843 m_maxFrequency = mf; | 839 m_maxFrequency = mf; |
844 | 840 |
845 emit layerParametersChanged(); | 841 emit layerParametersChanged(); |
852 } | 848 } |
853 | 849 |
854 void | 850 void |
855 SpectrogramLayer::setColourRotation(int r) | 851 SpectrogramLayer::setColourRotation(int r) |
856 { | 852 { |
857 invalidateImageCaches(); | |
858 | |
859 if (r < 0) r = 0; | 853 if (r < 0) r = 0; |
860 if (r > 256) r = 256; | 854 if (r > 256) r = 256; |
861 int distance = r - m_colourRotation; | 855 int distance = r - m_colourRotation; |
862 | 856 |
863 if (distance != 0) { | 857 if (distance != 0) { |
864 rotatePalette(-distance); | |
865 m_colourRotation = r; | 858 m_colourRotation = r; |
866 } | 859 } |
860 | |
861 // Initially the idea with colour rotation was that we would just | |
862 // rotate the palette of an already-generated cache. That's not | |
863 // really practical now that cacheing is handled in a separate | |
864 // class in which the main cache no longer has a palette. | |
865 invalidateRenderers(); | |
867 | 866 |
868 emit layerParametersChanged(); | 867 emit layerParametersChanged(); |
869 } | 868 } |
870 | 869 |
871 void | 870 void |
872 SpectrogramLayer::setColourScale(ColourScale colourScale) | 871 SpectrogramLayer::setColourScale(ColourScaleType colourScale) |
873 { | 872 { |
874 if (m_colourScale == colourScale) return; | 873 if (m_colourScale == colourScale) return; |
875 | 874 |
876 invalidateImageCaches(); | 875 invalidateRenderers(); |
877 | 876 |
878 m_colourScale = colourScale; | 877 m_colourScale = colourScale; |
879 | 878 |
880 emit layerParametersChanged(); | 879 emit layerParametersChanged(); |
881 } | 880 } |
882 | 881 |
883 SpectrogramLayer::ColourScale | 882 ColourScaleType |
884 SpectrogramLayer::getColourScale() const | 883 SpectrogramLayer::getColourScale() const |
885 { | 884 { |
886 return m_colourScale; | 885 return m_colourScale; |
887 } | 886 } |
888 | 887 |
889 void | 888 void |
889 SpectrogramLayer::setColourScaleMultiple(double multiple) | |
890 { | |
891 if (m_colourScaleMultiple == multiple) return; | |
892 | |
893 invalidateRenderers(); | |
894 | |
895 m_colourScaleMultiple = multiple; | |
896 | |
897 emit layerParametersChanged(); | |
898 } | |
899 | |
900 double | |
901 SpectrogramLayer::getColourScaleMultiple() const | |
902 { | |
903 return m_colourScaleMultiple; | |
904 } | |
905 | |
906 void | |
890 SpectrogramLayer::setColourMap(int map) | 907 SpectrogramLayer::setColourMap(int map) |
891 { | 908 { |
892 if (m_colourMap == map) return; | 909 if (m_colourMap == map) return; |
893 | 910 |
894 invalidateImageCaches(); | 911 invalidateRenderers(); |
895 | 912 |
896 m_colourMap = map; | 913 m_colourMap = map; |
897 initialisePalette(); | |
898 | 914 |
899 emit layerParametersChanged(); | 915 emit layerParametersChanged(); |
900 } | 916 } |
901 | 917 |
902 int | 918 int |
904 { | 920 { |
905 return m_colourMap; | 921 return m_colourMap; |
906 } | 922 } |
907 | 923 |
908 void | 924 void |
909 SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale) | 925 SpectrogramLayer::setBinScale(BinScale binScale) |
910 { | 926 { |
911 if (m_frequencyScale == frequencyScale) return; | 927 if (m_binScale == binScale) return; |
912 | 928 |
913 invalidateImageCaches(); | 929 invalidateRenderers(); |
914 m_frequencyScale = frequencyScale; | 930 m_binScale = binScale; |
915 | 931 |
916 emit layerParametersChanged(); | 932 emit layerParametersChanged(); |
917 } | 933 } |
918 | 934 |
919 SpectrogramLayer::FrequencyScale | 935 BinScale |
920 SpectrogramLayer::getFrequencyScale() const | 936 SpectrogramLayer::getBinScale() const |
921 { | 937 { |
922 return m_frequencyScale; | 938 return m_binScale; |
923 } | 939 } |
924 | 940 |
925 void | 941 void |
926 SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) | 942 SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) |
927 { | 943 { |
928 if (m_binDisplay == binDisplay) return; | 944 if (m_binDisplay == binDisplay) return; |
929 | 945 |
930 invalidateImageCaches(); | 946 invalidateRenderers(); |
931 m_binDisplay = binDisplay; | 947 m_binDisplay = binDisplay; |
932 | 948 |
933 emit layerParametersChanged(); | 949 emit layerParametersChanged(); |
934 } | 950 } |
935 | 951 |
936 SpectrogramLayer::BinDisplay | 952 BinDisplay |
937 SpectrogramLayer::getBinDisplay() const | 953 SpectrogramLayer::getBinDisplay() const |
938 { | 954 { |
939 return m_binDisplay; | 955 return m_binDisplay; |
940 } | 956 } |
941 | 957 |
942 void | 958 void |
943 SpectrogramLayer::setNormalization(Normalization n) | 959 SpectrogramLayer::setNormalization(ColumnNormalization n) |
944 { | 960 { |
945 if (m_normalization == n) return; | 961 if (m_normalization == n) return; |
946 | 962 |
947 invalidateImageCaches(); | 963 invalidateRenderers(); |
948 invalidateMagnitudes(); | 964 invalidateMagnitudes(); |
949 m_normalization = n; | 965 m_normalization = n; |
950 | 966 |
951 emit layerParametersChanged(); | 967 emit layerParametersChanged(); |
952 } | 968 } |
953 | 969 |
954 SpectrogramLayer::Normalization | 970 ColumnNormalization |
955 SpectrogramLayer::getNormalization() const | 971 SpectrogramLayer::getNormalization() const |
956 { | 972 { |
957 return m_normalization; | 973 return m_normalization; |
974 } | |
975 | |
976 void | |
977 SpectrogramLayer::setNormalizeVisibleArea(bool n) | |
978 { | |
979 if (m_normalizeVisibleArea == n) return; | |
980 | |
981 invalidateRenderers(); | |
982 invalidateMagnitudes(); | |
983 m_normalizeVisibleArea = n; | |
984 | |
985 emit layerParametersChanged(); | |
986 } | |
987 | |
988 bool | |
989 SpectrogramLayer::getNormalizeVisibleArea() const | |
990 { | |
991 return m_normalizeVisibleArea; | |
958 } | 992 } |
959 | 993 |
960 void | 994 void |
961 SpectrogramLayer::setLayerDormant(const LayerGeometryProvider *v, bool dormant) | 995 SpectrogramLayer::setLayerDormant(const LayerGeometryProvider *v, bool dormant) |
962 { | 996 { |
971 return; | 1005 return; |
972 } | 1006 } |
973 | 1007 |
974 Layer::setLayerDormant(v, true); | 1008 Layer::setLayerDormant(v, true); |
975 | 1009 |
976 const View *view = v->getView(); | 1010 invalidateRenderers(); |
977 | |
978 invalidateImageCaches(); | |
979 | |
980 m_imageCaches.erase(view); | |
981 | |
982 if (m_fftModels.find(view) != m_fftModels.end()) { | |
983 | |
984 if (m_sliceableModel == m_fftModels[view]) { | |
985 bool replaced = false; | |
986 for (ViewFFTMap::iterator i = m_fftModels.begin(); | |
987 i != m_fftModels.end(); ++i) { | |
988 if (i->second != m_sliceableModel) { | |
989 emit sliceableModelReplaced(m_sliceableModel, i->second); | |
990 replaced = true; | |
991 break; | |
992 } | |
993 } | |
994 if (!replaced) emit sliceableModelReplaced(m_sliceableModel, 0); | |
995 } | |
996 | |
997 delete m_fftModels[view]; | |
998 m_fftModels.erase(view); | |
999 | |
1000 delete m_peakCaches[view]; | |
1001 m_peakCaches.erase(view); | |
1002 } | |
1003 | 1011 |
1004 } else { | 1012 } else { |
1005 | 1013 |
1006 Layer::setLayerDormant(v, false); | 1014 Layer::setLayerDormant(v, false); |
1007 } | 1015 } |
1012 { | 1020 { |
1013 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1021 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1014 cerr << "SpectrogramLayer::cacheInvalid()" << endl; | 1022 cerr << "SpectrogramLayer::cacheInvalid()" << endl; |
1015 #endif | 1023 #endif |
1016 | 1024 |
1017 invalidateImageCaches(); | 1025 invalidateRenderers(); |
1018 invalidateMagnitudes(); | 1026 invalidateMagnitudes(); |
1019 } | 1027 } |
1020 | 1028 |
1021 void | 1029 void |
1022 SpectrogramLayer::cacheInvalid(sv_frame_t from, sv_frame_t to) | 1030 SpectrogramLayer::cacheInvalid( |
1031 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1032 sv_frame_t from, sv_frame_t to | |
1033 #else | |
1034 sv_frame_t , sv_frame_t | |
1035 #endif | |
1036 ) | |
1023 { | 1037 { |
1024 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1038 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1025 cerr << "SpectrogramLayer::cacheInvalid(" << from << ", " << to << ")" << endl; | 1039 cerr << "SpectrogramLayer::cacheInvalid(" << from << ", " << to << ")" << endl; |
1026 #endif | 1040 #endif |
1027 | 1041 |
1028 invalidateImageCaches(from, to); | 1042 // We used to call invalidateMagnitudes(from, to) to invalidate |
1043 // only those caches whose views contained some of the (from, to) | |
1044 // range. That's the right thing to do; it has been lost in | |
1045 // pulling out the image cache code, but it might not matter very | |
1046 // much, since the underlying models for spectrogram layers don't | |
1047 // change very often. Let's see. | |
1048 invalidateRenderers(); | |
1029 invalidateMagnitudes(); | 1049 invalidateMagnitudes(); |
1030 } | 1050 } |
1031 | 1051 |
1032 bool | 1052 bool |
1033 SpectrogramLayer::hasLightBackground() const | 1053 SpectrogramLayer::hasLightBackground() const |
1034 { | 1054 { |
1035 return ColourMapper(m_colourMap, 1.f, 255.f).hasLightBackground(); | 1055 return ColourMapper(m_colourMap, 1.f, 255.f).hasLightBackground(); |
1036 } | 1056 } |
1037 | 1057 |
1038 void | |
1039 SpectrogramLayer::initialisePalette() | |
1040 { | |
1041 int formerRotation = m_colourRotation; | |
1042 | |
1043 if (m_colourMap == (int)ColourMapper::BlackOnWhite) { | |
1044 m_palette.setColour(NO_VALUE, Qt::white); | |
1045 } else { | |
1046 m_palette.setColour(NO_VALUE, Qt::black); | |
1047 } | |
1048 | |
1049 ColourMapper mapper(m_colourMap, 1.f, 255.f); | |
1050 | |
1051 for (int pixel = 1; pixel < 256; ++pixel) { | |
1052 m_palette.setColour((unsigned char)pixel, mapper.map(pixel)); | |
1053 } | |
1054 | |
1055 m_crosshairColour = mapper.getContrastingColour(); | |
1056 | |
1057 m_colourRotation = 0; | |
1058 rotatePalette(m_colourRotation - formerRotation); | |
1059 m_colourRotation = formerRotation; | |
1060 | |
1061 m_drawBuffer = QImage(); | |
1062 } | |
1063 | |
1064 void | |
1065 SpectrogramLayer::rotatePalette(int distance) | |
1066 { | |
1067 QColor newPixels[256]; | |
1068 | |
1069 newPixels[NO_VALUE] = m_palette.getColour(NO_VALUE); | |
1070 | |
1071 for (int pixel = 1; pixel < 256; ++pixel) { | |
1072 int target = pixel + distance; | |
1073 while (target < 1) target += 255; | |
1074 while (target > 255) target -= 255; | |
1075 newPixels[target] = m_palette.getColour((unsigned char)pixel); | |
1076 } | |
1077 | |
1078 for (int pixel = 0; pixel < 256; ++pixel) { | |
1079 m_palette.setColour((unsigned char)pixel, newPixels[pixel]); | |
1080 } | |
1081 | |
1082 m_drawBuffer = QImage(); | |
1083 } | |
1084 | |
1085 unsigned char | |
1086 SpectrogramLayer::getDisplayValue(LayerGeometryProvider *v, double input) const | |
1087 { | |
1088 int value; | |
1089 | |
1090 double min = 0.0; | |
1091 double max = 1.0; | |
1092 | |
1093 if (m_normalization == NormalizeVisibleArea) { | |
1094 min = m_viewMags[v].getMin(); | |
1095 max = m_viewMags[v].getMax(); | |
1096 } else if (m_normalization != NormalizeColumns) { | |
1097 if (m_colourScale == LinearColourScale //|| | |
1098 // m_colourScale == MeterColourScale) { | |
1099 ) { | |
1100 max = 0.1; | |
1101 } | |
1102 } | |
1103 | |
1104 double thresh = -80.0; | |
1105 | |
1106 if (max == 0.0) max = 1.0; | |
1107 if (max == min) min = max - 0.0001; | |
1108 | |
1109 switch (m_colourScale) { | |
1110 | |
1111 default: | |
1112 case LinearColourScale: | |
1113 value = int(((input - min) / (max - min)) * 255.0) + 1; | |
1114 break; | |
1115 | |
1116 case MeterColourScale: | |
1117 value = AudioLevel::multiplier_to_preview | |
1118 ((input - min) / (max - min), 254) + 1; | |
1119 break; | |
1120 | |
1121 case dBSquaredColourScale: | |
1122 input = ((input - min) * (input - min)) / ((max - min) * (max - min)); | |
1123 if (input > 0.0) { | |
1124 input = 10.0 * log10(input); | |
1125 } else { | |
1126 input = thresh; | |
1127 } | |
1128 if (min > 0.0) { | |
1129 thresh = 10.0 * log10(min * min); | |
1130 if (thresh < -80.0) thresh = -80.0; | |
1131 } | |
1132 input = (input - thresh) / (-thresh); | |
1133 if (input < 0.0) input = 0.0; | |
1134 if (input > 1.0) input = 1.0; | |
1135 value = int(input * 255.0) + 1; | |
1136 break; | |
1137 | |
1138 case dBColourScale: | |
1139 //!!! experiment with normalizing the visible area this way. | |
1140 //In any case, we need to have some indication of what the dB | |
1141 //scale is relative to. | |
1142 input = (input - min) / (max - min); | |
1143 if (input > 0.0) { | |
1144 input = 10.0 * log10(input); | |
1145 } else { | |
1146 input = thresh; | |
1147 } | |
1148 if (min > 0.0) { | |
1149 thresh = 10.0 * log10(min); | |
1150 if (thresh < -80.0) thresh = -80.0; | |
1151 } | |
1152 input = (input - thresh) / (-thresh); | |
1153 if (input < 0.0) input = 0.0; | |
1154 if (input > 1.0) input = 1.0; | |
1155 value = int(input * 255.0) + 1; | |
1156 break; | |
1157 | |
1158 case PhaseColourScale: | |
1159 value = int((input * 127.0 / M_PI) + 128); | |
1160 break; | |
1161 } | |
1162 | |
1163 if (value > UCHAR_MAX) value = UCHAR_MAX; | |
1164 if (value < 0) value = 0; | |
1165 return (unsigned char)value; | |
1166 } | |
1167 | |
1168 double | 1058 double |
1169 SpectrogramLayer::getEffectiveMinFrequency() const | 1059 SpectrogramLayer::getEffectiveMinFrequency() const |
1170 { | 1060 { |
1171 sv_samplerate_t sr = m_model->getSampleRate(); | 1061 sv_samplerate_t sr = m_model->getSampleRate(); |
1172 double minf = double(sr) / m_fftSize; | 1062 double minf = double(sr) / getFFTSize(); |
1173 | 1063 |
1174 if (m_minFrequency > 0.0) { | 1064 if (m_minFrequency > 0.0) { |
1175 int minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.01); | 1065 int minbin = int((double(m_minFrequency) * getFFTSize()) / sr + 0.01); |
1176 if (minbin < 1) minbin = 1; | 1066 if (minbin < 1) minbin = 1; |
1177 minf = minbin * sr / m_fftSize; | 1067 minf = minbin * sr / getFFTSize(); |
