Mercurial > hg > svgui
comparison layer/SpectrogramLayer.cpp @ 1216:dc2af6616c83
Merge from branch 3.0-integration
author | Chris Cannam |
---|---|
date | Fri, 13 Jan 2017 10:29:50 +0000 |
parents | a1ee3108d1d3 |
children | de1792daae07 |
comparison
equal
deleted
inserted
replaced
1048:e8102ff5573b | 1216:dc2af6616c83 |
---|---|
21 #include "base/Window.h" | 21 #include "base/Window.h" |
22 #include "base/Pitch.h" | 22 #include "base/Pitch.h" |
23 #include "base/Preferences.h" | 23 #include "base/Preferences.h" |
24 #include "base/RangeMapper.h" | 24 #include "base/RangeMapper.h" |
25 #include "base/LogRange.h" | 25 #include "base/LogRange.h" |
26 #include "base/ColumnOp.h" | |
27 #include "base/Strings.h" | |
28 #include "base/StorageAdviser.h" | |
29 #include "base/Exceptions.h" | |
26 #include "widgets/CommandHistory.h" | 30 #include "widgets/CommandHistory.h" |
31 #include "data/model/Dense3DModelPeakCache.h" | |
32 | |
27 #include "ColourMapper.h" | 33 #include "ColourMapper.h" |
28 #include "ImageRegionFinder.h" | |
29 #include "data/model/Dense3DModelPeakCache.h" | |
30 #include "PianoScale.h" | 34 #include "PianoScale.h" |
35 #include "PaintAssistant.h" | |
36 #include "Colour3DPlotRenderer.h" | |
31 | 37 |
32 #include <QPainter> | 38 #include <QPainter> |
33 #include <QImage> | 39 #include <QImage> |
34 #include <QPixmap> | 40 #include <QPixmap> |
35 #include <QRect> | 41 #include <QRect> |
36 #include <QTimer> | |
37 #include <QApplication> | 42 #include <QApplication> |
38 #include <QMessageBox> | 43 #include <QMessageBox> |
39 #include <QMouseEvent> | 44 #include <QMouseEvent> |
40 #include <QTextStream> | 45 #include <QTextStream> |
46 #include <QSettings> | |
41 | 47 |
42 #include <iostream> | 48 #include <iostream> |
43 | 49 |
44 #include <cassert> | 50 #include <cassert> |
45 #include <cmath> | 51 #include <cmath> |
46 | 52 |
47 #ifndef __GNUC__ | 53 //#define DEBUG_SPECTROGRAM 1 |
48 #include <alloca.h> | |
49 #endif | |
50 | |
51 //#define DEBUG_SPECTROGRAM_REPAINT 1 | 54 //#define DEBUG_SPECTROGRAM_REPAINT 1 |
52 | 55 |
53 using std::vector; | 56 using namespace std; |
54 | 57 |
55 SpectrogramLayer::SpectrogramLayer(Configuration config) : | 58 SpectrogramLayer::SpectrogramLayer(Configuration config) : |
56 m_model(0), | 59 m_model(0), |
57 m_channel(0), | 60 m_channel(0), |
58 m_windowSize(1024), | 61 m_windowSize(1024), |
59 m_windowType(HanningWindow), | 62 m_windowType(HanningWindow), |
60 m_windowHopLevel(2), | 63 m_windowHopLevel(2), |
61 m_zeroPadLevel(0), | |
62 m_fftSize(1024), | |
63 m_gain(1.0), | 64 m_gain(1.0), |
64 m_initialGain(1.0), | 65 m_initialGain(1.0), |
65 m_threshold(0.0), | 66 m_threshold(1.0e-8f), |
66 m_initialThreshold(0.0), | 67 m_initialThreshold(1.0e-8f), |
67 m_colourRotation(0), | 68 m_colourRotation(0), |
68 m_initialRotation(0), | 69 m_initialRotation(0), |
69 m_minFrequency(10), | 70 m_minFrequency(10), |
70 m_maxFrequency(8000), | 71 m_maxFrequency(8000), |
71 m_initialMaxFrequency(8000), | 72 m_initialMaxFrequency(8000), |
72 m_colourScale(dBColourScale), | 73 m_colourScale(ColourScaleType::Log), |
74 m_colourScaleMultiple(1.0), | |
73 m_colourMap(0), | 75 m_colourMap(0), |
74 m_frequencyScale(LinearFrequencyScale), | 76 m_binScale(BinScale::Linear), |
75 m_binDisplay(AllBins), | 77 m_binDisplay(BinDisplay::AllBins), |
76 m_normalizeColumns(false), | 78 m_normalization(ColumnNormalization::None), |
77 m_normalizeVisibleArea(false), | 79 m_normalizeVisibleArea(false), |
78 m_normalizeHybrid(false), | |
79 m_lastEmittedZoomStep(-1), | 80 m_lastEmittedZoomStep(-1), |
80 m_synchronous(false), | 81 m_synchronous(false), |
