comparison layer/Colour3DPlotRenderer.cpp @ 1148:c0d841cb8ab9 tony-2.0-integration

Merge latest SV 3.0 branch code
author Chris Cannam
date Fri, 19 Aug 2016 15:58:57 +0100
parents c53ed1a6fcbd
children 436df5f24bda
comparison
equal deleted inserted replaced
1009:96cf499fad62 1148:c0d841cb8ab9
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2
3 /*
4 Sonic Visualiser
5 An audio file viewer and annotation editor.
6 Centre for Digital Music, Queen Mary, University of London.
7 This file copyright 2006-2016 Chris Cannam and QMUL.
8
9 This program is free software; you can redistribute it and/or
10 modify it under the terms of the GNU General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version. See the file
13 COPYING included with this distribution for more information.
14 */
15
16 #include "Colour3DPlotRenderer.h"
17 #include "RenderTimer.h"
18
19 #include "base/Profiler.h"
20
21 #include "data/model/DenseThreeDimensionalModel.h"
22 #include "data/model/Dense3DModelPeakCache.h"
23 #include "data/model/FFTModel.h"
24
25 #include "LayerGeometryProvider.h"
26 #include "VerticalBinLayer.h"
27 #include "PaintAssistant.h"
28 #include "ImageRegionFinder.h"
29
30 #include "view/ViewManager.h" // for main model sample rate. Pity
31
32 #include <vector>
33
34 //#define DEBUG_COLOUR_PLOT_REPAINT 1
35
36 using namespace std;
37
38 Colour3DPlotRenderer::RenderResult
39 Colour3DPlotRenderer::render(const LayerGeometryProvider *v, QPainter &paint, QRect rect)
40 {
41 return render(v, paint, rect, false);
42 }
43
44 Colour3DPlotRenderer::RenderResult
45 Colour3DPlotRenderer::renderTimeConstrained(const LayerGeometryProvider *v,
46 QPainter &paint, QRect rect)
47 {
48 return render(v, paint, rect, true);
49 }
50
51 QRect
52 Colour3DPlotRenderer::getLargestUncachedRect(const LayerGeometryProvider *v)
53 {
54 RenderType renderType = decideRenderType(v);
55
56 if (renderType == DirectTranslucent) {
57 return QRect(); // never cached
58 }
59
60 int h = m_cache.getSize().height();
61
62 QRect areaLeft(0, 0, m_cache.getValidLeft(), h);
63 QRect areaRight(m_cache.getValidRight(), 0,
64 m_cache.getSize().width() - m_cache.getValidRight(), h);
65
66 if (areaRight.width() > areaLeft.width()) {
67 return areaRight;
68 } else {
69 return areaLeft;
70 }
71 }
72
73 bool
74 Colour3DPlotRenderer::geometryChanged(const LayerGeometryProvider *v)
75 {
76 RenderType renderType = decideRenderType(v);
77
78 if (renderType == DirectTranslucent) {
79 return true; // never cached
80 }
81
82 if (m_cache.getSize() == v->getPaintSize() &&
83 m_cache.getZoomLevel() == v->getZoomLevel() &&
84 m_cache.getStartFrame() == v->getStartFrame()) {
85 return false;
86 } else {
87 return true;
88 }
89 }
90
91 Colour3DPlotRenderer::RenderResult
92 Colour3DPlotRenderer::render(const LayerGeometryProvider *v,
93 QPainter &paint, QRect rect, bool timeConstrained)
94 {
95 RenderType renderType = decideRenderType(v);
96
97 if (renderType != DrawBufferPixelResolution) {
98 // Rendering should be fast in bin-resolution and direct draw
99 // cases because we are quite well zoomed-in, and the sums are
100 // easier this way. Calculating boundaries later will be
101 // fiddly for partial paints otherwise.