1178 } | 1068 } |
1179 | 1069 |
1180 return minf; | 1070 return minf; |
1181 } | 1071 } |
1182 | 1072 |
1185 { | 1075 { |
1186 sv_samplerate_t sr = m_model->getSampleRate(); | 1076 sv_samplerate_t sr = m_model->getSampleRate(); |
1187 double maxf = double(sr) / 2; | 1077 double maxf = double(sr) / 2; |
1188 | 1078 |
1189 if (m_maxFrequency > 0.0) { | 1079 if (m_maxFrequency > 0.0) { |
1190 int maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | 1080 int maxbin = int((double(m_maxFrequency) * getFFTSize()) / sr + 0.1); |
1191 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | 1081 if (maxbin > getFFTSize() / 2) maxbin = getFFTSize() / 2; |
1192 maxf = maxbin * sr / m_fftSize; | 1082 maxf = maxbin * sr / getFFTSize(); |
1193 } | 1083 } |
1194 | 1084 |
1195 return maxf; | 1085 return maxf; |
1196 } | 1086 } |
1197 | 1087 |
1198 bool | 1088 bool |
1199 SpectrogramLayer::getYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const | 1089 SpectrogramLayer::getYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const |
1200 { | 1090 { |
1201 Profiler profiler("SpectrogramLayer::getYBinRange"); | 1091 Profiler profiler("SpectrogramLayer::getYBinRange"); |
1202 | |
1203 int h = v->getPaintHeight(); | 1092 int h = v->getPaintHeight(); |
1204 if (y < 0 || y >= h) return false; | 1093 if (y < 0 || y >= h) return false; |
1205 | 1094 q0 = getBinForY(v, y); |
1095 q1 = getBinForY(v, y-1); | |
1096 return true; | |
1097 } | |
1098 | |
1099 double | |
1100 SpectrogramLayer::getYForBin(const LayerGeometryProvider *v, double bin) const | |
1101 { | |
1102 double minf = getEffectiveMinFrequency(); | |
1103 double maxf = getEffectiveMaxFrequency(); | |
1104 bool logarithmic = (m_binScale == BinScale::Log); | |
1105 sv_samplerate_t sr = m_model->getSampleRate(); | |
1106 | |
1107 double freq = (bin * sr) / getFFTSize(); | |
1108 | |
1109 double y = v->getYForFrequency(freq, minf, maxf, logarithmic); | |
1110 | |
1111 return y; | |
1112 } | |
1113 | |
1114 double | |
1115 SpectrogramLayer::getBinForY(const LayerGeometryProvider *v, double y) const | |
1116 { | |
1206 sv_samplerate_t sr = m_model->getSampleRate(); | 1117 sv_samplerate_t sr = m_model->getSampleRate(); |
1207 double minf = getEffectiveMinFrequency(); | 1118 double minf = getEffectiveMinFrequency(); |
1208 double maxf = getEffectiveMaxFrequency(); | 1119 double maxf = getEffectiveMaxFrequency(); |
1209 | 1120 |
1210 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | 1121 bool logarithmic = (m_binScale == BinScale::Log); |
1211 | 1122 |
1212 q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); | 1123 double freq = v->getFrequencyForY(y, minf, maxf, logarithmic); |
1213 q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); | 1124 |
1214 | 1125 // Now map on to ("proportion of") actual bins |
1215 // Now map these on to ("proportions of") actual bins, using raw | 1126 double bin = (freq * getFFTSize()) / sr; |
1216 // FFT size (unsmoothed) | 1127 |
1217 | 1128 return bin; |
1218 q0 = (q0 * m_fftSize) / sr; | 1129 } |
1219 q1 = (q1 * m_fftSize) / sr; | 1130 |
1220 | |
1221 return true; | |
1222 } | |
1223 | |
1224 bool | |
1225 SpectrogramLayer::getSmoothedYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const | |
1226 { | |
1227 Profiler profiler("SpectrogramLayer::getSmoothedYBinRange"); | |
1228 | |
1229 int h = v->getPaintHeight(); | |
1230 if (y < 0 || y >= h) return false; | |
1231 | |
1232 sv_samplerate_t sr = m_model->getSampleRate(); | |
1233 double minf = getEffectiveMinFrequency(); | |
1234 double maxf = getEffectiveMaxFrequency(); | |
1235 | |
1236 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | |
1237 | |
1238 q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); | |
1239 q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); | |
1240 | |
1241 // Now map these on to ("proportions of") actual bins, using raw | |
1242 // FFT size (unsmoothed) | |
1243 | |
1244 q0 = (q0 * getFFTSize(v)) / sr; | |
1245 q1 = (q1 * getFFTSize(v)) / sr; | |
1246 | |
1247 return true; | |
1248 } | |
1249 | |
1250 bool | 1131 bool |
1251 SpectrogramLayer::getXBinRange(LayerGeometryProvider *v, int x, double &s0, double &s1) const | 1132 SpectrogramLayer::getXBinRange(LayerGeometryProvider *v, int x, double &s0, double &s1) const |
1252 { | 1133 { |
1253 sv_frame_t modelStart = m_model->getStartFrame(); | 1134 sv_frame_t modelStart = m_model->getStartFrame(); |
1254 sv_frame_t modelEnd = m_model->getEndFrame(); | 1135 sv_frame_t modelEnd = m_model->getEndFrame(); |
1301 int q1i = int(q1); | 1182 int q1i = int(q1); |
1302 | 1183 |
1303 sv_samplerate_t sr = m_model->getSampleRate(); | 1184 sv_samplerate_t sr = m_model->getSampleRate(); |
1304 | 1185 |
1305 for (int q = q0i; q <= q1i; ++q) { | 1186 for (int q = q0i; q <= q1i; ++q) { |
1306 if (q == q0i) freqMin = (sr * q) / m_fftSize; | 1187 if (q == q0i) freqMin = (sr * q) / getFFTSize(); |
1307 if (q == q1i) freqMax = (sr * (q+1)) / m_fftSize; | 1188 if (q == q1i) freqMax = (sr * (q+1)) / getFFTSize(); |
1308 } | 1189 } |
1309 return true; | 1190 return true; |
1310 } | 1191 } |
1311 | 1192 |
1312 bool | 1193 bool |
1317 { | 1198 { |
1318 if (!m_model || !m_model->isOK() || !m_model->isReady()) { | 1199 if (!m_model || !m_model->isOK() || !m_model->isReady()) { |
1319 return false; | 1200 return false; |
1320 } | 1201 } |
1321 | 1202 |
1322 FFTModel *fft = getFFTModel(v); | 1203 FFTModel *fft = getFFTModel(); |
1323 if (!fft) return false; | 1204 if (!fft) return false; |
1324 | 1205 |
1325 double s0 = 0, s1 = 0; | 1206 double s0 = 0, s1 = 0; |
1326 if (!getXBinRange(v, x, s0, s1)) return false; | 1207 if (!getXBinRange(v, x, s0, s1)) return false; |
1327 | 1208 |
1336 | 1217 |
1337 sv_samplerate_t sr = m_model->getSampleRate(); | 1218 sv_samplerate_t sr = m_model->getSampleRate(); |
1338 | 1219 |
1339 bool haveAdj = false; | 1220 bool haveAdj = false; |
1340 | 1221 |
1341 bool peaksOnly = (m_binDisplay == PeakBins || | 1222 bool peaksOnly = (m_binDisplay == BinDisplay::PeakBins || |
1342 m_binDisplay == PeakFrequencies); | 1223 m_binDisplay == BinDisplay::PeakFrequencies); |
1343 | 1224 |
1344 for (int q = q0i; q <= q1i; ++q) { | 1225 for (int q = q0i; q <= q1i; ++q) { |
1345 | 1226 |
1346 for (int s = s0i; s <= s1i; ++s) { | 1227 for (int s = s0i; s <= s1i; ++s) { |
1347 | |
1348 if (!fft->isColumnAvailable(s)) continue; | |
1349 | 1228 |
1350 double binfreq = (double(sr) * q) / m_windowSize; | 1229 double binfreq = (double(sr) * q) / m_windowSize; |
1351 if (q == q0i) freqMin = binfreq; | 1230 if (q == q0i) freqMin = binfreq; |
1352 if (q == q1i) freqMax = binfreq; | 1231 if (q == q1i) freqMax = binfreq; |
1353 | 1232 |
1354 if (peaksOnly && !fft->isLocalPeak(s, q)) continue; | 1233 if (peaksOnly && !fft->isLocalPeak(s, q)) continue; |
1355 | 1234 |
1356 if (!fft->isOverThreshold(s, q, float(m_threshold * double(m_fftSize)/2.0))) continue; | 1235 if (!fft->isOverThreshold |
1236 (s, q, float(m_threshold * double(getFFTSize())/2.0))) { | |
1237 continue; | |
1238 } | |
1357 | 1239 |
1358 double freq = binfreq; | 1240 double freq = binfreq; |
1359 | 1241 |
1360 if (s < int(fft->getWidth()) - 1) { | 1242 if (s < int(fft->getWidth()) - 1) { |
1361 | 1243 |
1397 int s0i = int(s0 + 0.001); | 1279 int s0i = int(s0 + 0.001); |
1398 int s1i = int(s1); | 1280 int s1i = int(s1); |
1399 | 1281 |
1400 bool rv = false; | 1282 bool rv = false; |
1401 | 1283 |
1402 int zp = getZeroPadLevel(v); | 1284 FFTModel *fft = getFFTModel(); |
1403 q0i *= zp + 1; | |
1404 q1i *= zp + 1; | |
1405 | |
1406 FFTModel *fft = getFFTModel(v); | |
1407 | 1285 |
1408 if (fft) { | 1286 if (fft) { |
1409 | 1287 |
1410 int cw = fft->getWidth(); | 1288 int cw = fft->getWidth(); |
1411 int ch = fft->getHeight(); | 1289 int ch = fft->getHeight(); |
1418 | 1296 |
1419 for (int q = q0i; q <= q1i; ++q) { | 1297 for (int q = q0i; q <= q1i; ++q) { |
1420 for (int s = s0i; s <= s1i; ++s) { | 1298 for (int s = s0i; s <= s1i; ++s) { |
1421 if (s >= 0 && q >= 0 && s < cw && q < ch) { | 1299 if (s >= 0 && q >= 0 && s < cw && q < ch) { |
1422 | 1300 |
1423 if (!fft->isColumnAvailable(s)) continue; | |
1424 | |
1425 double value; | 1301 double value; |
1426 | 1302 |
1427 value = fft->getPhaseAt(s, q); | 1303 value = fft->getPhaseAt(s, q); |
1428 if (!have || value < phaseMin) { phaseMin = value; } | 1304 if (!have || value < phaseMin) { phaseMin = value; } |
1429 if (!have || value > phaseMax) { phaseMax = value; } | 1305 if (!have || value > phaseMax) { phaseMax = value; } |
1430 | 1306 |
1431 value = fft->getMagnitudeAt(s, q) / (m_fftSize/2.0); | 1307 value = fft->getMagnitudeAt(s, q) / (getFFTSize()/2.0); |
1432 if (!have || value < min) { min = value; } | 1308 if (!have || value < min) { min = value; } |
1433 if (!have || value > max) { max = value; } | 1309 if (!have || value > max) { max = value; } |
1434 | 1310 |
1435 have = true; | 1311 have = true; |
1436 } | 1312 } |
1442 } | 1318 } |
1443 } | 1319 } |
1444 | 1320 |
1445 return rv; | 1321 return rv; |
1446 } | 1322 } |
1447 | |
1448 int | |
1449 SpectrogramLayer::getZeroPadLevel(const LayerGeometryProvider *v) const | |
1450 { | |
1451 //!!! tidy all this stuff | |
1452 | |
1453 if (m_binDisplay != AllBins) return 0; | |
1454 | |
1455 Preferences::SpectrogramSmoothing smoothing = | |
1456 Preferences::getInstance()->getSpectrogramSmoothing(); | |
1457 | |
1458 if (smoothing == Preferences::NoSpectrogramSmoothing || | |
1459 smoothing == Preferences::SpectrogramInterpolated) return 0; | |
1460 | |
1461 if (m_frequencyScale == LogFrequencyScale) return 3; | |
1462 | |
1463 sv_samplerate_t sr = m_model->getSampleRate(); | |
1464 | |
1465 int maxbin = m_fftSize / 2; | |
1466 if (m_maxFrequency > 0) { | |
1467 maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | |
1468 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | |
1469 } | |
1470 | |
1471 int minbin = 1; | |
1472 if (m_minFrequency > 0) { | |
1473 minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.1); | |
1474 if (minbin < 1) minbin = 1; | |
1475 if (minbin >= maxbin) minbin = maxbin - 1; | |
1476 } | |
1477 | |
1478 double perPixel = | |
1479 double(v->getPaintHeight()) / | |
1480 double((maxbin - minbin) / (m_zeroPadLevel + 1)); | |
1481 | |
1482 if (perPixel > 2.8) { | |
1483 return 3; // 4x oversampling | |
1484 } else if (perPixel > 1.5) { | |
1485 return 1; // 2x | |
1486 } else { | |
1487 return 0; // 1x | |
1488 } | |
1489 } | |
1490 | |
1491 int | |
1492 SpectrogramLayer::getFFTSize(const LayerGeometryProvider *v) const | |
1493 { | |
1494 return m_fftSize * (getZeroPadLevel(v) + 1); | |
1495 } | |
1496 | 1323 |
1497 FFTModel * | 1324 FFTModel * |
1498 SpectrogramLayer::getFFTModel(const LayerGeometryProvider *v) const | 1325 SpectrogramLayer::getFFTModel() const |
1499 { | 1326 { |
1500 if (!m_model) return 0; | 1327 if (!m_model) return 0; |
1501 | 1328 |
1502 int fftSize = getFFTSize(v); | 1329 int fftSize = getFFTSize(); |
1503 | 1330 |
1504 const View *view = v->getView(); | 1331 //!!! it is now surely slower to do this on every getFFTModel() |
1505 | 1332 //!!! request than it would be to recreate the model immediately |
1506 if (m_fftModels.find(view) != m_fftModels.end()) { | 1333 //!!! when something changes instead of just invalidating it |
1507 if (m_fftModels[view] == 0) { | 1334 |
1508 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1335 if (m_fftModel && |
1509 cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found null model" << endl; | 1336 m_fftModel->getHeight() == fftSize / 2 + 1 && |
1510 #endif | 1337 m_fftModel->getWindowIncrement() == getWindowIncrement()) { |
1511 return 0; | 1338 return m_fftModel; |
1512 } | 1339 } |
1513 if (m_fftModels[view]->getHeight() != fftSize / 2 + 1) { | 1340 |
1514 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1341 delete m_peakCache; |
1515 cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found a model with the wrong height (" << m_fftModels[view]->getHeight() << ", wanted " << (fftSize / 2 + 1) << ")" << endl; | 1342 m_peakCache = 0; |
1516 #endif | 1343 |
1517 delete m_fftModels[view]; | 1344 delete m_fftModel; |
1518 m_fftModels.erase(view); | 1345 m_fftModel = new FFTModel(m_model, |
1519 delete m_peakCaches[view]; | 1346 m_channel, |
1520 m_peakCaches.erase(view); | 1347 m_windowType, |
1521 } else { | 1348 m_windowSize, |
1522 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1349 getWindowIncrement(), |
1523 cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found a good model of height " << m_fftModels[view]->getHeight() << endl; | 1350 fftSize); |
1524 #endif | 1351 |
1525 return m_fftModels[view]; | 1352 if (!m_fftModel->isOK()) { |
1526 } | 1353 QMessageBox::critical |
1527 } | 1354 (0, tr("FFT cache failed"), |
1528 | 1355 tr("Failed to create the FFT model for this spectrogram.\n" |
1529 if (m_fftModels.find(view) == m_fftModels.end()) { | 1356 "There may be insufficient memory or disc space to continue.")); |
1530 | 1357 delete m_fftModel; |
1531 FFTModel *model = new FFTModel(m_model, | 1358 m_fftModel = 0; |
1532 m_channel, | 1359 return 0; |
1533 m_windowType, | 1360 } |
1534 m_windowSize, | 1361 |
1535 getWindowIncrement(), | 1362 ((SpectrogramLayer *)this)->sliceableModelReplaced(0, m_fftModel); |
1536 fftSize); | 1363 |
1537 | 1364 return m_fftModel; |
1538 if (!model->isOK()) { | |
1539 QMessageBox::critical | |
1540 (0, tr("FFT cache failed"), | |
1541 tr("Failed to create the FFT model for this spectrogram.\n" | |
1542 "There may be insufficient memory or disc space to continue.")); | |
1543 delete model; | |
1544 m_fftModels[view] = 0; | |
1545 return 0; | |
1546 } | |
1547 | |
1548 if (!m_sliceableModel) { | |
1549 #ifdef DEBUG_SPECTROGRAM | |
1550 cerr << "SpectrogramLayer: emitting sliceableModelReplaced(0, " << model << ")" << endl; | |
1551 #endif | |
1552 ((SpectrogramLayer *)this)->sliceableModelReplaced(0, model); | |
1553 m_sliceableModel = model; | |
1554 } | |
1555 | |
1556 m_fftModels[view] = model; | |
1557 } | |
1558 | |
1559 return m_fftModels[view]; | |
1560 } | 1365 } |
1561 | 1366 |
1562 Dense3DModelPeakCache * | 1367 Dense3DModelPeakCache * |
1563 SpectrogramLayer::getPeakCache(const LayerGeometryProvider *v) const | 1368 SpectrogramLayer::getPeakCache() const |
1564 { | 1369 { |
1565 const View *view = v->getView(); | 1370 //!!! see comment in getFFTModel |
1566 if (!m_peakCaches[view]) { | 1371 |
1567 FFTModel *f = getFFTModel(v); | 1372 if (!m_peakCache) { |
1373 FFTModel *f = getFFTModel(); | |
1568 if (!f) return 0; | 1374 if (!f) return 0; |
1569 m_peakCaches[view] = new Dense3DModelPeakCache(f, 8); | 1375 m_peakCache = new Dense3DModelPeakCache(f, m_peakCacheDivisor); |
1570 } | 1376 } |
1571 return m_peakCaches[view]; | 1377 return m_peakCache; |
1572 } | 1378 } |
1573 | 1379 |
1574 const Model * | 1380 const Model * |
1575 SpectrogramLayer::getSliceableModel() const | 1381 SpectrogramLayer::getSliceableModel() const |
1576 { | 1382 { |
1577 if (m_sliceableModel) return m_sliceableModel; | 1383 return m_fftModel; |
1578 if (m_fftModels.empty()) return 0; | 1384 } |
1579 m_sliceableModel = m_fftModels.begin()->second; | 1385 |
1580 return m_sliceableModel; | 1386 void |
1581 } | 1387 SpectrogramLayer::invalidateFFTModel() |
1582 | 1388 { |
1583 void | 1389 #ifdef DEBUG_SPECTROGRAM |
1584 SpectrogramLayer::invalidateFFTModels() | 1390 cerr << "SpectrogramLayer::invalidateFFTModel called" << endl; |
1585 { | 1391 #endif |
1586 for (ViewFFTMap::iterator i = m_fftModels.begin(); | 1392 |
1587 i != m_fftModels.end(); ++i) { | 1393 emit sliceableModelReplaced(m_fftModel, 0); |
1588 delete i->second; | 1394 |
1589 } | 1395 delete m_fftModel; |
1590 for (PeakCacheMap::iterator i = m_peakCaches.begin(); | 1396 delete m_peakCache; |
1591 i != m_peakCaches.end(); ++i) { | 1397 |
1592 delete i->second; | 1398 m_fftModel = 0; |
1593 } | 1399 m_peakCache = 0; |
1594 | |
1595 m_fftModels.clear(); | |
1596 m_peakCaches.clear(); | |
1597 | |
1598 if (m_sliceableModel) { | |
1599 cerr << "SpectrogramLayer: emitting sliceableModelReplaced(" << m_sliceableModel << ", 0)" << endl; | |
1600 emit sliceableModelReplaced(m_sliceableModel, 0); | |
1601 m_sliceableModel = 0; | |
1602 } | |
1603 } | 1400 } |
1604 | 1401 |
1605 void | 1402 void |
1606 SpectrogramLayer::invalidateMagnitudes() | 1403 SpectrogramLayer::invalidateMagnitudes() |
1607 { | 1404 { |
1405 #ifdef DEBUG_SPECTROGRAM | |
1406 cerr << "SpectrogramLayer::invalidateMagnitudes called" << endl; | |
1407 #endif | |
1608 m_viewMags.clear(); | 1408 m_viewMags.clear(); |
1609 for (std::vector<MagnitudeRange>::iterator i = m_columnMags.begin(); | 1409 } |
1610 i != m_columnMags.end(); ++i) { | 1410 |
1611 *i = MagnitudeRange(); | 1411 void |
1612 } | 1412 SpectrogramLayer::setSynchronousPainting(bool synchronous) |
1613 } | 1413 { |
1614 | 1414 m_synchronous = synchronous; |
1615 bool | 1415 } |
1616 SpectrogramLayer::updateViewMagnitudes(LayerGeometryProvider *v) const | 1416 |
1617 { | 1417 Colour3DPlotRenderer * |
1618 MagnitudeRange mag; | 1418 SpectrogramLayer::getRenderer(LayerGeometryProvider *v) const |
1619 | 1419 { |
1620 int x0 = 0, x1 = v->getPaintWidth(); | 1420 int viewId = v->getId(); |
1621 double s00 = 0, s01 = 0, s10 = 0, s11 = 0; | 1421 |
1622 | 1422 if (m_renderers.find(viewId) == m_renderers.end()) { |
1623 if (!getXBinRange(v, x0, s00, s01)) { | 1423 |
1624 s00 = s01 = double(m_model->getStartFrame()) / getWindowIncrement(); | 1424 Colour3DPlotRenderer::Sources sources; |
1625 } | 1425 sources.verticalBinLayer = this; |
1626 | 1426 sources.fft = getFFTModel(); |
1627 if (!getXBinRange(v, x1, s10, s11)) { | 1427 sources.source = sources.fft; |
1628 s10 = s11 = double(m_model->getEndFrame()) / getWindowIncrement(); | 1428 sources.peaks = getPeakCache(); |
1629 } | 1429 |
1630 | 1430 ColourScale::Parameters cparams; |
1631 int s0 = int(std::min(s00, s10) + 0.0001); | 1431 cparams.colourMap = m_colourMap; |
1632 int s1 = int(std::max(s01, s11) + 0.0001); | 1432 cparams.scaleType = m_colourScale; |
1633 | 1433 cparams.multiple = m_colourScaleMultiple; |
1634 // SVDEBUG << "SpectrogramLayer::updateViewMagnitudes: x0 = " << x0 << ", x1 = " << x1 << ", s00 = " << s00 << ", s11 = " << s11 << " s0 = " << s0 << ", s1 = " << s1 << endl; | 1434 |
1635 | 1435 if (m_colourScale != ColourScaleType::Phase) { |
1636 if (int(m_columnMags.size()) <= s1) { | 1436 cparams.gain = m_gain; |
1637 m_columnMags.resize(s1 + 1); | 1437 cparams.threshold = m_threshold; |
1638 } | |
1639 | |
1640 for (int s = s0; s <= s1; ++s) { | |
1641 if (m_columnMags[s].isSet()) { | |
1642 mag.sample(m_columnMags[s]); | |
1643 } | 1438 } |
1644 } | 1439 |
1440 float minValue = 0.0f; | |
1441 float maxValue = 1.0f; | |
1442 | |
1443 if (m_normalizeVisibleArea && m_viewMags[viewId].isSet()) { | |
1444 minValue = m_viewMags[viewId].getMin(); | |
1445 maxValue = m_viewMags[viewId].getMax(); | |
1446 } else if (m_colourScale == ColourScaleType::Linear && | |
1447 m_normalization == ColumnNormalization::None) { | |
1448 maxValue = 0.1f; | |
1449 } | |
1450 | |
1451 if (maxValue <= minValue) { | |
1452 maxValue = minValue + 0.1f; | |
1453 } | |
1454 if (maxValue <= m_threshold) { | |
1455 maxValue = m_threshold + 0.1f; | |
1456 } | |
1457 | |
1458 cparams.minValue = minValue; | |
1459 cparams.maxValue = maxValue; | |
1460 | |
1461 m_lastRenderedMags[viewId] = MagnitudeRange(minValue, maxValue); | |
1462 | |
1463 Colour3DPlotRenderer::Parameters params; | |
1464 params.colourScale = ColourScale(cparams); | |
1465 params.normalization = m_normalization; | |
1466 params.binDisplay = m_binDisplay; | |
1467 params.binScale = m_binScale; | |
1468 params.alwaysOpaque = true; | |
1469 params.invertVertical = false; | |
1470 params.scaleFactor = 1.0; | |
1471 params.colourRotation = m_colourRotation; | |
1472 | |
1473 if (m_colourScale != ColourScaleType::Phase && | |
1474 m_normalization != ColumnNormalization::Hybrid) { | |
1475 params.scaleFactor *= 2.f / float(getFFTSize()); | |
1476 } | |
1477 | |
1478 Preferences::SpectrogramSmoothing smoothing = | |
1479 Preferences::getInstance()->getSpectrogramSmoothing(); | |
1480 params.interpolate = | |
1481 (smoothing == Preferences::SpectrogramInterpolated || | |
1482 smoothing == Preferences::SpectrogramZeroPaddedAndInterpolated); | |
1483 | |
1484 m_renderers[v->getId()] = new Colour3DPlotRenderer(sources, params); | |
1485 } | |
1486 | |
1487 return m_renderers[v->getId()]; | |
1488 } | |
1489 | |
1490 void | |
1491 SpectrogramLayer::paintWithRenderer(LayerGeometryProvider *v, QPainter &paint, QRect rect) const | |
1492 { | |
1493 Colour3DPlotRenderer *renderer = getRenderer(v); | |
1494 | |
1495 Colour3DPlotRenderer::RenderResult result; | |
1496 MagnitudeRange magRange; | |
1497 int viewId = v->getId(); | |
1498 | |
1499 bool continuingPaint = !renderer->geometryChanged(v); | |
1500 | |
1501 if (continuingPaint) { | |
1502 magRange = m_viewMags[viewId]; | |
1503 } | |
1504 | |
1505 if (m_synchronous) { | |
1506 | |
1507 result = renderer->render(v, paint, rect); | |
1508 | |
1509 } else { | |
1510 | |
1511 result = renderer->renderTimeConstrained(v, paint, rect); | |
1645 | 1512 |
1646 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1513 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1647 cerr << "SpectrogramLayer::updateViewMagnitudes returning from cols " | 1514 cerr << "rect width from this paint: " << result.rendered.width() |
1648 << s0 << " -> " << s1 << " inclusive" << endl; | 1515 << ", mag range in this paint: " << result.range.getMin() << " -> " |
1516 << result.range.getMax() << endl; | |
1649 #endif | 1517 #endif |
1650 | 1518 |
1651 if (!mag.isSet()) return false; | 1519 QRect uncached = renderer->getLargestUncachedRect(v); |
1652 if (mag == m_viewMags[v]) return false; | 1520 if (uncached.width() > 0) { |
1653 m_viewMags[v] = mag; | 1521 v->updatePaintRect(uncached); |
1654 return true; | 1522 } |
1655 } | 1523 } |
1656 | 1524 |
1657 void | 1525 magRange.sample(result.range); |
1658 SpectrogramLayer::setSynchronousPainting(bool synchronous) | 1526 |
1659 { | 1527 if (magRange.isSet()) { |
1660 m_synchronous = synchronous; | 1528 if (m_viewMags[viewId] != magRange) { |
1529 m_viewMags[viewId] = magRange; | |
1530 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1531 cerr << "mag range in this view has changed: " | |
1532 << magRange.getMin() << " -> " << magRange.getMax() << endl; | |
1533 #endif | |
1534 } | |
1535 } | |
1536 | |
1537 if (!continuingPaint && m_normalizeVisibleArea && | |
1538 m_viewMags[viewId] != m_lastRenderedMags[viewId]) { | |
1539 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1540 cerr << "mag range has changed from last rendered range: re-rendering" | |
1541 << endl; | |
1542 #endif | |
1543 delete m_renderers[viewId]; | |
1544 m_renderers.erase(viewId); | |
1545 v->updatePaintRect(v->getPaintRect()); | |
1546 } | |
1661 } | 1547 } |
1662 | 1548 |
1663 void | 1549 void |
1664 SpectrogramLayer::paint(LayerGeometryProvider *v, QPainter &paint, QRect rect) const | 1550 SpectrogramLayer::paint(LayerGeometryProvider *v, QPainter &paint, QRect rect) const |
1665 { | 1551 { |
1666 // What a lovely, old-fashioned function this is. | |
1667 // It's practically FORTRAN 77 in its clarity and linearity. | |
1668 | |
1669 Profiler profiler("SpectrogramLayer::paint", false); | 1552 Profiler profiler("SpectrogramLayer::paint", false); |
1670 | 1553 |
1671 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1554 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1672 cerr << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << endl; | 1555 cerr << "SpectrogramLayer::paint() entering: m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << endl; |
1673 | 1556 |
1674 cerr << "rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << endl; | 1557 cerr << "SpectrogramLayer::paint(): rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << endl; |
1675 #endif | 1558 #endif |
1676 | |
1677 sv_frame_t startFrame = v->getStartFrame(); | |
1678 | 1559 |
1679 if (!m_model || !m_model->isOK() || !m_model->isReady()) { | 1560 if (!m_model || !m_model->isOK() || !m_model->isReady()) { |
1680 return; | 1561 return; |
1681 } | 1562 } |
1682 | 1563 |
1683 if (isLayerDormant(v)) { | 1564 if (isLayerDormant(v)) { |
1684 SVDEBUG << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << endl; | 1565 SVDEBUG << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << endl; |
1685 } | 1566 } |
1686 | 1567 |
1687 // Need to do this even if !isLayerDormant, as that could mean v | 1568 paintWithRenderer(v, paint, rect); |
1688 // is not in the dormancy map at all -- we need it to be present | |
1689 // and accountable for when determining whether we need the cache | |
1690 // in the cache-fill thread above. | |
1691 //!!! no inter use cache-fill thread | |
1692 const_cast<SpectrogramLayer *>(this)->Layer::setLayerDormant(v, false); | |
1693 | |
1694 int fftSize = getFFTSize(v); | |
1695 /* | |
1696 FFTModel *fft = getFFTModel(v); | |
1697 if (!fft) { | |
1698 cerr << "ERROR: SpectrogramLayer::paint(): No FFT model, returning" << endl; | |
1699 return; | |
1700 } | |
1701 */ | |
1702 | |
1703 const View *view = v->getView(); | |
1704 | |
1705 ImageCache &cache = m_imageCaches[view]; | |
1706 | |
1707 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1708 cerr << "SpectrogramLayer::paint(): image cache valid area " << cache. | |
1709 | |
1710 validArea.x() << ", " << cache.validArea.y() << ", " << cache.validArea.width() << "x" << cache.validArea.height() << endl; | |
1711 #endif | |
1712 | |
1713 int zoomLevel = v->getZoomLevel(); | |
1714 | |
1715 int x0 = 0; | |
1716 int x1 = v->getPaintWidth(); | |
1717 | |
1718 bool recreateWholeImageCache = true; | |
1719 | |
1720 x0 = rect.left(); | |
1721 x1 = rect.right() + 1; | |
1722 /* | |
1723 double xPixelRatio = double(fft->getResolution()) / double(zoomLevel); | |
1724 cerr << "xPixelRatio = " << xPixelRatio << endl; | |
1725 if (xPixelRatio < 1.f) xPixelRatio = 1.f; | |
1726 */ | |
1727 if (cache.validArea.width() > 0) { | |
1728 | |
1729 int cw = cache.image.width(); | |
1730 int ch = cache.image.height(); | |
1731 | |
1732 if (int(cache.zoomLevel) == zoomLevel && | |
1733 cw == v->getPaintWidth() && | |
1734 ch == v->getPaintHeight()) { | |
1735 | |
1736 if (v->getXForFrame(cache.startFrame) == | |
1737 v->getXForFrame(startFrame) && | |
1738 cache.validArea.x() <= x0 && | |
1739 cache.validArea.x() + cache.validArea.width() >= x1) { | |
1740 | |
1741 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1742 cerr << "SpectrogramLayer: image cache good" << endl; | |
1743 #endif | |
1744 | |
1745 paint.drawImage(rect, cache.image, rect); | |
1746 //!!! | |
1747 // paint.drawImage(v->rect(), cache.image, | |
1748 // QRect(QPoint(0, 0), cache.image.size())); | |
1749 | |
1750 illuminateLocalFeatures(v, paint); | |
1751 return; | |
1752 | |
1753 } else { | |
1754 | |
1755 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1756 cerr << "SpectrogramLayer: image cache partially OK" << endl; | |
1757 #endif | |
1758 | |
1759 recreateWholeImageCache = false; | |
1760 | |
1761 int dx = v->getXForFrame(cache.startFrame) - | |
1762 v->getXForFrame(startFrame); | |
1763 | |
1764 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1765 cerr << "SpectrogramLayer: dx = " << dx << " (image cache " << cw << "x" << ch << ")" << endl; | |
1766 #endif | |
1767 | |
1768 if (dx != 0 && | |
1769 dx > -cw && | |
1770 dx < cw) { | |
1771 | |
1772 int dxp = dx; | |
1773 if (dxp < 0) dxp = -dxp; | |
1774 size_t copy = (cw - dxp) * sizeof(QRgb); | |
1775 for (int y = 0; y < ch; ++y) { | |