102 timeConstrained = false;
103 }
104
105 int x0 = v->getXForViewX(rect.x());
106 int x1 = v->getXForViewX(rect.x() + rect.width());
107 if (x0 < 0) x0 = 0;
108 if (x1 > v->getPaintWidth()) x1 = v->getPaintWidth();
109
110 sv_frame_t startFrame = v->getStartFrame();
111
112 m_cache.resize(v->getPaintSize());
113 m_cache.setZoomLevel(v->getZoomLevel());
114
115 m_magCache.resize(v->getPaintSize().width());
116 m_magCache.setZoomLevel(v->getZoomLevel());
117
118 if (renderType == DirectTranslucent) {
119 MagnitudeRange range = renderDirectTranslucent(v, paint, rect);
120 return { rect, range };
121 }
122
123 #ifdef DEBUG_COLOUR_PLOT_REPAINT
124 cerr << "cache start " << m_cache.getStartFrame()
125 << " valid left " << m_cache.getValidLeft()
126 << " valid right " << m_cache.getValidRight()
127 << endl;
128 cerr << " view start " << startFrame
129 << " x0 " << x0
130 << " x1 " << x1
131 << endl;
132 #endif
133
134 if (m_cache.isValid()) { // some part of the cache is valid
135
136 if (v->getXForFrame(m_cache.getStartFrame()) ==
137 v->getXForFrame(startFrame) &&
138 m_cache.getValidLeft() <= x0 &&
139 m_cache.getValidRight() >= x1) {
140
141 #ifdef DEBUG_COLOUR_PLOT_REPAINT
142 cerr << "cache hit" << endl;
143 #endif
144
145 // cache is valid for the complete requested area
146 paint.drawImage(rect, m_cache.getImage(), rect);
147
148 MagnitudeRange range = m_magCache.getRange(x0, x1 - x0);
149
150 return { rect, range };
151
152 } else {
153 #ifdef DEBUG_COLOUR_PLOT_REPAINT
154 cerr << "cache partial hit" << endl;
155 #endif
156
157 // cache doesn't begin at the right frame or doesn't
158 // contain the complete view, but might be scrollable or
159 // partially usable
160 m_cache.scrollTo(v, startFrame);
161 m_magCache.scrollTo(v, startFrame);
162
163 // if we are not time-constrained, then we want to paint
164 // the whole area in one go; we don't return a partial
165 // paint. To avoid providing the more complex logic to
166 // handle painting discontiguous areas, if the only valid
167 // part of cache is in the middle, just make the whole
168 // thing invalid and start again.
169 if (!timeConstrained) {
170 if (m_cache.getValidLeft() > x0 &&
171 m_cache.getValidRight() < x1) {
172 m_cache.invalidate();
173 }
174 }
175 }
176 } else {
177 // cache is completely invalid
178 m_cache.setStartFrame(startFrame);
179 m_magCache.setStartFrame(startFrame);
180 }
181
182 bool rightToLeft = false;
183
184 int reqx0 = x0;
185 int reqx1 = x1;
186
187 if (!m_cache.isValid() && timeConstrained) {
188 // When rendering the whole area, in a context where we might
189 // not be able to complete the work, start from somewhere near
190 // the middle so that the region of interest appears first
191
192 //!!! (perhaps we should avoid doing this if past repaints
193 //!!! have been fast enough to do the whole in one shot)
194 if (x0 == 0 && x1 == v->getPaintWidth()) {
195 x0 = int(x1 * 0.3);
196 }
197 }
198
199 if (m_cache.isValid()) {
200
201 // When rendering only a part of the cache, we need to make
202 // sure that the part we're rendering is adjacent to (or
203 // overlapping) a valid area of cache, if we have one. The
204 // alternative is to ditch the valid area of cache and render
205 // only the requested area, but that's risky because this can
206 // happen when just waving the pointer over a small part of
207 // the view -- if we lose the partly-built cache every time
208 // the user does that, we'll never finish building it.
209 int left = x0;
210 int width = x1 - x0;
211 bool isLeftOfValidArea = false;
212 m_cache.adjustToTouchValidArea(left, width, isLeftOfValidArea);
213 x0 = left;
214 x1 = x0 + width;
215
216 // That call also told us whether we should be painting
217 // sub-regions of our target region in right-to-left order in
218 // order to ensure contiguity
219 rightToLeft = isLeftOfValidArea;
220 }
221
222 // Note, we always paint the full height to cache. We want to
223 // ensure the cache is coherent without having to worry about
224 // vertical matching of required and valid areas as well as
225 // horizontal.
226
227 if (renderType == DrawBufferBinResolution) {
228
229 renderToCacheBinResolution(v, x0, x1 - x0);
230
231 } else { // must be DrawBufferPixelResolution, handled DirectTranslucent earlier
232
233 renderToCachePixelResolution(v, x0, x1 - x0, rightToLeft, timeConstrained);
234 }
235
236 QRect pr = rect & m_cache.getValidArea();
237 paint.drawImage(pr.x(), pr.y(), m_cache.getImage(),
238 pr.x(), pr.y(), pr.width(), pr.height());
239
240 if (!timeConstrained && (pr != rect)) {
241 cerr << "WARNING: failed to render entire requested rect "
242 << "even when not time-constrained" << endl;
243 }
244
245 MagnitudeRange range = m_magCache.getRange(reqx0, reqx1 - reqx0);
246
247 return { pr, range };
248 }
249
250 Colour3DPlotRenderer::RenderType
251 Colour3DPlotRenderer::decideRenderType(const LayerGeometryProvider *v) const
252 {
253 const DenseThreeDimensionalModel *model = m_sources.source;
254 if (!model || !v || !(v->getViewManager())) {
255 return DrawBufferPixelResolution; // or anything
256 }
257
258 int binResolution = model->getResolution();
259 int zoomLevel = v->getZoomLevel();
260 sv_samplerate_t modelRate = model->getSampleRate();
261
262 double rateRatio = v->getViewManager()->getMainModelSampleRate() / modelRate;
263 double relativeBinResolution = binResolution * rateRatio;
264
265 if (m_params.binDisplay == BinDisplay::PeakFrequencies) {
266 // no alternative works here
267 return DrawBufferPixelResolution;
268 }
269
270 if (!m_params.alwaysOpaque && !m_params.interpolate) {
271
272 // consider translucent option -- only if not smoothing & not
273 // explicitly requested opaque & sufficiently zoomed-in
274
275 if (model->getHeight() * 3 < v->getPaintHeight() &&
276 relativeBinResolution >= 3 * zoomLevel) {
277 return DirectTranslucent;
278 }
279 }
280
281 if (relativeBinResolution > zoomLevel) {
282 return DrawBufferBinResolution;
283 } else {
284 return DrawBufferPixelResolution;
285 }
286 }
287
288 ColumnOp::Column
289 Colour3DPlotRenderer::getColumn(int sx, int minbin, int nbins) const
290 {
291 // order:
292 // get column -> scale -> normalise -> record extents ->
293 // peak pick -> distribute/interpolate -> apply display gain
294
295 // we do the first bit here:
296 // get column -> scale -> normalise
297
298 ColumnOp::Column column;
299
300 if (m_params.colourScale.getScale() == ColourScaleType::Phase &&
301 m_sources.fft) {
302
303 ColumnOp::Column fullColumn = m_sources.fft->getPhases(sx);
304
305 column = vector<float>(fullColumn.data() + minbin,
306 fullColumn.data() + minbin + nbins);
307
308 } else {
309
310 ColumnOp::Column fullColumn = m_sources.source->getColumn(sx);
311
312 column = vector<float>(fullColumn.data() + minbin,
313 fullColumn.data() + minbin + nbins);
314
315 column = ColumnOp::applyGain(column, m_params.scaleFactor);
316
317 column = ColumnOp::normalize(column, m_params.normalization);
318 }
319
320 return column;
321 }
322
323 MagnitudeRange
324 Colour3DPlotRenderer::renderDirectTranslucent(const LayerGeometryProvider *v,
325 QPainter &paint,
326 QRect rect)
327 {
328 Profiler profiler("Colour3DPlotRenderer::renderDirectTranslucent");
329
330 MagnitudeRange magRange;
331
332 QPoint illuminatePos;
333 bool illuminate = v->shouldIlluminateLocalFeatures
334 (m_sources.verticalBinLayer, illuminatePos);
335
336 const DenseThreeDimensionalModel *model = m_sources.source;
337
338 int x0 = rect.left();
339 int x1 = rect.right() + 1;
340
341 int h = v->getPaintHeight();
342
343 sv_frame_t modelStart = model->getStartFrame();
344 sv_frame_t modelEnd = model->getEndFrame();
345 int modelResolution = model->getResolution();
346
347 double rateRatio =
348 v->getViewManager()->getMainModelSampleRate() / model->getSampleRate();
349
350 // the s-prefix values are source, i.e. model, column and bin numbers