1776 QRgb *line = (QRgb *)cache.image.scanLine(y); | |
1777 if (dx < 0) { | |
1778 memmove(line, line + dxp, copy); | |
1779 } else { | |
1780 memmove(line + dxp, line, copy); | |
1781 } | |
1782 } | |
1783 | |
1784 int px = cache.validArea.x(); | |
1785 int pw = cache.validArea.width(); | |
1786 | |
1787 if (dx < 0) { | |
1788 x0 = cw + dx; | |
1789 x1 = cw; | |
1790 px += dx; | |
1791 if (px < 0) { | |
1792 pw += px; | |
1793 px = 0; | |
1794 if (pw < 0) pw = 0; | |
1795 } | |
1796 } else { | |
1797 x0 = 0; | |
1798 x1 = dx; | |
1799 px += dx; | |
1800 if (px + pw > cw) { | |
1801 pw = int(cw) - px; | |
1802 if (pw < 0) pw = 0; | |
1803 } | |
1804 } | |
1805 | |
1806 cache.validArea = | |
1807 QRect(px, cache.validArea.y(), | |
1808 pw, cache.validArea.height()); | |
1809 | |
1810 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1811 cerr << "valid area now " | |
1812 << px << "," << cache.validArea.y() | |
1813 << " " << pw << "x" << cache.validArea.height() | |
1814 << endl; | |
1815 #endif | |
1816 /* | |
1817 paint.drawImage(rect & cache.validArea, | |
1818 cache.image, | |
1819 rect & cache.validArea); | |
1820 */ | |
1821 } else if (dx != 0) { | |
1822 | |
1823 // we scrolled too far to be of use | |
1824 | |
1825 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1826 cerr << "dx == " << dx << ": scrolled too far for cache to be useful" << endl; | |
1827 #endif | |
1828 | |
1829 cache.validArea = QRect(); | |
1830 recreateWholeImageCache = true; | |
1831 } | |
1832 } | |
1833 } else { | |
1834 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1835 cerr << "SpectrogramLayer: image cache useless" << endl; | |
1836 if (int(cache.zoomLevel) != zoomLevel) { | |
1837 cerr << "(cache zoomLevel " << cache.zoomLevel | |
1838 << " != " << zoomLevel << ")" << endl; | |
1839 } | |
1840 if (cw != v->getPaintWidth()) { | |
1841 cerr << "(cache width " << cw | |
1842 << " != " << v->getPaintWidth(); | |
1843 } | |
1844 if (ch != v->getPaintHeight()) { | |
1845 cerr << "(cache height " << ch | |
1846 << " != " << v->getPaintHeight(); | |
1847 } | |
1848 #endif | |
1849 cache.validArea = QRect(); | |
1850 // recreateWholeImageCache = true; | |
1851 } | |
1852 } | |
1853 | |
1854 if (updateViewMagnitudes(v)) { | |
1855 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1856 cerr << "SpectrogramLayer: magnitude range changed to [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << endl; | |
1857 #endif | |
1858 if (m_normalization == NormalizeVisibleArea) { | |
1859 cache.validArea = QRect(); | |
1860 recreateWholeImageCache = true; | |
1861 } | |
1862 } else { | |
1863 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1864 cerr << "No change in magnitude range [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << endl; | |
1865 #endif | |
1866 } | |
1867 | |
1868 if (recreateWholeImageCache) { | |
1869 x0 = 0; | |
1870 x1 = v->getPaintWidth(); | |
1871 } | |
1872 | |
1873 struct timeval tv; | |
1874 (void)gettimeofday(&tv, 0); | |
1875 RealTime mainPaintStart = RealTime::fromTimeval(tv); | |
1876 | |
1877 int paintBlockWidth = m_lastPaintBlockWidth; | |
1878 | |
1879 if (m_synchronous) { | |
1880 if (paintBlockWidth < x1 - x0) { | |
1881 // always paint full width | |
1882 paintBlockWidth = x1 - x0; | |
1883 } | |
1884 } else { | |
1885 if (paintBlockWidth == 0) { | |
1886 paintBlockWidth = (300000 / zoomLevel); | |
1887 } else { | |
1888 RealTime lastTime = m_lastPaintTime; | |
1889 while (lastTime > RealTime::fromMilliseconds(200) && | |
1890 paintBlockWidth > 100) { | |
1891 paintBlockWidth /= 2; | |
1892 lastTime = lastTime / 2; | |
1893 } | |
1894 while (lastTime < RealTime::fromMilliseconds(90) && | |
1895 paintBlockWidth < 1500) { | |
1896 paintBlockWidth *= 2; | |
1897 lastTime = lastTime * 2; | |
1898 } | |
1899 } | |
1900 | |
1901 if (paintBlockWidth < 50) paintBlockWidth = 50; | |
1902 } | |
1903 | |
1904 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1905 cerr << "[" << this << "]: last paint width: " << m_lastPaintBlockWidth << ", last paint time: " << m_lastPaintTime << ", new paint width: " << paintBlockWidth << endl; | |
1906 #endif | |
1907 | |
1908 // We always paint the full height when refreshing the cache. | |
1909 // Smaller heights can be used when painting direct from cache | |
1910 // (further up in this function), but we want to ensure the cache | |
1911 // is coherent without having to worry about vertical matching of | |
1912 // required and valid areas as well as horizontal. | |
1913 | |
1914 int h = v->getPaintHeight(); | |
1915 | |
1916 if (cache.validArea.width() > 0) { | |
1917 | |
1918 // If part of the cache is known to be valid, select a strip | |
1919 // immediately to left or right of the valid part | |
1920 | |
1921 //!!! this really needs to be coordinated with the selection | |
1922 //!!! of m_drawBuffer boundaries in the bufferBinResolution | |
1923 //!!! case below | |
1924 | |
1925 int vx0 = 0, vx1 = 0; | |
1926 vx0 = cache.validArea.x(); | |
1927 vx1 = cache.validArea.x() + cache.validArea.width(); | |
1928 | |
1929 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1930 cerr << "x0 " << x0 << ", x1 " << x1 << ", vx0 " << vx0 << ", vx1 " << vx1 << ", paintBlockWidth " << paintBlockWidth << endl; | |
1931 #endif | |
1932 if (x0 < vx0) { | |
1933 if (x0 + paintBlockWidth < vx0) { | |
1934 x0 = vx0 - paintBlockWidth; | |
1935 } | |
1936 x1 = vx0; | |
1937 } else if (x0 >= vx1) { | |
1938 x0 = vx1; | |
1939 if (x1 > x0 + paintBlockWidth) { | |
1940 x1 = x0 + paintBlockWidth; | |
1941 } | |
1942 } else { | |
1943 // x0 is within the valid area | |
1944 if (x1 > vx1) { | |
1945 x0 = vx1; | |
1946 if (x0 + paintBlockWidth < x1) { | |
1947 x1 = x0 + paintBlockWidth; | |
1948 } | |
1949 } else { | |
1950 x1 = x0; // it's all valid, paint nothing | |
1951 } | |
1952 } | |
1953 | |
1954 cache.validArea = QRect | |
1955 (std::min(vx0, x0), cache.validArea.y(), | |
1956 std::max(vx1 - std::min(vx0, x0), | |
1957 x1 - std::min(vx0, x0)), | |
1958 cache.validArea.height()); | |
1959 | |
1960 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1961 cerr << "Valid area becomes " << cache.validArea.x() | |
1962 << ", " << cache.validArea.y() << ", " | |
1963 << cache.validArea.width() << "x" | |
1964 << cache.validArea.height() << endl; | |
1965 #endif | |
1966 | |
1967 } else { | |
1968 if (x1 > x0 + paintBlockWidth) { | |
1969 int sfx = x1; | |
1970 if (startFrame < 0) sfx = v->getXForFrame(0); | |
1971 if (sfx >= x0 && sfx + paintBlockWidth <= x1) { | |
1972 x0 = sfx; | |
1973 x1 = x0 + paintBlockWidth; | |
1974 } else { | |
1975 int mid = (x1 + x0) / 2; | |
1976 x0 = mid - paintBlockWidth/2; | |
1977 x1 = x0 + paintBlockWidth; | |
1978 } | |
1979 } | |
1980 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1981 cerr << "Valid area becomes " << x0 << ", 0, " << (x1-x0) | |
1982 << "x" << h << endl; | |
1983 #endif | |
1984 cache.validArea = QRect(x0, 0, x1 - x0, h); | |
1985 } | |
1986 | |
1987 /* | |
1988 if (xPixelRatio != 1.f) { | |
1989 x0 = int((int(x0 / xPixelRatio) - 4) * xPixelRatio + 0.0001); | |
1990 x1 = int((int(x1 / xPixelRatio) + 4) * xPixelRatio + 0.0001); | |
1991 } | |
1992 */ | |
1993 int w = x1 - x0; | |
1994 | |
1995 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1996 cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << endl; | |
1997 #endif | |
1998 | |
1999 sv_samplerate_t sr = m_model->getSampleRate(); | |
2000 | |
2001 // Set minFreq and maxFreq to the frequency extents of the possibly | |
2002 // zero-padded visible bin range, and displayMinFreq and displayMaxFreq | |
2003 // to the actual scale frequency extents (presumably not zero padded). | |
2004 | |
2005 // If we are zero padding, we want to use the zero-padded | |
2006 // equivalents of the bins that we would be using if not zero | |
2007 // padded, to avoid spaces at the top and bottom of the display. | |
2008 | |
2009 // Note fftSize is the actual zero-padded fft size, m_fftSize the | |
2010 // nominal fft size. | |
2011 | |
2012 int maxbin = m_fftSize / 2; | |
2013 if (m_maxFrequency > 0) { | |
2014 maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.001); | |
2015 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | |
2016 } | |
2017 | |
2018 int minbin = 1; | |
2019 if (m_minFrequency > 0) { | |
2020 minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.001); | |
2021 // cerr << "m_minFrequency = " << m_minFrequency << " -> minbin = " << minbin << endl; | |
2022 if (minbin < 1) minbin = 1; | |
2023 if (minbin >= maxbin) minbin = maxbin - 1; | |
2024 } | |
2025 | |
2026 int zpl = getZeroPadLevel(v) + 1; | |
2027 minbin = minbin * zpl; | |
2028 maxbin = (maxbin + 1) * zpl - 1; | |
2029 | |
2030 double minFreq = (double(minbin) * sr) / fftSize; | |
2031 double maxFreq = (double(maxbin) * sr) / fftSize; | |
2032 | |
2033 double displayMinFreq = minFreq; | |
2034 double displayMaxFreq = maxFreq; | |
2035 | |
2036 if (fftSize != m_fftSize) { | |
2037 displayMinFreq = getEffectiveMinFrequency(); | |
2038 displayMaxFreq = getEffectiveMaxFrequency(); | |
2039 } | |
2040 | |
2041 // cerr << "(giving actual minFreq " << minFreq << " and display minFreq " << displayMinFreq << ")" << endl; | |
2042 | |
2043 int increment = getWindowIncrement(); | |
2044 | |
2045 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | |
2046 /* | |
2047 double yforbin[maxbin - minbin + 1]; | |
2048 | |
2049 for (int q = minbin; q <= maxbin; ++q) { | |
2050 double f0 = (double(q) * sr) / fftSize; | |
2051 yforbin[q - minbin] = | |
2052 v->getYForFrequency(f0, displayMinFreq, displayMaxFreq, | |
2053 logarithmic); | |
2054 } | |
2055 */ | |
2056 MagnitudeRange overallMag = m_viewMags[v]; | |
2057 bool overallMagChanged = false; | |
2058 | |
2059 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2060 cerr << ((double(v->getFrameForX(1) - v->getFrameForX(0))) / increment) << " bin(s) per pixel" << endl; | |
2061 #endif | |
2062 | |
2063 if (w == 0) { | |
2064 SVDEBUG << "*** NOTE: w == 0" << endl; | |
2065 } | |
2066 | |
2067 Profiler outerprof("SpectrogramLayer::paint: all cols"); | |
2068 | |
2069 // The draw buffer contains a fragment at either our pixel | |
2070 // resolution (if there is more than one time-bin per pixel) or | |
2071 // time-bin resolution (if a time-bin spans more than one pixel). | |
2072 // We need to ensure that it starts and ends at points where a | |
2073 // time-bin boundary occurs at an exact pixel boundary, and with a | |
2074 // certain amount of overlap across existing pixels so that we can | |
2075 // scale and draw from it without smoothing errors at the edges. | |
2076 | |
2077 // If (getFrameForX(x) / increment) * increment == | |
2078 // getFrameForX(x), then x is a time-bin boundary. We want two | |
2079 // such boundaries at either side of the draw buffer -- one which | |
2080 // we draw up to, and one which we subsequently crop at. | |
2081 | |
2082 bool bufferBinResolution = false; | |
2083 if (increment > zoomLevel) bufferBinResolution = true; | |
2084 | |
2085 sv_frame_t leftBoundaryFrame = -1, leftCropFrame = -1; | |
2086 sv_frame_t rightBoundaryFrame = -1, rightCropFrame = -1; | |
2087 | |
2088 int bufwid; | |
2089 | |
2090 if (bufferBinResolution) { | |
2091 | |
2092 for (int x = x0; ; --x) { | |
2093 sv_frame_t f = v->getFrameForX(x); | |
2094 if ((f / increment) * increment == f) { | |
2095 if (leftCropFrame == -1) leftCropFrame = f; | |
2096 else if (x < x0 - 2) { leftBoundaryFrame = f; break; } | |
2097 } | |
2098 } | |
2099 for (int x = x0 + w; ; ++x) { | |
2100 sv_frame_t f = v->getFrameForX(x); | |
2101 if ((f / increment) * increment == f) { | |
2102 if (rightCropFrame == -1) rightCropFrame = f; | |
2103 else if (x > x0 + w + 2) { rightBoundaryFrame = f; break; } | |
2104 } | |
2105 } | |
2106 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2107 cerr << "Left: crop: " << leftCropFrame << " (bin " << leftCropFrame/increment << "); boundary: " << leftBoundaryFrame << " (bin " << leftBoundaryFrame/increment << ")" << endl; | |
2108 cerr << "Right: crop: " << rightCropFrame << " (bin " << rightCropFrame/increment << "); boundary: " << rightBoundaryFrame << " (bin " << rightBoundaryFrame/increment << ")" << endl; | |
2109 #endif | |
2110 | |
2111 bufwid = int((rightBoundaryFrame - leftBoundaryFrame) / increment); | |
2112 | |
2113 } else { | |
2114 | |
2115 bufwid = w; | |
2116 } | |
2117 | |
2118 vector<int> binforx(bufwid); | |
2119 vector<double> binfory(h); | |
2120 | |
2121 bool usePeaksCache = false; | |
2122 | |
2123 if (bufferBinResolution) { | |
2124 for (int x = 0; x < bufwid; ++x) { | |
2125 binforx[x] = int(leftBoundaryFrame / increment) + x; | |
2126 // cerr << "binforx[" << x << "] = " << binforx[x] << endl; | |
2127 } | |
2128 m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); | |
2129 } else { | |
2130 for (int x = 0; x < bufwid; ++x) { | |
2131 double s0 = 0, s1 = 0; | |
2132 if (getXBinRange(v, x + x0, s0, s1)) { | |
2133 binforx[x] = int(s0 + 0.0001); | |
2134 } else { | |
2135 binforx[x] = -1; //??? | |
2136 } | |
2137 } | |
2138 if (m_drawBuffer.width() < bufwid || m_drawBuffer.height() < h) { | |
2139 m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); | |
2140 } | |
2141 usePeaksCache = (increment * 8) < zoomLevel; | |
2142 if (m_colourScale == PhaseColourScale) usePeaksCache = false; | |
2143 } | |
2144 | |
2145 // No longer exists in Qt5: m_drawBuffer.setNumColors(256); | |
2146 for (int pixel = 0; pixel < 256; ++pixel) { | |
2147 m_drawBuffer.setColor((unsigned char)pixel, | |
2148 m_palette.getColour((unsigned char)pixel).rgb()); | |
2149 } | |
2150 | |
2151 m_drawBuffer.fill(0); | |
2152 | |
2153 if (m_binDisplay != PeakFrequencies) { | |
2154 | |
2155 for (int y = 0; y < h; ++y) { | |
2156 double q0 = 0, q1 = 0; | |