351 int sx0 = int((double(v->getFrameForX(x0)) / rateRatio - double(modelStart))
352 / modelResolution);
353 int sx1 = int((double(v->getFrameForX(x1)) / rateRatio - double(modelStart))
354 / modelResolution);
355
356 int sh = model->getHeight();
357
358 const int buflen = 40;
359 char labelbuf[buflen];
360
361 int minbin = m_sources.verticalBinLayer->getIBinForY(v, h);
362 if (minbin >= sh) minbin = sh - 1;
363 if (minbin < 0) minbin = 0;
364
365 int nbins = m_sources.verticalBinLayer->getIBinForY(v, 0) - minbin + 1;
366 if (minbin + nbins > sh) nbins = sh - minbin;
367
368 int psx = -1;
369
370 vector<float> preparedColumn;
371
372 int modelWidth = model->getWidth();
373
374 for (int sx = sx0; sx <= sx1; ++sx) {
375
376 if (sx < 0 || sx >= modelWidth) {
377 continue;
378 }
379
380 if (sx != psx) {
381
382 // order:
383 // get column -> scale -> normalise -> record extents ->
384 // peak pick -> distribute/interpolate -> apply display gain
385
386 // this does the first three:
387 preparedColumn = getColumn(sx, minbin, nbins);
388
389 magRange.sample(preparedColumn);
390
391 if (m_params.binDisplay == BinDisplay::PeakBins) {
392 preparedColumn = ColumnOp::peakPick(preparedColumn);
393 }
394
395 // Display gain belongs to the colour scale and is
396 // applied by the colour scale object when mapping it
397
398 psx = sx;
399 }
400
401 sv_frame_t fx = sx * modelResolution + modelStart;
402
403 if (fx + modelResolution <= modelStart || fx > modelEnd) continue;
404
405 int rx0 = v->getXForFrame(int(double(fx) * rateRatio));
406 int rx1 = v->getXForFrame(int(double(fx + modelResolution + 1) * rateRatio));
407
408 int rw = rx1 - rx0;
409 if (rw < 1) rw = 1;
410
411 bool showLabel = (rw > 10 &&
412 paint.fontMetrics().width("0.000000") < rw - 3 &&
413 paint.fontMetrics().height() < (h / sh));
414
415 for (int sy = minbin; sy < minbin + nbins; ++sy) {
416
417 int ry0 = m_sources.verticalBinLayer->getIYForBin(v, sy);
418 int ry1 = m_sources.verticalBinLayer->getIYForBin(v, sy + 1);
419
420 if (m_params.invertVertical) {
421 ry0 = h - ry0 - 1;
422 ry1 = h - ry1 - 1;
423 }
424
425 QRect r(rx0, ry1, rw, ry0 - ry1);
426
427 float value = preparedColumn[sy - minbin];
428 QColor colour = m_params.colourScale.getColour(value,
429 m_params.colourRotation);
430
431 if (rw == 1) {
432 paint.setPen(colour);
433 paint.setBrush(Qt::NoBrush);
434 paint.drawLine(r.x(), r.y(), r.x(), r.y() + r.height() - 1);
435 continue;
436 }
437
438 QColor pen(255, 255, 255, 80);
439 QColor brush(colour);
440
441 if (rw > 3 && r.height() > 3) {
442 brush.setAlpha(160);
443 }
444
445 paint.setPen(Qt::NoPen);
446 paint.setBrush(brush);
447
448 if (illuminate) {
449 if (r.contains(illuminatePos)) {
450 paint.setPen(v->getForeground());
451 }
452 }
453
454 #ifdef DEBUG_COLOUR_3D_PLOT_LAYER_PAINT
455 // cerr << "rect " << r.x() << "," << r.y() << " "
456 // << r.width() << "x" << r.height() << endl;
457 #endif
458
459 paint.drawRect(r);
460
461 if (showLabel) {
462 double value = model->getValueAt(sx, sy);
463 snprintf(labelbuf, buflen, "%06f", value);
464 QString text(labelbuf);
465 PaintAssistant::drawVisibleText
466 (v,
467 paint,
468 rx0 + 2,
469 ry0 - h / sh - 1 + 2 + paint.fontMetrics().ascent(),
470 text,
471 PaintAssistant::OutlinedText);
472 }
473 }
474 }
475
476 return magRange;
477 }
478
479 void
480 Colour3DPlotRenderer::renderToCachePixelResolution(const LayerGeometryProvider *v,
481 int x0, int repaintWidth,
482 bool rightToLeft,
483 bool timeConstrained)
484 {
485 Profiler profiler("Colour3DPlotRenderer::renderToCachePixelResolution");
486 #ifdef DEBUG_COLOUR_PLOT_REPAINT
487 cerr << "renderToCachePixelResolution" << endl;
488 #endif
489
490 // Draw to the draw buffer, and then copy from there. The draw
491 // buffer is at the same resolution as the target in the cache, so
492 // no extra scaling needed.
493
494 const DenseThreeDimensionalModel *model = m_sources.source;
495 if (!model || !model->isOK() || !model->isReady()) {
496 throw std::logic_error("no source model provided, or model not ready");
497 }
498
499 int h = v->getPaintHeight();
500
501 clearDrawBuffer(repaintWidth, h);
502
503 vector<int> binforx(repaintWidth);
504 vector<double> binfory(h);
505
506 bool usePeaksCache = false;
507 int binsPerPeak = 1;
508 int zoomLevel = v->getZoomLevel();
509 int binResolution = model->getResolution();
510
511 for (int x = 0; x < repaintWidth; ++x) {
512 sv_frame_t f0 = v->getFrameForX(x0 + x);
513 double s0 = double(f0 - model->getStartFrame()) / binResolution;
514 binforx[x] = int(s0 + 0.0001);
515 }
516
517 if (m_sources.peaks) { // peaks cache exists
518
519 binsPerPeak = m_sources.peaks->getColumnsPerPeak();
520 usePeaksCache = (binResolution * binsPerPeak) < zoomLevel;
521
522 if (m_params.colourScale.getScale() ==
523 ColourScaleType::Phase) {
524 usePeaksCache = false;
525 }
526 }
527
528 #ifdef DEBUG_COLOUR_PLOT_REPAINT
529 cerr << "[PIX] zoomLevel = " << zoomLevel
530 << ", binResolution " << binResolution
531 << ", binsPerPeak " << binsPerPeak
532 << ", peak cache " << m_sources.peaks
533 << ", usePeaksCache = " << usePeaksCache
534 << endl;
535 #endif
536
537 for (int y = 0; y < h; ++y) {
538 binfory[y] = m_sources.verticalBinLayer->getBinForY(v, h - y - 1);
539 }
540
541 int attainedWidth;
542
543 if (m_params.binDisplay == BinDisplay::PeakFrequencies) {
544 attainedWidth = renderDrawBufferPeakFrequencies(v,
545 repaintWidth,
546 h,
547 binforx,
548 binfory,
549 rightToLeft,
550 timeConstrained);
551
552 } else {
553 attainedWidth = renderDrawBuffer(repaintWidth,
554 h,
555 binforx,
556 binfory,
557 usePeaksCache,
558 rightToLeft,
559 timeConstrained);
560 }
561
562 if (attainedWidth == 0) return;
563
564 // draw buffer is pixel resolution, no scaling factors or padding involved
565
566 int paintedLeft = x0;
567 if (rightToLeft) {
568 paintedLeft += (repaintWidth - attainedWidth);
569 }
570
571 m_cache.drawImage(paintedLeft, attainedWidth,
572 m_drawBuffer,
573 paintedLeft - x0, attainedWidth);
574
575 for (int i = 0; in_range_for(m_magRanges, i); ++i) {
576 m_magCache.sampleColumn(i, m_magRanges.at(i));
577 }
578 }
579
580 void
581 Colour3DPlotRenderer::renderToCacheBinResolution(const LayerGeometryProvider *v,
582 int x0, int repaintWidth)
583 {
584 Profiler profiler("Colour3DPlotRenderer::renderToCacheBinResolution");
585 #ifdef DEBUG_COLOUR_PLOT_REPAINT
586 cerr << "renderToCacheBinResolution" << endl;
587 #endif
588
589 // Draw to the draw buffer, and then scale-copy from there. Draw
590 // buffer is at bin resolution, i.e. buffer x == source column
591 // number. We use toolkit smooth scaling for interpolation.
592
593 const DenseThreeDimensionalModel *model = m_sources.source;
594 if (!model || !model->isOK() || !model->isReady()) {
595 throw std::logic_error("no source model provided, or model not ready");
596 }
597
598 // The draw buffer will contain a fragment at bin resolution. We
599 // need to ensure that it starts and ends at points where a
600 // time-bin boundary occurs at an exact pixel boundary, and with a
601 // certain amount of overlap across existing pixels so that we can
602 // scale and draw from it without smoothing errors at the edges.
603
604 // If (getFrameForX(x) / increment) * increment ==
605 // getFrameForX(x), then x is a time-bin boundary. We want two
606 // such boundaries at either side of the draw buffer -- one which
607 // we draw up to, and one which we subsequently crop at.