2157 if (!getSmoothedYBinRange(v, h-y-1, q0, q1)) { | |
2158 binfory[y] = -1; | |
2159 } else { | |
2160 binfory[y] = q0; | |
2161 // cerr << "binfory[" << y << "] = " << binfory[y] << endl; | |
2162 } | |
2163 } | |
2164 | |
2165 paintDrawBuffer(v, bufwid, h, binforx, binfory, usePeaksCache, | |
2166 overallMag, overallMagChanged); | |
2167 | |
2168 } else { | |
2169 | |
2170 paintDrawBufferPeakFrequencies(v, bufwid, h, binforx, | |
2171 minbin, maxbin, | |
2172 displayMinFreq, displayMaxFreq, | |
2173 logarithmic, | |
2174 overallMag, overallMagChanged); | |
2175 } | |
2176 | |
2177 /* | |
2178 for (int x = 0; x < w / xPixelRatio; ++x) { | |
2179 | |
2180 Profiler innerprof("SpectrogramLayer::paint: 1 pixel column"); | |
2181 | |
2182 runOutOfData = !paintColumnValues(v, fft, x0, x, | |
2183 minbin, maxbin, | |
2184 displayMinFreq, displayMaxFreq, | |
2185 xPixelRatio, | |
2186 h, yforbin); | |
2187 | |
2188 if (runOutOfData) { | |
2189 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2190 cerr << "Run out of data -- dropping out of loop" << endl; | |
2191 #endif | |
2192 break; | |
2193 } | |
2194 } | |
2195 */ | |
2196 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2197 // cerr << pixels << " pixels drawn" << endl; | |
2198 #endif | |
2199 | |
2200 if (overallMagChanged) { | |
2201 m_viewMags[v] = overallMag; | |
2202 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2203 cerr << "Overall mag is now [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "] - will be updating" << endl; | |
2204 #endif | |
2205 } else { | |
2206 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2207 cerr << "Overall mag unchanged at [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << endl; | |
2208 #endif | |
2209 } | |
2210 | |
2211 outerprof.end(); | |
2212 | |
2213 Profiler profiler2("SpectrogramLayer::paint: draw image"); | |
2214 | |
2215 if (recreateWholeImageCache) { | |
2216 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2217 cerr << "Recreating image cache: width = " << v->getPaintWidth() | |
2218 << ", height = " << h << endl; | |
2219 #endif | |
2220 cache.image = QImage(v->getPaintWidth(), h, QImage::Format_ARGB32_Premultiplied); | |
2221 } | |
2222 | |
2223 if (w > 0) { | |
2224 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2225 cerr << "Painting " << w << "x" << h | |
2226 << " from draw buffer at " << 0 << "," << 0 | |
2227 << " to " << w << "x" << h << " on cache at " | |
2228 << x0 << "," << 0 << endl; | |
2229 #endif | |
2230 | |
2231 QPainter cachePainter(&cache.image); | |
2232 | |
2233 if (bufferBinResolution) { | |
2234 int scaledLeft = v->getXForFrame(leftBoundaryFrame); | |
2235 int scaledRight = v->getXForFrame(rightBoundaryFrame); | |
2236 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2237 cerr << "Rescaling image from " << bufwid | |
2238 << "x" << h << " to " | |
2239 << scaledRight-scaledLeft << "x" << h << endl; | |
2240 #endif | |
2241 Preferences::SpectrogramXSmoothing xsmoothing = | |
2242 Preferences::getInstance()->getSpectrogramXSmoothing(); | |
2243 // SVDEBUG << "xsmoothing == " << xsmoothing << endl; | |
2244 QImage scaled = m_drawBuffer.scaled | |
2245 (scaledRight - scaledLeft, h, | |
2246 Qt::IgnoreAspectRatio, | |
2247 ((xsmoothing == Preferences::SpectrogramXInterpolated) ? | |
2248 Qt::SmoothTransformation : Qt::FastTransformation)); | |
2249 int scaledLeftCrop = v->getXForFrame(leftCropFrame); | |
2250 int scaledRightCrop = v->getXForFrame(rightCropFrame); | |
2251 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2252 cerr << "Drawing image region of width " << scaledRightCrop - scaledLeftCrop << " to " | |
2253 << scaledLeftCrop << " from " << scaledLeftCrop - scaledLeft << endl; | |
2254 #endif | |
2255 cachePainter.drawImage | |
2256 (QRect(scaledLeftCrop, 0, | |
2257 scaledRightCrop - scaledLeftCrop, h), | |
2258 scaled, | |
2259 QRect(scaledLeftCrop - scaledLeft, 0, | |
2260 scaledRightCrop - scaledLeftCrop, h)); | |
2261 } else { | |
2262 cachePainter.drawImage(QRect(x0, 0, w, h), | |
2263 m_drawBuffer, | |
2264 QRect(0, 0, w, h)); | |
2265 } | |
2266 | |
2267 cachePainter.end(); | |
2268 } | |
2269 | |
2270 QRect pr = rect & cache.validArea; | |
2271 | |
2272 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2273 cerr << "Painting " << pr.width() << "x" << pr.height() | |
2274 << " from cache at " << pr.x() << "," << pr.y() | |
2275 << " to window" << endl; | |
2276 #endif | |
2277 | |
2278 paint.drawImage(pr.x(), pr.y(), cache.image, | |
2279 pr.x(), pr.y(), pr.width(), pr.height()); | |
2280 //!!! | |
2281 // paint.drawImage(v->rect(), cache.image, | |
2282 // QRect(QPoint(0, 0), cache.image.size())); | |
2283 | |
2284 cache.startFrame = startFrame; | |
2285 cache.zoomLevel = zoomLevel; | |
2286 | |
2287 if (!m_synchronous) { | |
2288 | |
2289 if ((m_normalization != NormalizeVisibleArea) || !overallMagChanged) { | |
2290 | |
2291 if (cache.validArea.x() > 0) { | |
2292 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2293 cerr << "SpectrogramLayer::paint() updating left (0, " | |
2294 << cache.validArea.x() << ")" << endl; | |
2295 #endif | |
2296 v->getView()->update(0, 0, cache.validArea.x(), h); | |
2297 } | |
2298 | |
2299 if (cache.validArea.x() + cache.validArea.width() < | |
2300 cache.image.width()) { | |
2301 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2302 cerr << "SpectrogramLayer::paint() updating right (" | |
2303 << cache.validArea.x() + cache.validArea.width() | |
2304 << ", " | |
2305 << cache.image.width() - (cache.validArea.x() + | |
2306 cache.validArea.width()) | |
2307 << ")" << endl; | |
2308 #endif | |
2309 v->getView()->update(cache.validArea.x() + cache.validArea.width(), | |
2310 0, | |
2311 cache.image.width() - (cache.validArea.x() + | |
2312 cache.validArea.width()), | |
2313 h); | |
2314 } | |
2315 } else { | |
2316 // overallMagChanged | |
2317 cerr << "\noverallMagChanged - updating all\n" << endl; | |
2318 cache.validArea = QRect(); | |
2319 v->getView()->update(); | |
2320 } | |
2321 } | |
2322 | 1569 |
2323 illuminateLocalFeatures(v, paint); | 1570 illuminateLocalFeatures(v, paint); |
2324 | |
2325 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2326 cerr << "SpectrogramLayer::paint() returning" << endl; | |
2327 #endif | |
2328 | |
2329 if (!m_synchronous) { | |
2330 m_lastPaintBlockWidth = paintBlockWidth; | |
2331 (void)gettimeofday(&tv, 0); | |
2332 m_lastPaintTime = RealTime::fromTimeval(tv) - mainPaintStart; | |
2333 } | |
2334 } | |
2335 | |
2336 bool | |
2337 SpectrogramLayer::paintDrawBufferPeakFrequencies(LayerGeometryProvider *v, | |
2338 int w, | |
2339 int h, | |
2340 const vector<int> &binforx, | |
2341 int minbin, | |
2342 int maxbin, | |
2343 double displayMinFreq, | |
2344 double displayMaxFreq, | |
2345 bool logarithmic, | |
2346 MagnitudeRange &overallMag, | |
2347 bool &overallMagChanged) const | |
2348 { | |
2349 Profiler profiler("SpectrogramLayer::paintDrawBufferPeakFrequencies"); | |
2350 | |
2351 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2352 cerr << "minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; | |
2353 #endif | |
2354 if (minbin < 0) minbin = 0; | |
2355 if (maxbin < 0) maxbin = minbin+1; | |
2356 | |
2357 FFTModel *fft = getFFTModel(v); | |
2358 if (!fft) return false; | |
2359 | |
2360 FFTModel::PeakSet peakfreqs; | |
2361 | |
2362 int psx = -1; | |
2363 | |
2364 #ifdef __GNUC__ | |
2365 float values[maxbin - minbin + 1]; | |
2366 #else | |
2367 float *values = (float *)alloca((maxbin - minbin + 1) * sizeof(float)); | |
2368 #endif | |
2369 | |
2370 for (int x = 0; x < w; ++x) { | |
2371 | |
2372 if (binforx[x] < 0) continue; | |
2373 | |
2374 int sx0 = binforx[x]; | |
2375 int sx1 = sx0; | |
2376 if (x+1 < w) sx1 = binforx[x+1]; | |
2377 if (sx0 < 0) sx0 = sx1 - 1; | |
2378 if (sx0 < 0) continue; | |
2379 if (sx1 <= sx0) sx1 = sx0 + 1; | |
2380 | |
2381 for (int sx = sx0; sx < sx1; ++sx) { | |
2382 | |
2383 if (sx < 0 || sx >= int(fft->getWidth())) continue; | |
2384 | |
2385 if (!m_synchronous) { | |
2386 if (!fft->isColumnAvailable(sx)) { | |
2387 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2388 cerr << "Met unavailable column at col " << sx << endl; | |
2389 #endif | |
2390 return false; | |
2391 } | |
2392 } | |
2393 | |
2394 MagnitudeRange mag; | |
2395 | |
2396 if (sx != psx) { | |
2397 peakfreqs = fft->getPeakFrequencies(FFTModel::AllPeaks, sx, | |
2398 minbin, maxbin - 1); | |
2399 if (m_colourScale == PhaseColourScale) { | |
2400 fft->getPhasesAt(sx, values, minbin, maxbin - minbin + 1); | |
2401 } else if (m_normalization == NormalizeColumns) { | |
2402 fft->getNormalizedMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); | |
2403 } else if (m_normalization == NormalizeHybrid) { | |
2404 float max = fft->getNormalizedMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); | |
2405 if (max > 0.f) { | |
2406 for (int i = minbin; i <= maxbin; ++i) { | |
2407 values[i - minbin] = float(values[i - minbin] * | |
2408 log10f(max)); | |
2409 } | |
2410 } | |
2411 } else { | |
2412 fft->getMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); | |
2413 } | |
2414 psx = sx; | |
2415 } | |
2416 | |
2417 for (FFTModel::PeakSet::const_iterator pi = peakfreqs.begin(); | |
2418 pi != peakfreqs.end(); ++pi) { | |
2419 | |
2420 int bin = pi->first; | |
2421 double freq = pi->second; | |
2422 | |
2423 if (bin < minbin) continue; | |
2424 if (bin > maxbin) break; | |
2425 | |
2426 double value = values[bin - minbin]; | |
2427 | |
2428 if (m_colourScale != PhaseColourScale) { | |
2429 if (m_normalization != NormalizeColumns) { | |
2430 value /= (m_fftSize/2.0); | |
2431 } | |
2432 mag.sample(float(value)); | |
2433 value *= m_gain; | |
2434 } | |
2435 | |
2436 double y = v->getYForFrequency | |
2437 (freq, displayMinFreq, displayMaxFreq, logarithmic); | |
2438 | |
2439 int iy = int(y + 0.5); | |
2440 if (iy < 0 || iy >= h) continue; | |
2441 | |
2442 m_drawBuffer.setPixel(x, iy, getDisplayValue(v, value)); | |
2443 } | |
2444 | |
2445 if (mag.isSet()) { | |
2446 if (sx >= int(m_columnMags.size())) { | |
2447 #ifdef DEBUG_SPECTROGRAM | |
2448 cerr << "INTERNAL ERROR: " << sx << " >= " | |
2449 << m_columnMags.size() | |
2450 << " at SpectrogramLayer.cpp::paintDrawBuffer" | |
2451 << endl; | |
2452 #endif | |
2453 } else { | |
2454 m_columnMags[sx].sample(mag); | |
2455 if (overallMag.sample(mag)) overallMagChanged = true; | |
2456 } | |
2457 } | |
2458 } | |
2459 } | |
2460 | |
2461 return true; | |
2462 } | |
2463 | |
2464 bool | |
2465 SpectrogramLayer::paintDrawBuffer(LayerGeometryProvider *v, | |
2466 int w, | |
2467 int h, | |
2468 const vector<int> &binforx, | |
2469 const vector<double> &binfory, | |
2470 bool usePeaksCache, | |
2471 MagnitudeRange &overallMag, | |
2472 bool &overallMagChanged) const | |
2473 { | |
2474 Profiler profiler("SpectrogramLayer::paintDrawBuffer"); | |
2475 | |
2476 int minbin = int(binfory[0] + 0.0001); | |
2477 int maxbin = int(binfory[h-1]); | |
2478 | |
2479 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2480 cerr << "minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; | |
2481 #endif | |
2482 if (minbin < 0) minbin = 0; | |
2483 if (maxbin < 0) maxbin = minbin+1; | |
2484 | |
2485 DenseThreeDimensionalModel *sourceModel = 0; | |
2486 FFTModel *fft = 0; | |
2487 int divisor = 1; | |
2488 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2489 cerr << "Note: bin display = " << m_binDisplay << ", w = " << w << ", binforx[" << w-1 << "] = " << binforx[w-1] << ", binforx[0] = " << binforx[0] << endl; | |
2490 #endif | |
2491 if (usePeaksCache) { //!!! | |
2492 sourceModel = getPeakCache(v); | |
2493 divisor = 8;//!!! | |
2494 minbin = 0; | |
2495 maxbin = sourceModel->getHeight(); | |
2496 } else { | |
2497 sourceModel = fft = getFFTModel(v); | |
2498 } | |
2499 | |
2500 if (!sourceModel) return false; | |
2501 | |
2502 bool interpolate = false; | |
2503 Preferences::SpectrogramSmoothing smoothing = | |
2504 Preferences::getInstance()->getSpectrogramSmoothing(); | |
2505 if (smoothing == Preferences::SpectrogramInterpolated || | |
2506 smoothing == Preferences::SpectrogramZeroPaddedAndInterpolated) { | |
2507 if (m_binDisplay != PeakBins && | |
2508 m_binDisplay != PeakFrequencies) { | |
2509 interpolate = true; | |
2510 } | |
2511 } | |
2512 | |
2513 int psx = -1; | |
2514 | |
2515 #ifdef __GNUC__ | |
2516 float autoarray[maxbin - minbin + 1]; | |
2517 float peaks[h]; | |
2518 #else | |
2519 float *autoarray = (float *)alloca((maxbin - minbin + 1) * sizeof(float)); | |
2520 float *peaks = (float *)alloca(h * sizeof(float)); | |
2521 #endif | |
2522 | |
2523 const float *values = autoarray; | |
2524 DenseThreeDimensionalModel::Column c; | |
2525 | |
2526 for (int x = 0; x < w; ++x) { | |
2527 | |
2528 if (binforx[x] < 0) continue; | |
2529 | |
2530 // float columnGain = m_gain; | |
2531 float columnMax = 0.f; | |
2532 | |
2533 int sx0 = binforx[x] / divisor; | |
2534 int sx1 = sx0; | |
2535 if (x+1 < w) sx1 = binforx[x+1] / divisor; | |
2536 if (sx0 < 0) sx0 = sx1 - 1; | |
2537 if (sx0 < 0) continue; | |
2538 if (sx1 <= sx0) sx1 = sx0 + 1; | |
2539 | |
2540 for (int y = 0; y < h; ++y) peaks[y] = 0.f; | |
2541 | |
2542 for (int sx = sx0; sx < sx1; ++sx) { | |
2543 | |
2544 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2545 // cerr << "sx = " << sx << endl; | |
2546 #endif | |
2547 | |
2548 if (sx < 0 || sx >= int(sourceModel->getWidth())) continue; | |
2549 | |
2550 if (!m_synchronous) { | |
2551 if (!sourceModel->isColumnAvailable(sx)) { | |
2552 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2553 cerr << "Met unavailable column at col " << sx << endl; | |
2554 #endif | |
2555 return false; | |
2556 } | |
2557 } | |
2558 | |
2559 MagnitudeRange mag; | |
2560 | |
2561 if (sx != psx) { | |
2562 if (fft) { | |