608
609 sv_frame_t leftBoundaryFrame = -1, leftCropFrame = -1;
610 sv_frame_t rightBoundaryFrame = -1, rightCropFrame = -1;
611
612 int drawBufferWidth;
613 int binResolution = model->getResolution();
614
615 for (int x = x0; ; --x) {
616 sv_frame_t f = v->getFrameForX(x);
617 if ((f / binResolution) * binResolution == f) {
618 if (leftCropFrame == -1) leftCropFrame = f;
619 else if (x < x0 - 2) {
620 leftBoundaryFrame = f;
621 break;
622 }
623 }
624 }
625 for (int x = x0 + repaintWidth; ; ++x) {
626 sv_frame_t f = v->getFrameForX(x);
627 if ((f / binResolution) * binResolution == f) {
628 if (rightCropFrame == -1) rightCropFrame = f;
629 else if (x > x0 + repaintWidth + 2) {
630 rightBoundaryFrame = f;
631 break;
632 }
633 }
634 }
635 drawBufferWidth = int
636 ((rightBoundaryFrame - leftBoundaryFrame) / binResolution);
637
638 int h = v->getPaintHeight();
639
640 // For our purposes here, the draw buffer needs to be exactly our
641 // target size (so we recreate always rather than just clear it)
642
643 recreateDrawBuffer(drawBufferWidth, h);
644
645 vector<int> binforx(drawBufferWidth);
646 vector<double> binfory(h);
647
648 for (int x = 0; x < drawBufferWidth; ++x) {
649 binforx[x] = int(leftBoundaryFrame / binResolution) + x;
650 }
651
652 #ifdef DEBUG_COLOUR_PLOT_REPAINT
653 cerr << "[BIN] binResolution " << binResolution
654 << endl;
655 #endif
656
657 for (int y = 0; y < h; ++y) {
658 binfory[y] = m_sources.verticalBinLayer->getBinForY(v, h - y - 1);
659 }
660
661 int attainedWidth = renderDrawBuffer(drawBufferWidth,
662 h,
663 binforx,
664 binfory,
665 false,
666 false,
667 false);
668
669 if (attainedWidth == 0) return;
670
671 int scaledLeft = v->getXForFrame(leftBoundaryFrame);
672 int scaledRight = v->getXForFrame(rightBoundaryFrame);
673
674 #ifdef DEBUG_COLOUR_PLOT_REPAINT
675 cerr << "scaling draw buffer from width " << m_drawBuffer.width()
676 << " to " << (scaledRight - scaledLeft) << " (nb drawBufferWidth = "
677 << drawBufferWidth << ")" << endl;
678 #endif
679
680 QImage scaled = m_drawBuffer.scaled
681 (scaledRight - scaledLeft, h,
682 Qt::IgnoreAspectRatio, (m_params.interpolate ?
683 Qt::SmoothTransformation :
684 Qt::FastTransformation));
685
686 int scaledLeftCrop = v->getXForFrame(leftCropFrame);
687 int scaledRightCrop = v->getXForFrame(rightCropFrame);
688
689 int targetLeft = scaledLeftCrop;
690 if (targetLeft < 0) {
691 targetLeft = 0;
692 }
693
694 int targetWidth = scaledRightCrop - targetLeft;
695 if (targetLeft + targetWidth > m_cache.getSize().width()) {
696 targetWidth = m_cache.getSize().width() - targetLeft;
697 }
698
699 int sourceLeft = targetLeft - scaledLeft;
700 if (sourceLeft < 0) {
701 sourceLeft = 0;
702 }
703
704 #ifdef DEBUG_COLOUR_PLOT_REPAINT
705 cerr << "repaintWidth = " << repaintWidth
706 << ", targetWidth = " << targetWidth << endl;
707 #endif
708
709 if (targetWidth > 0) {
710 // we are copying from an image that has already been scaled,
711 // hence using the same width in both geometries
712 m_cache.drawImage(targetLeft, targetWidth,
713 scaled,
714 sourceLeft, targetWidth);
715 }
716
717 for (int i = 0; i < targetWidth; ++i) {
718 // but the mag range vector has not been scaled
719 int sourceIx = int((double(i + sourceLeft) / scaled.width())
720 * int(m_magRanges.size()));
721 if (in_range_for(m_magRanges, sourceIx)) {
722 m_magCache.sampleColumn(i, m_magRanges.at(sourceIx));
723 }
724 }
725 }
726
727 int
728 Colour3DPlotRenderer::renderDrawBuffer(int w, int h,
729 const vector<int> &binforx,
730 const vector<double> &binfory,
731 bool usePeaksCache,
732 bool rightToLeft,
733 bool timeConstrained)
734 {
735 // Callers must have checked that the appropriate subset of
736 // Sources data members are set for the supplied flags (e.g. that
737 // peaks model exists if usePeaksCache)
738
739 RenderTimer timer(timeConstrained ?
740 RenderTimer::FastRender :
741 RenderTimer::NoTimeout);
742
743 int divisor = 1;
744 const DenseThreeDimensionalModel *sourceModel = m_sources.source;
745 if (usePeaksCache) {
746 divisor = m_sources.peaks->getColumnsPerPeak();
747 sourceModel = m_sources.peaks;
748 }
749
750 int sh = sourceModel->getHeight();
751
752 int minbin = int(binfory[0] + 0.0001);
753 if (minbin >= sh) minbin = sh - 1;
754 if (minbin < 0) minbin = 0;
755
756 int nbins = int(binfory[h-1]) - minbin + 1;
757 if (minbin + nbins > sh) nbins = sh - minbin;
758
759 int psx = -1;
760
761 int start = 0;
762 int finish = w;
763 int step = 1;
764
765 if (rightToLeft) {
766 start = w-1;
767 finish = -1;
768 step = -1;
769 }
770
771 int columnCount = 0;
772
773 vector<float> preparedColumn;
774
775 int modelWidth = sourceModel->getWidth();
776
777 #ifdef DEBUG_COLOUR_PLOT_REPAINT
778 cerr << "modelWidth " << modelWidth << ", divisor " << divisor << endl;
779 #endif
780
781 for (int x = start; x != finish; x += step) {
782
783 // x is the on-canvas pixel coord; sx (later) will be the
784 // source column index
785
786 ++columnCount;
787
788 #ifdef DEBUG_COLOUR_PLOT_REPAINT
789 cerr << "x = " << x << ", binforx[x] = " << binforx[x] << endl;
790 #endif
791
792 if (binforx[x] < 0) continue;
793
794 int sx0 = binforx[x] / divisor;
795 int sx1 = sx0;
796 if (x+1 < w) sx1 = binforx[x+1] / divisor;
797 if (sx0 < 0) sx0 = sx1 - 1;
798 if (sx0 < 0) continue;
799 if (sx1 <= sx0) sx1 = sx0 + 1;
800
801 vector<float> pixelPeakColumn;
802 MagnitudeRange magRange;
803
804 for (int sx = sx0; sx < sx1; ++sx) {
805
806 #ifdef DEBUG_COLOUR_PLOT_REPAINT
807 cerr << "sx = " << sx << endl;
808 #endif
809
810 if (sx < 0 || sx >= modelWidth) {
811 continue;
812 }
813
814 if (sx != psx) {
815
816 // order:
817 // get column -> scale -> normalise -> record extents ->
818 // peak pick -> distribute/interpolate -> apply display gain
819
820 // this does the first three:
821 ColumnOp::Column column = getColumn(sx, minbin, nbins);
822
823 magRange.sample(column);
824
825 if (m_params.binDisplay == BinDisplay::PeakBins) {
826 column = ColumnOp::peakPick(column);
827 }
828
829 preparedColumn =
830 ColumnOp::distribute(column,
831 h,
832 binfory,
833 minbin,
834 m_params.interpolate);
835
836 // Display gain belongs to the colour scale and is
837 // applied by the colour scale object when mapping it
838
839 psx = sx;
840 }
841
842 if (sx == sx0) {
843 pixelPeakColumn = preparedColumn;
844 } else {
845 for (int i = 0; in_range_for(pixelPeakColumn, i); ++i) {
846 pixelPeakColumn[i] = std::max(pixelPeakColumn[i],
847 preparedColumn[i]);
848 }
849 }
850 }
851
852 if (!pixelPeakColumn.empty()) {
853
854 for (int y = 0; y < h; ++y) {
855 int py;
856 if (m_params.invertVertical) {
857 py = y;
858 } else {
859 py = h - y - 1;
860 }
861 m_drawBuffer.setPixel
862 (x,
863 py,
864 m_params.colourScale.getPixel(pixelPeakColumn[y]));
865 }
866
867 m_magRanges.push_back(magRange);
868 }
869
870 double fractionComplete = double(columnCount) / double(w);
871 if (timer.outOfTime(fractionComplete)) {
872 cerr << "out of time" << endl;
873 return columnCount;
874 }
875 }
876
877 return columnCount;
878 }
879
880 int
881 Colour3DPlotRenderer::renderDrawBufferPeakFrequencies(const LayerGeometryProvider *v,
882 int w, int h,
883 const vector<int> &binforx,
884 const vector<double> &binfory,
885 bool rightToLeft,
886 bool timeConstrained)
887 {
888 // Callers must have checked that the appropriate subset of
889 // Sources data members are set for the supplied flags (e.g. that
890 // fft model exists)