2563 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2564 cerr << "Retrieving column " << sx << " from fft directly" << endl; | |
2565 #endif | |
2566 if (m_colourScale == PhaseColourScale) { | |
2567 fft->getPhasesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2568 } else if (m_normalization == NormalizeColumns) { | |
2569 fft->getNormalizedMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2570 } else if (m_normalization == NormalizeHybrid) { | |
2571 float max = fft->getNormalizedMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2572 float scale = log10f(max + 1.f); | |
2573 // cout << "sx = " << sx << ", max = " << max << ", log10(max) = " << log10(max) << ", scale = " << scale << endl; | |
2574 for (int i = minbin; i <= maxbin; ++i) { | |
2575 autoarray[i - minbin] *= scale; | |
2576 } | |
2577 } else { | |
2578 fft->getMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2579 } | |
2580 } else { | |
2581 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2582 cerr << "Retrieving column " << sx << " from peaks cache" << endl; | |
2583 #endif | |
2584 c = sourceModel->getColumn(sx); | |
2585 if (m_normalization == NormalizeColumns || | |
2586 m_normalization == NormalizeHybrid) { | |
2587 for (int y = 0; y < h; ++y) { | |
2588 if (c[y] > columnMax) columnMax = c[y]; | |
2589 } | |
2590 } | |
2591 values = c.constData() + minbin; | |
2592 } | |
2593 psx = sx; | |
2594 } | |
2595 | |
2596 for (int y = 0; y < h; ++y) { | |
2597 | |
2598 double sy0 = binfory[y]; | |
2599 double sy1 = sy0 + 1; | |
2600 if (y+1 < h) sy1 = binfory[y+1]; | |
2601 | |
2602 double value = 0.0; | |
2603 | |
2604 if (interpolate && fabs(sy1 - sy0) < 1.0) { | |
2605 | |
2606 double centre = (sy0 + sy1) / 2; | |
2607 double dist = (centre - 0.5) - rint(centre - 0.5); | |
2608 int bin = int(centre); | |
2609 int other = (dist < 0 ? (bin-1) : (bin+1)); | |
2610 if (bin < minbin) bin = minbin; | |
2611 if (bin > maxbin) bin = maxbin; | |
2612 if (other < minbin || other > maxbin) other = bin; | |
2613 double prop = 1.0 - fabs(dist); | |
2614 | |
2615 double v0 = values[bin - minbin]; | |
2616 double v1 = values[other - minbin]; | |
2617 if (m_binDisplay == PeakBins) { | |
2618 if (bin == minbin || bin == maxbin || | |
2619 v0 < values[bin-minbin-1] || | |
2620 v0 < values[bin-minbin+1]) v0 = 0.0; | |
2621 if (other == minbin || other == maxbin || | |
2622 v1 < values[other-minbin-1] || | |
2623 v1 < values[other-minbin+1]) v1 = 0.0; | |
2624 } | |
2625 if (v0 == 0.0 && v1 == 0.0) continue; | |
2626 value = prop * v0 + (1.0 - prop) * v1; | |
2627 | |
2628 if (m_colourScale != PhaseColourScale) { | |
2629 if (m_normalization != NormalizeColumns && | |
2630 m_normalization != NormalizeHybrid) { | |
2631 value /= (m_fftSize/2.0); | |
2632 } | |
2633 mag.sample(float(value)); | |
2634 value *= m_gain; | |
2635 } | |
2636 | |
2637 peaks[y] = float(value); | |
2638 | |
2639 } else { | |
2640 | |
2641 int by0 = int(sy0 + 0.0001); | |
2642 int by1 = int(sy1 + 0.0001); | |
2643 if (by1 < by0 + 1) by1 = by0 + 1; | |
2644 | |
2645 for (int bin = by0; bin < by1; ++bin) { | |
2646 | |
2647 value = values[bin - minbin]; | |
2648 if (m_binDisplay == PeakBins) { | |
2649 if (bin == minbin || bin == maxbin || | |
2650 value < values[bin-minbin-1] || | |
2651 value < values[bin-minbin+1]) continue; | |
2652 } | |
2653 | |
2654 if (m_colourScale != PhaseColourScale) { | |
2655 if (m_normalization != NormalizeColumns && | |
2656 m_normalization != NormalizeHybrid) { | |
2657 value /= (m_fftSize/2.0); | |
2658 } | |
2659 mag.sample(float(value)); | |
2660 value *= m_gain; | |
2661 } | |
2662 | |
2663 if (value > peaks[y]) { | |
2664 peaks[y] = float(value); //!!! not right for phase! | |
2665 } | |
2666 } | |
2667 } | |
2668 } | |
2669 | |
2670 if (mag.isSet()) { | |
2671 if (sx >= int(m_columnMags.size())) { | |
2672 #ifdef DEBUG_SPECTROGRAM | |
2673 cerr << "INTERNAL ERROR: " << sx << " >= " | |
2674 << m_columnMags.size() | |
2675 << " at SpectrogramLayer.cpp::paintDrawBuffer" | |
2676 << endl; | |
2677 #endif | |
2678 } else { | |
2679 m_columnMags[sx].sample(mag); | |
2680 if (overallMag.sample(mag)) overallMagChanged = true; | |
2681 } | |
2682 } | |
2683 } | |
2684 | |
2685 for (int y = 0; y < h; ++y) { | |
2686 | |
2687 double peak = peaks[y]; | |
2688 | |
2689 if (m_colourScale != PhaseColourScale && | |
2690 (m_normalization == NormalizeColumns || | |
2691 m_normalization == NormalizeHybrid) && | |
2692 columnMax > 0.f) { | |
2693 peak /= columnMax; | |
2694 if (m_normalization == NormalizeHybrid) { | |
2695 peak *= log10(columnMax + 1.f); | |
2696 } | |
2697 } | |
2698 | |
2699 unsigned char peakpix = getDisplayValue(v, peak); | |
2700 | |
2701 m_drawBuffer.setPixel(x, h-y-1, peakpix); | |
2702 } | |
2703 } | |
2704 | |
2705 return true; | |
2706 } | 1571 } |
2707 | 1572 |
2708 void | 1573 void |
2709 SpectrogramLayer::illuminateLocalFeatures(LayerGeometryProvider *v, QPainter &paint) const | 1574 SpectrogramLayer::illuminateLocalFeatures(LayerGeometryProvider *v, QPainter &paint) const |
2710 { | 1575 { |
2713 QPoint localPos; | 1578 QPoint localPos; |
2714 if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { | 1579 if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { |
2715 return; | 1580 return; |
2716 } | 1581 } |
2717 | 1582 |
2718 // cerr << "SpectrogramLayer: illuminateLocalFeatures(" | 1583 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2719 // << localPos.x() << "," << localPos.y() << ")" << endl; | 1584 cerr << "SpectrogramLayer: illuminateLocalFeatures(" |
1585 << localPos.x() << "," << localPos.y() << ")" << endl; | |
1586 #endif | |
2720 | 1587 |
2721 double s0, s1; | 1588 double s0, s1; |
2722 double f0, f1; | 1589 double f0, f1; |
2723 | 1590 |
2724 if (getXBinRange(v, localPos.x(), s0, s1) && | 1591 if (getXBinRange(v, localPos.x(), s0, s1) && |
2731 int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); | 1598 int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); |
2732 | 1599 |
2733 int y1 = int(getYForFrequency(v, f1)); | 1600 int y1 = int(getYForFrequency(v, f1)); |
2734 int y0 = int(getYForFrequency(v, f0)); | 1601 int y0 = int(getYForFrequency(v, f0)); |
2735 | 1602 |
2736 // cerr << "SpectrogramLayer: illuminate " | 1603 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2737 // << x0 << "," << y1 << " -> " << x1 << "," << y0 << endl; | 1604 cerr << "SpectrogramLayer: illuminate " |
1605 << x0 << "," << y1 << " -> " << x1 << "," << y0 << endl; | |
1606 #endif | |
2738 | 1607 |
2739 paint.setPen(v->getForeground()); | 1608 paint.setPen(v->getForeground()); |
2740 | 1609 |
2741 //!!! should we be using paintCrosshairs for this? | 1610 //!!! should we be using paintCrosshairs for this? |
2742 | 1611 |
2748 SpectrogramLayer::getYForFrequency(const LayerGeometryProvider *v, double frequency) const | 1617 SpectrogramLayer::getYForFrequency(const LayerGeometryProvider *v, double frequency) const |
2749 { | 1618 { |
2750 return v->getYForFrequency(frequency, | 1619 return v->getYForFrequency(frequency, |
2751 getEffectiveMinFrequency(), | 1620 getEffectiveMinFrequency(), |
2752 getEffectiveMaxFrequency(), | 1621 getEffectiveMaxFrequency(), |
2753 m_frequencyScale == LogFrequencyScale); | 1622 m_binScale == BinScale::Log); |
2754 } | 1623 } |
2755 | 1624 |
2756 double | 1625 double |
2757 SpectrogramLayer::getFrequencyForY(const LayerGeometryProvider *v, int y) const | 1626 SpectrogramLayer::getFrequencyForY(const LayerGeometryProvider *v, int y) const |
2758 { | 1627 { |
2759 return v->getFrequencyForY(y, | 1628 return v->getFrequencyForY(y, |
2760 getEffectiveMinFrequency(), | 1629 getEffectiveMinFrequency(), |
2761 getEffectiveMaxFrequency(), | 1630 getEffectiveMaxFrequency(), |
2762 m_frequencyScale == LogFrequencyScale); | 1631 m_binScale == BinScale::Log); |
2763 } | 1632 } |
2764 | 1633 |
2765 int | 1634 int |
2766 SpectrogramLayer::getCompletion(LayerGeometryProvider *v) const | 1635 SpectrogramLayer::getCompletion(LayerGeometryProvider *) const |
2767 { | 1636 { |
2768 const View *view = v->getView(); | 1637 if (!m_fftModel) return 100; |
2769 | 1638 int completion = m_fftModel->getCompletion(); |
2770 if (m_fftModels.find(view) == m_fftModels.end()) return 100; | |
2771 | |
2772 int completion = m_fftModels[view]->getCompletion(); | |
2773 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1639 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2774 cerr << "SpectrogramLayer::getCompletion: completion = " << completion << endl; | 1640 cerr << "SpectrogramLayer::getCompletion: completion = " << completion << endl; |
2775 #endif | 1641 #endif |
2776 return completion; | 1642 return completion; |
2777 } | 1643 } |
2778 | 1644 |
2779 QString | 1645 QString |
2780 SpectrogramLayer::getError(LayerGeometryProvider *v) const | 1646 SpectrogramLayer::getError(LayerGeometryProvider *) const |
2781 { | 1647 { |
2782 const View *view = v->getView(); | 1648 if (!m_fftModel) return ""; |
2783 if (m_fftModels.find(view) == m_fftModels.end()) return ""; | 1649 return m_fftModel->getError(); |
2784 return m_fftModels[view]->getError(); | |
2785 } | 1650 } |
2786 | 1651 |
2787 bool | 1652 bool |
2788 SpectrogramLayer::getValueExtents(double &min, double &max, | 1653 SpectrogramLayer::getValueExtents(double &min, double &max, |
2789 bool &logarithmic, QString &unit) const | 1654 bool &logarithmic, QString &unit) const |
2790 { | 1655 { |
2791 if (!m_model) return false; | 1656 if (!m_model) return false; |
2792 | 1657 |
2793 sv_samplerate_t sr = m_model->getSampleRate(); | 1658 sv_samplerate_t sr = m_model->getSampleRate(); |
2794 min = double(sr) / m_fftSize; | 1659 min = double(sr) / getFFTSize(); |
2795 max = double(sr) / 2; | 1660 max = double(sr) / 2; |
2796 | 1661 |
2797 logarithmic = (m_frequencyScale == LogFrequencyScale); | 1662 logarithmic = (m_binScale == BinScale::Log); |
2798 unit = "Hz"; | 1663 unit = "Hz"; |
2799 return true; | 1664 return true; |
2800 } | 1665 } |
2801 | 1666 |
2802 bool | 1667 bool |
2822 int minf = int(lrint(min)); | 1687 int minf = int(lrint(min)); |
2823 int maxf = int(lrint(max)); | 1688 int maxf = int(lrint(max)); |
2824 | 1689 |
2825 if (m_minFrequency == minf && m_maxFrequency == maxf) return true; | 1690 if (m_minFrequency == minf && m_maxFrequency == maxf) return true; |
2826 | 1691 |
2827 invalidateImageCaches(); | 1692 invalidateRenderers(); |
2828 invalidateMagnitudes(); | 1693 invalidateMagnitudes(); |
2829 | 1694 |
2830 m_minFrequency = minf; | 1695 m_minFrequency = minf; |
2831 m_maxFrequency = maxf; | 1696 m_maxFrequency = maxf; |
2832 | 1697 |
2874 } | 1739 } |
2875 | 1740 |
2876 void | 1741 void |
2877 SpectrogramLayer::measureDoubleClick(LayerGeometryProvider *v, QMouseEvent *e) | 1742 SpectrogramLayer::measureDoubleClick(LayerGeometryProvider *v, QMouseEvent *e) |
2878 { | 1743 { |
2879 const View *view = v->getView(); | 1744 const Colour3DPlotRenderer *renderer = getRenderer(v); |
2880 ImageCache &cache = m_imageCaches[view]; | 1745 if (!renderer) return; |
2881 | 1746 |
2882 cerr << "cache width: " << cache.image.width() << ", height: " | 1747 QRect rect = renderer->findSimilarRegionExtents(e->pos()); |
2883 << cache.image.height() << endl; | |
2884 | |
2885 QImage image = cache.image; | |
2886 | |
2887 ImageRegionFinder finder; | |
2888 QRect rect = finder.findRegionExtents(&image, e->pos()); | |
2889 if (rect.isValid()) { | 1748 if (rect.isValid()) { |
2890 MeasureRect mr; | 1749 MeasureRect mr; |
2891 setMeasureRectFromPixrect(v, mr, rect); | 1750 setMeasureRectFromPixrect(v, mr, rect); |
2892 CommandHistory::getInstance()->addCommand | 1751 CommandHistory::getInstance()->addCommand |
2893 (new AddMeasurementRectCommand(this, mr)); | 1752 (new AddMeasurementRectCommand(this, mr)); |
2895 } | 1754 } |
2896 | 1755 |
2897 bool | 1756 bool |
2898 SpectrogramLayer::getCrosshairExtents(LayerGeometryProvider *v, QPainter &paint, | 1757 SpectrogramLayer::getCrosshairExtents(LayerGeometryProvider *v, QPainter &paint, |
2899 QPoint cursorPos, | 1758 QPoint cursorPos, |
2900 std::vector<QRect> &extents) const | 1759 vector<QRect> &extents) const |
2901 { | 1760 { |
2902 QRect vertical(cursorPos.x() - 12, 0, 12, v->getPaintHeight()); | 1761 QRect vertical(cursorPos.x() - 12, 0, 12, v->getPaintHeight()); |
2903 extents.push_back(vertical); | 1762 extents.push_back(vertical); |
2904 | 1763 |
2905 QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); | 1764 QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); |
2951 paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); | 1810 paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); |
2952 paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->getPaintHeight()); | 1811 paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->getPaintHeight()); |
2953 | 1812 |
2954 double fundamental = getFrequencyForY(v, cursorPos.y()); | 1813 double fundamental = getFrequencyForY(v, cursorPos.y()); |
2955 | 1814 |
2956 v->drawVisibleText(paint, | 1815 PaintAssistant::drawVisibleText(v, paint, |
2957 sw + 2, | 1816 sw + 2, |
2958 cursorPos.y() - 2, | 1817 cursorPos.y() - 2, |
2959 QString("%1 Hz").arg(fundamental), | 1818 QString("%1 Hz").arg(fundamental), |
2960 View::OutlinedText); | 1819 PaintAssistant::OutlinedText); |
2961 | 1820 |
2962 if (Pitch::isFrequencyInMidiRange(fundamental)) { | 1821 if (Pitch::isFrequencyInMidiRange(fundamental)) { |
2963 QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); | 1822 QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); |
2964 v->drawVisibleText(paint, | 1823 PaintAssistant::drawVisibleText(v, paint, |
2965 sw + 2, | 1824 sw + 2, |
2966 cursorPos.y() + paint.fontMetrics().ascent() + 2, | 1825 cursorPos.y() + paint.fontMetrics().ascent() + 2, |
2967 pitchLabel, | 1826 pitchLabel, |
2968 View::OutlinedText); | 1827 PaintAssistant::OutlinedText); |