891
892 RenderTimer timer(timeConstrained ?
893 RenderTimer::FastRender :
894 RenderTimer::NoTimeout);
895
896 const FFTModel *fft = m_sources.fft;
897
898 int sh = fft->getHeight();
899
900 int minbin = int(binfory[0] + 0.0001);
901 if (minbin >= sh) minbin = sh - 1;
902 if (minbin < 0) minbin = 0;
903
904 int nbins = int(binfory[h-1]) - minbin + 1;
905 if (minbin + nbins > sh) nbins = sh - minbin;
906
907 FFTModel::PeakSet peakfreqs;
908
909 int psx = -1;
910
911 int start = 0;
912 int finish = w;
913 int step = 1;
914
915 if (rightToLeft) {
916 start = w-1;
917 finish = -1;
918 step = -1;
919 }
920
921 int columnCount = 0;
922
923 vector<float> preparedColumn;
924
925 int modelWidth = fft->getWidth();
926 #ifdef DEBUG_COLOUR_PLOT_REPAINT
927 cerr << "modelWidth " << modelWidth << endl;
928 #endif
929
930 double minFreq =
931 (double(minbin) * fft->getSampleRate()) / fft->getFFTSize();
932 double maxFreq =
933 (double(minbin + nbins - 1) * fft->getSampleRate()) / fft->getFFTSize();
934
935 bool logarithmic = (m_params.binScale == BinScale::Log);
936
937 for (int x = start; x != finish; x += step) {
938
939 // x is the on-canvas pixel coord; sx (later) will be the
940 // source column index
941
942 ++columnCount;
943
944 if (binforx[x] < 0) continue;
945
946 int sx0 = binforx[x];
947 int sx1 = sx0;
948 if (x+1 < w) sx1 = binforx[x+1];
949 if (sx0 < 0) sx0 = sx1 - 1;
950 if (sx0 < 0) continue;
951 if (sx1 <= sx0) sx1 = sx0 + 1;
952
953 vector<float> pixelPeakColumn;
954 MagnitudeRange magRange;
955
956 for (int sx = sx0; sx < sx1; ++sx) {
957
958 if (sx < 0 || sx >= modelWidth) {
959 continue;
960 }
961
962 if (sx != psx) {
963 preparedColumn = getColumn(sx, minbin, nbins);
964 magRange.sample(preparedColumn);
965 psx = sx;
966 }
967
968 if (sx == sx0) {
969 pixelPeakColumn = preparedColumn;
970 peakfreqs = fft->getPeakFrequencies(FFTModel::AllPeaks, sx,
971 minbin, minbin + nbins - 1);
972 } else {
973 for (int i = 0; in_range_for(pixelPeakColumn, i); ++i) {
974 pixelPeakColumn[i] = std::max(pixelPeakColumn[i],
975 preparedColumn[i]);
976 }
977 }
978 }
979
980 if (!pixelPeakColumn.empty()) {
981
982 for (FFTModel::PeakSet::const_iterator pi = peakfreqs.begin();
983 pi != peakfreqs.end(); ++pi) {
984
985 int bin = pi->first;
986 double freq = pi->second;
987
988 if (bin < minbin) continue;
989 if (bin >= minbin + nbins) break;
990
991 double value = pixelPeakColumn[bin - minbin];
992
993 double y = v->getYForFrequency
994 (freq, minFreq, maxFreq, logarithmic);
995
996 int iy = int(y + 0.5);
997 if (iy < 0 || iy >= h) continue;
998
999 m_drawBuffer.setPixel
1000 (x,
1001 iy,
1002 m_params.colourScale.getPixel(value));
1003 }
1004
1005 m_magRanges.push_back(magRange);
1006 }
1007
1008 double fractionComplete = double(columnCount) / double(w);
1009 if (timer.outOfTime(fractionComplete)) {
1010 return columnCount;
1011 }
1012 }
1013
1014 return columnCount;
1015 }
1016
1017 void
1018 Colour3DPlotRenderer::recreateDrawBuffer(int w, int h)
1019 {
1020 m_drawBuffer = QImage(w, h, QImage::Format_Indexed8);
1021
1022 for (int pixel = 0; pixel < 256; ++pixel) {
1023 m_drawBuffer.setColor
1024 ((unsigned char)pixel,
1025 m_params.colourScale.getColourForPixel
1026 (pixel, m_params.colourRotation).rgb());
1027 }
1028
1029 m_drawBuffer.fill(0);
1030 m_magRanges.clear();
1031 }
1032
1033 void
1034 Colour3DPlotRenderer::clearDrawBuffer(int w, int h)
1035 {
1036 if (m_drawBuffer.width() < w || m_drawBuffer.height() != h) {
1037 recreateDrawBuffer(w, h);
1038 } else {
1039 m_drawBuffer.fill(0);
1040 m_magRanges.clear();
1041 }
1042 }
1043
1044 QRect
1045 Colour3DPlotRenderer::findSimilarRegionExtents(QPoint p) const
1046 {
1047 QImage image = m_cache.getImage();
1048 ImageRegionFinder finder;
1049 QRect rect = finder.findRegionExtents(&image, p);
1050 return rect;
1051 }