2969 } | 1828 } |
2970 | 1829 |
2971 sv_frame_t frame = v->getFrameForX(cursorPos.x()); | 1830 sv_frame_t frame = v->getFrameForX(cursorPos.x()); |
2972 RealTime rt = RealTime::frame2RealTime(frame, m_model->getSampleRate()); | 1831 RealTime rt = RealTime::frame2RealTime(frame, m_model->getSampleRate()); |
2973 QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); | 1832 QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); |
2974 QString frameLabel = QString("%1").arg(frame); | 1833 QString frameLabel = QString("%1").arg(frame); |
2975 v->drawVisibleText(paint, | 1834 PaintAssistant::drawVisibleText(v, paint, |
2976 cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, | 1835 cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, |
2977 v->getPaintHeight() - 2, | 1836 v->getPaintHeight() - 2, |
2978 frameLabel, | 1837 frameLabel, |
2979 View::OutlinedText); | 1838 PaintAssistant::OutlinedText); |
2980 v->drawVisibleText(paint, | 1839 PaintAssistant::drawVisibleText(v, paint, |
2981 cursorPos.x() + 2, | 1840 cursorPos.x() + 2, |
2982 v->getPaintHeight() - 2, | 1841 v->getPaintHeight() - 2, |
2983 rtLabel, | 1842 rtLabel, |
2984 View::OutlinedText); | 1843 PaintAssistant::OutlinedText); |
2985 | 1844 |
2986 int harmonic = 2; | 1845 int harmonic = 2; |
2987 | 1846 |
2988 while (harmonic < 100) { | 1847 while (harmonic < 100) { |
2989 | 1848 |
3035 haveValues = true; | 1894 haveValues = true; |
3036 } | 1895 } |
3037 | 1896 |
3038 QString adjFreqText = "", adjPitchText = ""; | 1897 QString adjFreqText = "", adjPitchText = ""; |
3039 | 1898 |
3040 if (m_binDisplay == PeakFrequencies) { | 1899 if (m_binDisplay == BinDisplay::PeakFrequencies) { |
3041 | 1900 |
3042 if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, | 1901 if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, |
3043 adjFreqMin, adjFreqMax)) { | 1902 adjFreqMin, adjFreqMax)) { |
3044 return ""; | 1903 return ""; |
3045 } | 1904 } |
3097 double dbMin = AudioLevel::multiplier_to_dB(magMin); | 1956 double dbMin = AudioLevel::multiplier_to_dB(magMin); |
3098 double dbMax = AudioLevel::multiplier_to_dB(magMax); | 1957 double dbMax = AudioLevel::multiplier_to_dB(magMax); |
3099 QString dbMinString; | 1958 QString dbMinString; |
3100 QString dbMaxString; | 1959 QString dbMaxString; |
3101 if (dbMin == AudioLevel::DB_FLOOR) { | 1960 if (dbMin == AudioLevel::DB_FLOOR) { |
3102 dbMinString = tr("-Inf"); | 1961 dbMinString = Strings::minus_infinity; |
3103 } else { | 1962 } else { |
3104 dbMinString = QString("%1").arg(lrint(dbMin)); | 1963 dbMinString = QString("%1").arg(lrint(dbMin)); |
3105 } | 1964 } |
3106 if (dbMax == AudioLevel::DB_FLOOR) { | 1965 if (dbMax == AudioLevel::DB_FLOOR) { |
3107 dbMaxString = tr("-Inf"); | 1966 dbMaxString = Strings::minus_infinity; |
3108 } else { | 1967 } else { |
3109 dbMaxString = QString("%1").arg(lrint(dbMax)); | 1968 dbMaxString = QString("%1").arg(lrint(dbMax)); |
3110 } | 1969 } |
3111 if (lrint(dbMin) != lrint(dbMax)) { | 1970 if (lrint(dbMin) != lrint(dbMax)) { |
3112 text += tr("dB:\t%1 - %2").arg(dbMinString).arg(dbMaxString); | 1971 text += tr("dB:\t%1 - %2").arg(dbMinString).arg(dbMaxString); |
3147 m_model->getSampleRate() / 2)); | 2006 m_model->getSampleRate() / 2)); |
3148 | 2007 |
3149 int fw = paint.fontMetrics().width(tr("43Hz")); | 2008 int fw = paint.fontMetrics().width(tr("43Hz")); |
3150 if (tw < fw) tw = fw; | 2009 if (tw < fw) tw = fw; |
3151 | 2010 |
3152 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); | 2011 int tickw = (m_binScale == BinScale::Log ? 10 : 4); |
3153 | 2012 |
3154 return cw + tickw + tw + 13; | 2013 return cw + tickw + tw + 13; |
3155 } | 2014 } |
3156 | 2015 |
3157 void | 2016 void |
3158 SpectrogramLayer::paintVerticalScale(LayerGeometryProvider *v, bool detailed, QPainter &paint, QRect rect) const | 2017 SpectrogramLayer::paintVerticalScale(LayerGeometryProvider *v, bool detailed, |
2018 QPainter &paint, QRect rect) const | |
3159 { | 2019 { |
3160 if (!m_model || !m_model->isOK()) { | 2020 if (!m_model || !m_model->isOK()) { |
3161 return; | 2021 return; |
3162 } | 2022 } |
3163 | 2023 |
3164 Profiler profiler("SpectrogramLayer::paintVerticalScale"); | 2024 Profiler profiler("SpectrogramLayer::paintVerticalScale"); |
3165 | 2025 |
3166 //!!! cache this? | 2026 //!!! cache this? |
3167 | 2027 |
3168 int h = rect.height(), w = rect.width(); | 2028 int h = rect.height(), w = rect.width(); |
3169 | 2029 int textHeight = paint.fontMetrics().height(); |
3170 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); | 2030 |
3171 int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); | 2031 if (detailed && (h > textHeight * 3 + 10)) { |
3172 | 2032 paintDetailedScale(v, paint, rect); |
3173 int bins = m_fftSize / 2; | 2033 } |
2034 m_haveDetailedScale = detailed; | |
2035 | |
2036 int tickw = (m_binScale == BinScale::Log ? 10 : 4); | |
2037 int pkw = (m_binScale == BinScale::Log ? 10 : 0); | |
2038 | |
2039 int bins = getFFTSize() / 2; | |
3174 sv_samplerate_t sr = m_model->getSampleRate(); | 2040 sv_samplerate_t sr = m_model->getSampleRate(); |
3175 | 2041 |
3176 if (m_maxFrequency > 0) { | 2042 if (m_maxFrequency > 0) { |
3177 bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | 2043 bins = int((double(m_maxFrequency) * getFFTSize()) / sr + 0.1); |
3178 if (bins > m_fftSize / 2) bins = m_fftSize / 2; | 2044 if (bins > getFFTSize() / 2) bins = getFFTSize() / 2; |
3179 } | 2045 } |
3180 | 2046 |
3181 int cw = 0; | 2047 int cw = 0; |
3182 | |
3183 if (detailed) cw = getColourScaleWidth(paint); | 2048 if (detailed) cw = getColourScaleWidth(paint); |
3184 int cbw = paint.fontMetrics().width("dB"); | |
3185 | 2049 |
3186 int py = -1; | 2050 int py = -1; |
3187 int textHeight = paint.fontMetrics().height(); | |
3188 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | 2051 int toff = -textHeight + paint.fontMetrics().ascent() + 2; |
3189 | |
3190 if (detailed && (h > textHeight * 3 + 10)) { | |
3191 | |
3192 int topLines = 2; | |
3193 if (m_colourScale == PhaseColourScale) topLines = 1; | |
3194 | |
3195 int ch = h - textHeight * (topLines + 1) - 8; | |
3196 // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); | |
3197 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
3198 | |
3199 QString top, bottom; | |
3200 double min = m_viewMags[v].getMin(); | |
3201 double max = m_viewMags[v].getMax(); | |
3202 | |
3203 double dBmin = AudioLevel::multiplier_to_dB(min); | |
3204 double dBmax = AudioLevel::multiplier_to_dB(max); | |
3205 | |
3206 if (dBmax < -60.f) dBmax = -60.f; | |
3207 else top = QString("%1").arg(lrint(dBmax)); | |
3208 | |
3209 if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; | |
3210 bottom = QString("%1").arg(lrint(dBmin)); | |
3211 | |
3212 //!!! & phase etc | |
3213 | |
3214 if (m_colourScale != PhaseColourScale) { | |
3215 paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, | |
3216 2 + textHeight + toff, "dBFS"); | |
3217 } | |
3218 | |
3219 // paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2, | |
3220 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
3221 2 + textHeight * topLines + toff + textHeight/2, top); | |
3222 | |
3223 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
3224 h + toff - 3 - textHeight/2, bottom); | |
3225 | |
3226 paint.save(); | |
3227 paint.setBrush(Qt::NoBrush); | |
3228 | |
3229 int lasty = 0; | |
3230 int lastdb = 0; | |
3231 | |
3232 for (int i = 0; i < ch; ++i) { | |
3233 | |
3234 double dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); | |
3235 int idb = int(dBval); | |
3236 | |
3237 double value = AudioLevel::dB_to_multiplier(dBval); | |
3238 int colour = getDisplayValue(v, value * m_gain); | |
3239 | |
3240 paint.setPen(m_palette.getColour((unsigned char)colour)); | |
3241 | |
3242 int y = textHeight * topLines + 4 + ch - i; | |
3243 | |
3244 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
3245 | |
3246 if (i == 0) { | |
3247 lasty = y; | |
3248 lastdb = idb; | |
3249 } else if (i < ch - paint.fontMetrics().ascent() && | |
3250 idb != lastdb && | |
3251 ((abs(y - lasty) > textHeight && | |
3252 idb % 10 == 0) || | |
3253 (abs(y - lasty) > paint.fontMetrics().ascent() && | |
3254 idb % 5 == 0))) { | |
3255 paint.setPen(v->getBackground()); | |
3256 QString text = QString("%1").arg(idb); | |
3257 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), | |
3258 y + toff + textHeight/2, text); | |
3259 paint.setPen(v->getForeground()); | |
3260 paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); | |
3261 lasty = y; | |
3262 lastdb = idb; | |
3263 } | |
3264 } | |
3265 paint.restore(); | |
3266 } | |
3267 | 2052 |
3268 paint.drawLine(cw + 7, 0, cw + 7, h); | 2053 paint.drawLine(cw + 7, 0, cw + 7, h); |
3269 | 2054 |
3270 int bin = -1; | 2055 int bin = -1; |
3271 | 2056 |
3281 bin = int(q0); | 2066 bin = int(q0); |
3282 } else { | 2067 } else { |
3283 continue; | 2068 continue; |
3284 } | 2069 } |
3285 | 2070 |
3286 int freq = int((sr * bin) / m_fftSize); | 2071 int freq = int((sr * bin) / getFFTSize()); |
3287 | 2072 |
3288 if (py >= 0 && (vy - py) < textHeight - 1) { | 2073 if (py >= 0 && (vy - py) < textHeight - 1) { |
3289 if (m_frequencyScale == LinearFrequencyScale) { | 2074 if (m_binScale == BinScale::Linear) { |
3290 paint.drawLine(w - tickw, h - vy, w, h - vy); | 2075 paint.drawLine(w - tickw, h - vy, w, h - vy); |
3291 } | 2076 } |
3292 continue; | 2077 continue; |
3293 } | 2078 } |
3294 | 2079 |
3295 QString text = QString("%1").arg(freq); | 2080 QString text = QString("%1").arg(freq); |
3296 if (bin == 1) text = tr("%1Hz").arg(freq); // bin 0 is DC | 2081 if (bin == 1) text = tr("%1Hz").arg(freq); // bin 0 is DC |
3297 paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); | 2082 paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); |
3298 | 2083 |
3299 if (h - vy - textHeight >= -2) { | 2084 if (h - vy - textHeight >= -2) { |
3300 int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw); | 2085 int tx = w - 3 - paint.fontMetrics().width(text) - max(tickw, pkw); |
3301 paint.drawText(tx, h - vy + toff, text); | 2086 paint.drawText(tx, h - vy + toff, text); |
3302 } | 2087 } |
3303 | 2088 |
3304 py = vy; | 2089 py = vy; |
3305 } | 2090 } |
3306 | 2091 |
3307 if (m_frequencyScale == LogFrequencyScale) { | 2092 if (m_binScale == BinScale::Log) { |
3308 | 2093 |
3309 // piano keyboard | 2094 // piano keyboard |
3310 | 2095 |
3311 PianoScale().paintPianoVertical | 2096 PianoScale().paintPianoVertical |
3312 (v, paint, QRect(w - pkw - 1, 0, pkw, h), | 2097 (v, paint, QRect(w - pkw - 1, 0, pkw, h), |
3313 getEffectiveMinFrequency(), getEffectiveMaxFrequency()); | 2098 getEffectiveMinFrequency(), getEffectiveMaxFrequency()); |
3314 } | 2099 } |
3315 | 2100 |
3316 m_haveDetailedScale = detailed; | 2101 m_haveDetailedScale = detailed; |
2102 } | |
2103 | |
2104 void | |
2105 SpectrogramLayer::paintDetailedScale(LayerGeometryProvider *v, | |
2106 QPainter &paint, QRect rect) const | |
2107 { | |
2108 // The colour scale | |
2109 | |
2110 if (m_colourScale == ColourScaleType::Phase) { | |
2111 paintDetailedScalePhase(v, paint, rect); | |
2112 return; | |
2113 } | |
2114 | |
2115 int h = rect.height(); | |
2116 int textHeight = paint.fontMetrics().height(); | |
2117 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | |
2118 | |
2119 int cw = getColourScaleWidth(paint); | |
2120 int cbw = paint.fontMetrics().width("dB"); | |
2121 | |
2122 int topLines = 2; | |
2123 | |
2124 int ch = h - textHeight * (topLines + 1) - 8; | |
2125 // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); | |
2126 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
2127 | |
2128 QString top, bottom; | |
2129 double min = m_viewMags[v->getId()].getMin(); | |
2130 double max = m_viewMags[v->getId()].getMax(); | |
2131 | |
2132 if (min < m_threshold) min = m_threshold; | |
2133 if (max <= min) max = min + 0.1; | |
2134 | |
2135 double dBmin = AudioLevel::multiplier_to_dB(min); | |
2136 double dBmax = AudioLevel::multiplier_to_dB(max); | |
2137 | |
2138 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2139 cerr << "paintVerticalScale: for view id " << v->getId() | |
2140 << ": min = " << min << ", max = " << max | |
2141 << ", dBmin = " << dBmin << ", dBmax = " << dBmax << endl; | |
2142 #endif | |
2143 | |
2144 if (dBmax < -60.f) dBmax = -60.f; | |
2145 else top = QString("%1").arg(lrint(dBmax)); | |
2146 | |
2147 if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; | |
2148 bottom = QString("%1").arg(lrint(dBmin)); | |
2149 | |
2150 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2151 cerr << "adjusted dB range to min = " << dBmin << ", max = " << dBmax | |
2152 << endl; | |
2153 #endif | |
2154 | |
2155 paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, | |
2156 2 + textHeight + toff, "dBFS"); | |
2157 | |
2158 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
2159 2 + textHeight * topLines + toff + textHeight/2, top); | |
2160 | |
2161 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
2162 h + toff - 3 - textHeight/2, bottom); | |
2163 | |
2164 paint.save(); | |
2165 paint.setBrush(Qt::NoBrush); | |
2166 | |
2167 int lasty = 0; | |
2168 int lastdb = 0; | |
2169 | |
2170 for (int i = 0; i < ch; ++i) { | |
2171 | |
2172 double dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); | |
2173 int idb = int(dBval); | |
2174 | |
2175 double value = AudioLevel::dB_to_multiplier(dBval); | |
2176 paint.setPen(getRenderer(v)->getColour(value)); | |
2177 | |
2178 int y = textHeight * topLines + 4 + ch - i; | |
2179 | |
2180 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
2181 | |
2182 if (i == 0) { | |
2183 lasty = y; | |
2184 lastdb = idb; | |
2185 } else if (i < ch - paint.fontMetrics().ascent() && | |
2186 idb != lastdb && | |
2187 ((abs(y - lasty) > textHeight && | |
2188 idb % 10 == 0) || | |
2189 (abs(y - lasty) > paint.fontMetrics().ascent() && | |
2190 idb % 5 == 0))) { | |
2191 paint.setPen(v->getForeground()); | |
2192 QString text = QString("%1").arg(idb); | |
2193 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), | |
2194 y + toff + textHeight/2, text); | |
2195 paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); | |
2196 lasty = y; | |
2197 lastdb = idb; | |
2198 } | |
2199 } | |
2200 paint.restore(); | |
2201 } | |
2202 | |
2203 void | |
2204 SpectrogramLayer::paintDetailedScalePhase(LayerGeometryProvider *v, | |
2205 QPainter &paint, QRect rect) const | |
2206 { | |
2207 // The colour scale in phase mode | |
2208 | |
2209 int h = rect.height(); | |
2210 int textHeight = paint.fontMetrics().height(); | |
2211 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | |
2212 | |
2213 int cw = getColourScaleWidth(paint); | |
2214 | |
2215 // Phase is not measured in dB of course, but this places the | |
2216 // scale at the same position as in the magnitude spectrogram | |
2217 int cbw = paint.fontMetrics().width("dB"); | |
2218 | |
2219 int topLines = 1; | |
2220 | |
2221 int ch = h - textHeight * (topLines + 1) - 8; | |
2222 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
2223 | |
2224 QString top = Strings::pi, bottom = Strings::minus_pi, middle = "0"; | |
2225 | |
2226 double min = -M_PI; | |
2227 double max = M_PI; | |
2228 | |
2229 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
2230 2 + textHeight * topLines + toff + textHeight/2, top); | |
2231 | |
2232 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(middle), | |
2233 2 + textHeight * topLines + ch/2 + toff + textHeight/2, middle); | |
2234 | |
2235 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
2236 h + toff - 3 - textHeight/2, bottom); | |
2237 | |
2238 paint.save(); | |
2239 paint.setBrush(Qt::NoBrush); | |
2240 | |
2241 for (int i = 0; i < ch; ++i) { | |
2242 double val = min + (((max - min) * i) / (ch - 1)); | |
2243 paint.setPen(getRenderer(v)->getColour(val)); | |
2244 int y = textHeight * topLines + 4 + ch - i; | |
2245 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
2246 } | |
2247 paint.restore(); | |
3317 } | 2248 } |
3318 | 2249 |
3319 class SpectrogramRangeMapper : public RangeMapper | 2250 class SpectrogramRangeMapper : public RangeMapper |
3320 { | 2251 { |
3321 public: | 2252 public: |
3378 { | 2309 { |
3379 if (!m_model) return 0; | 2310 if (!m_model) return 0; |
3380 | 2311 |
3381 sv_samplerate_t sr = m_model->getSampleRate(); | 2312 sv_samplerate_t sr = m_model->getSampleRate(); |
3382 | 2313 |
3383 SpectrogramRangeMapper mapper(sr, m_fftSize); | 2314 SpectrogramRangeMapper mapper(sr, getFFTSize()); |
3384 | 2315 |
3385 // int maxStep = mapper.getPositionForValue((double(sr) / m_fftSize) + 0.001); | 2316 // int maxStep = mapper.getPositionForValue((double(sr) / getFFTSize()) + 0.001); |
3386 int maxStep = mapper.getPositionForValue(0); | 2317 int maxStep = mapper.getPositionForValue(0); |
3387 int minStep = mapper.getPositionForValue(double(sr) / 2); | 2318 int minStep = mapper.getPositionForValue(double(sr) / 2); |
3388 | 2319 |
3389 int initialMax = m_initialMaxFrequency; | 2320 int initialMax = m_initialMaxFrequency; |
3390 if (initialMax == 0) initialMax = int(sr / 2); | 2321 if (initialMax == 0) initialMax = int(sr / 2); |
3402 if (!m_model) return 0; | 2333 if (!m_model) return 0; |
3403 | 2334 |
3404 double dmin, dmax; | 2335 double dmin, dmax; |
3405 getDisplayExtents(dmin, dmax); | 2336 getDisplayExtents(dmin, dmax); |
3406 | 2337 |
3407 SpectrogramRangeMapper mapper(m_model->getSampleRate(), m_fftSize); | 2338 SpectrogramRangeMapper mapper(m_model->getSampleRate(), getFFTSize()); |
3408 int n = mapper.getPositionForValue(dmax - dmin); | 2339 int n = mapper.getPositionForValue(dmax - dmin); |
3409 // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; | 2340 // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; |
3410 return n; | 2341 return n; |
3411 } | 2342 } |
3412 | 2343 |
3419 // getDisplayExtents(dmin, dmax); | 2350 // getDisplayExtents(dmin, dmax); |
3420 | 2351 |
3421 // cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << endl; | 2352 // cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << endl; |
3422 | 2353 |
3423 sv_samplerate_t sr = m_model->getSampleRate(); | 2354 sv_samplerate_t sr = m_model->getSampleRate(); |
3424 SpectrogramRangeMapper mapper(sr, m_fftSize); | 2355 SpectrogramRangeMapper mapper(sr, getFFTSize()); |
3425 double newdist = mapper.getValueForPosition(step); | 2356 double newdist = mapper.getValueForPosition(step); |
3426 | 2357 |
3427 double newmin, newmax; | 2358 double newmin, newmax; |
3428 | 2359 |
3429 if (m_frequencyScale == LogFrequencyScale) { | 2360 if (m_binScale == BinScale::Log) { |
3430 | 2361 |
3431 // need to pick newmin and newmax such that | 2362 // need to pick newmin and newmax such that |
3432 // | 2363 // |
3433 // (log(newmin) + log(newmax)) / 2 == logmid | 2364 // (log(newmin) + log(newmax)) / 2 == logmid |
3434 // and | 2365 // and |
3480 | 2411 |
3481 RangeMapper * | 2412 RangeMapper * |
3482 SpectrogramLayer::getNewVerticalZoomRangeMapper() const | 2413 SpectrogramLayer::getNewVerticalZoomRangeMapper() const |
3483 { | 2414 { |
3484 if (!m_model) return 0; | 2415 if (!m_model) return 0; |
3485 return new SpectrogramRangeMapper(m_model->getSampleRate(), m_fftSize); | 2416 return new SpectrogramRangeMapper(m_model->getSampleRate(), getFFTSize()); |
3486 } | 2417 } |
3487 | 2418 |
3488 void | 2419 void |
3489 SpectrogramLayer::updateMeasureRectYCoords(LayerGeometryProvider *v, const MeasureRect &r) const | 2420 SpectrogramLayer::updateMeasureRectYCoords(LayerGeometryProvider *v, const MeasureRect &r) const |
3490 { | 2421 { |
3536 "colourRotation=\"%5\" " | 2467 "colourRotation=\"%5\" " |
3537 "frequencyScale=\"%6\" " | 2468 "frequencyScale=\"%6\" " |
3538 "binDisplay=\"%7\" ") | 2469 "binDisplay=\"%7\" ") |
3539 .arg(m_minFrequency) | 2470 .arg(m_minFrequency) |
3540 .arg(m_maxFrequency) | 2471 .arg(m_maxFrequency) |
3541 .arg(m_colourScale) | 2472 .arg(convertFromColourScale(m_colourScale, m_colourScaleMultiple)) |
3542 .arg(m_colourMap) | 2473 .arg(m_colourMap) |
3543 .arg(m_colourRotation) | 2474 .arg(m_colourRotation) |
3544 .arg(m_frequencyScale) | 2475 .arg(int(m_binScale)) |
3545 .arg(m_binDisplay); | 2476 .arg(int(m_binDisplay)); |
3546 | 2477 |
3547 // New-style normalization attributes, allowing for more types of | 2478 // New-style normalization attributes, allowing for more types of |
3548 // normalization in future: write out the column normalization | 2479 // normalization in future: write out the column normalization |
3549 // type separately, and then whether we are normalizing visible | 2480 // type separately, and then whether we are normalizing visible |
3550 // area as well afterwards | 2481 // area as well afterwards |
3551 | 2482 |
3552 s += QString("columnNormalization=\"%1\" ") | 2483 s += QString("columnNormalization=\"%1\" ") |
3553 .arg(m_normalization == NormalizeColumns ? "peak" : | 2484 .arg(m_normalization == ColumnNormalization::Max1 ? "peak" : |
3554 m_normalization == NormalizeHybrid ? "hybrid" : "none"); | 2485 m_normalization == ColumnNormalization::Hybrid ? "hybrid" : "none"); |
3555 | 2486 |
3556 // Old-style normalization attribute. We *don't* write out | 2487 // Old-style normalization attribute. We *don't* write out |
3557 // normalizeHybrid here because the only release that would accept | 2488 // normalizeHybrid here because the only release that would accept |
3558 // it (Tony v1.0) has a totally different scale factor for | 2489 // it (Tony v1.0) has a totally different scale factor for |
3559 // it. We'll just have to accept that session files from Tony | 2490 // it. We'll just have to accept that session files from Tony |
3560 // v2.0+ will look odd in Tony v1.0 | 2491 // v2.0+ will look odd in Tony v1.0 |
3561 | 2492 |
3562 s += QString("normalizeColumns=\"%1\" ") | 2493 s += QString("normalizeColumns=\"%1\" ") |
3563 .arg(m_normalization == NormalizeColumns ? "true" : "false"); | 2494 .arg(m_normalization == ColumnNormalization::Max1 ? "true" : "false"); |
3564 | 2495 |
3565 // And this applies to both old- and new-style attributes | 2496 // And this applies to both old- and new-style attributes |
3566 | 2497 |
3567 s += QString("normalizeVisibleArea=\"%1\" ") | 2498 s += QString("normalizeVisibleArea=\"%1\" ") |
3568 .arg(m_normalization == NormalizeVisibleArea ? "true" : "false"); | 2499 .arg(m_normalizeVisibleArea ? "true" : "false"); |
3569 | 2500 |
3570 Layer::toXml(stream, indent, extraAttributes + " " + s); | 2501 Layer::toXml(stream, indent, extraAttributes + " " + s); |
3571 } | 2502 } |
3572 | 2503 |
3573 void | 2504 void |
3611 if (ok) { | 2542 if (ok) { |
3612 SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; | 2543 SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; |
3613 setMaxFrequency(maxFrequency); | 2544 setMaxFrequency(maxFrequency); |
3614 } | 2545 } |
3615 | 2546 |
3616 ColourScale colourScale = (ColourScale) | 2547 auto colourScale = convertToColourScale |
3617 attributes.value("colourScale").toInt(&ok); | 2548 (attributes.value("colourScale").toInt(&ok)); |
3618 if (ok) setColourScale(colourScale); | 2549 if (ok) { |
2550 setColourScale(colourScale.first); | |
2551 setColourScaleMultiple(colourScale.second); | |
2552 } | |
3619 | 2553 |
3620 int colourMap = attributes.value("colourScheme").toInt(&ok); | 2554 int colourMap = attributes.value("colourScheme").toInt(&ok); |
3621 if (ok) setColourMap(colourMap); | 2555 if (ok) setColourMap(colourMap); |
3622 | 2556 |
3623 int colourRotation = attributes.value("colourRotation").toInt(&ok); | 2557 int colourRotation = attributes.value("colourRotation").toInt(&ok); |
3624 if (ok) setColourRotation(colourRotation); | 2558 if (ok) setColourRotation(colourRotation); |
3625 | 2559 |
3626 FrequencyScale frequencyScale = (FrequencyScale) | 2560 BinScale binScale = (BinScale) |
3627 attributes.value("frequencyScale").toInt(&ok); | 2561 attributes.value("frequencyScale").toInt(&ok); |
3628 if (ok) setFrequencyScale(frequencyScale); | 2562 if (ok) setBinScale(binScale); |
3629 | 2563 |
3630 BinDisplay binDisplay = (BinDisplay) | 2564 BinDisplay binDisplay = (BinDisplay) |
3631 attributes.value("binDisplay").toInt(&ok); | 2565 attributes.value("binDisplay").toInt(&ok); |
3632 if (ok) setBinDisplay(binDisplay); | 2566 if (ok) setBinDisplay(binDisplay); |
3633 | 2567 |
3638 if (columnNormalization != "") { | 2572 if (columnNormalization != "") { |
3639 | 2573 |
3640 haveNewStyleNormalization = true; | 2574 haveNewStyleNormalization = true; |
3641 | 2575 |
3642 if (columnNormalization == "peak") { | 2576 if (columnNormalization == "peak") { |
3643 setNormalization(NormalizeColumns); | 2577 setNormalization(ColumnNormalization::Max1); |
3644 } else if (columnNormalization == "hybrid") { | 2578 } else if (columnNormalization == "hybrid") { |
3645 setNormalization(NormalizeHybrid); | 2579 setNormalization(ColumnNormalization::Hybrid); |
3646 } else if (columnNormalization == "none") { | 2580 } else if (columnNormalization == "none") { |
3647 // do nothing | 2581 setNormalization(ColumnNormalization::None); |
3648 } else { | 2582 } else { |
3649 cerr << "NOTE: Unknown or unsupported columnNormalization attribute \"" | 2583 cerr << "NOTE: Unknown or unsupported columnNormalization attribute \"" |
3650 << columnNormalization << "\"" << endl; | 2584 << columnNormalization << "\"" << endl; |
3651 } | 2585 } |
3652 } | 2586 } |
3654 if (!haveNewStyleNormalization) { | 2588 if (!haveNewStyleNormalization) { |
3655 | 2589 |
3656 bool normalizeColumns = | 2590 bool normalizeColumns = |
3657 (attributes.value("normalizeColumns").trimmed() == "true"); | 2591 (attributes.value("normalizeColumns").trimmed() == "true"); |
3658 if (normalizeColumns) { | 2592 if (normalizeColumns) { |
3659 setNormalization(NormalizeColumns); | 2593 setNormalization(ColumnNormalization::Max1); |
3660 } | 2594 } |
3661 | 2595 |
3662 bool normalizeHybrid = | 2596 bool normalizeHybrid = |
3663 (attributes.value("normalizeHybrid").trimmed() == "true"); | 2597 (attributes.value("normalizeHybrid").trimmed() == "true"); |
3664 if (normalizeHybrid) { | 2598 if (normalizeHybrid) { |
3665 setNormalization(NormalizeHybrid); | 2599 setNormalization(ColumnNormalization::Hybrid); |
3666 } | 2600 } |
3667 } | 2601 } |
3668 | 2602 |
3669 bool normalizeVisibleArea = | 2603 bool normalizeVisibleArea = |
3670 (attributes.value("normalizeVisibleArea").trimmed() == "true"); | 2604 (attributes.value("normalizeVisibleArea").trimmed() == "true"); |
3671 if (normalizeVisibleArea) { | 2605 setNormalizeVisibleArea(normalizeVisibleArea); |
3672 setNormalization(NormalizeVisibleArea); | 2606 |
3673 } | 2607 if (!haveNewStyleNormalization && m_normalization == ColumnNormalization::Hybrid) { |
3674 | |
3675 if (!haveNewStyleNormalization && m_normalization == NormalizeHybrid) { | |
3676 // Tony v1.0 is (and hopefully will remain!) the only released | 2608 // Tony v1.0 is (and hopefully will remain!) the only released |
3677 // SV-a-like to use old-style attributes when saving sessions | 2609 // SV-a-like to use old-style attributes when saving sessions |
3678 // that ask for hybrid normalization. It saves them with the | 2610 // that ask for hybrid normalization. It saves them with the |
3679 // wrong gain factor, so hack in a fix for that here -- this | 2611 // wrong gain factor, so hack in a fix for that here -- this |
3680 // gives us backward but not forward compatibility. | 2612 // gives us backward but not forward compatibility. |
3681 setGain(m_gain / float(m_fftSize / 2)); | 2613 setGain(m_gain / float(getFFTSize() / 2)); |
3682 } | 2614 } |
3683 } | 2615 } |
3684 | 2616 |