81 m_haveDetailedScale(false), | 82 m_haveDetailedScale(false), |
82 m_lastPaintBlockWidth(0), | |
83 m_updateTimer(0), | |
84 m_candidateFillStartFrame(0), | |
85 m_exiting(false), | 83 m_exiting(false), |
86 m_sliceableModel(0) | 84 m_fftModel(0), |
87 { | 85 m_wholeCache(0), |
86 m_peakCache(0), | |
87 m_peakCacheDivisor(8) | |
88 { | |
89 QString colourConfigName = "spectrogram-colour"; | |
90 int colourConfigDefault = int(ColourMapper::Green); | |
91 | |
88 if (config == FullRangeDb) { | 92 if (config == FullRangeDb) { |
89 m_initialMaxFrequency = 0; | 93 m_initialMaxFrequency = 0; |
90 setMaxFrequency(0); | 94 setMaxFrequency(0); |
91 } else if (config == MelodicRange) { | 95 } else if (config == MelodicRange) { |
92 setWindowSize(8192); | 96 setWindowSize(8192); |
93 setWindowHopLevel(4); | 97 setWindowHopLevel(4); |
94 m_initialMaxFrequency = 1500; | 98 m_initialMaxFrequency = 1500; |
95 setMaxFrequency(1500); | 99 setMaxFrequency(1500); |
96 setMinFrequency(40); | 100 setMinFrequency(40); |
97 setColourScale(LinearColourScale); | 101 setColourScale(ColourScaleType::Linear); |
98 setColourMap(ColourMapper::Sunset); | 102 setColourMap(ColourMapper::Sunset); |
99 setFrequencyScale(LogFrequencyScale); | 103 setBinScale(BinScale::Log); |
104 colourConfigName = "spectrogram-melodic-colour"; | |
105 colourConfigDefault = int(ColourMapper::Sunset); | |
100 // setGain(20); | 106 // setGain(20); |
101 } else if (config == MelodicPeaks) { | 107 } else if (config == MelodicPeaks) { |
102 setWindowSize(4096); | 108 setWindowSize(4096); |
103 setWindowHopLevel(5); | 109 setWindowHopLevel(5); |
104 m_initialMaxFrequency = 2000; | 110 m_initialMaxFrequency = 2000; |
105 setMaxFrequency(2000); | 111 setMaxFrequency(2000); |
106 setMinFrequency(40); | 112 setMinFrequency(40); |
107 setFrequencyScale(LogFrequencyScale); | 113 setBinScale(BinScale::Log); |
108 setColourScale(LinearColourScale); | 114 setColourScale(ColourScaleType::Linear); |
109 setBinDisplay(PeakFrequencies); | 115 setBinDisplay(BinDisplay::PeakFrequencies); |
110 setNormalizeColumns(true); | 116 setNormalization(ColumnNormalization::Max1); |
111 } | 117 colourConfigName = "spectrogram-melodic-colour"; |
112 | 118 colourConfigDefault = int(ColourMapper::Sunset); |
119 } | |
120 | |
121 QSettings settings; | |
122 settings.beginGroup("Preferences"); | |
123 setColourMap(settings.value(colourConfigName, colourConfigDefault).toInt()); | |
124 settings.endGroup(); | |
125 | |
113 Preferences *prefs = Preferences::getInstance(); | 126 Preferences *prefs = Preferences::getInstance(); |
114 connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), | 127 connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), |
115 this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); | 128 this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); |
116 setWindowType(prefs->getWindowType()); | 129 setWindowType(prefs->getWindowType()); |
117 | |
118 initialisePalette(); | |
119 } | 130 } |
120 | 131 |
121 SpectrogramLayer::~SpectrogramLayer() | 132 SpectrogramLayer::~SpectrogramLayer() |
122 { | 133 { |
123 delete m_updateTimer; | 134 invalidateRenderers(); |
124 m_updateTimer = 0; | 135 |
125 | 136 delete m_fftModel; |
126 invalidateFFTModels(); | 137 delete m_peakCache; |
138 delete m_wholeCache; | |
139 } | |
140 | |
141 pair<ColourScaleType, double> | |
142 SpectrogramLayer::convertToColourScale(int value) | |
143 { | |
144 switch (value) { | |
145 case 0: return { ColourScaleType::Linear, 1.0 }; | |
146 case 1: return { ColourScaleType::Meter, 1.0 }; | |
147 case 2: return { ColourScaleType::Log, 2.0 }; // dB^2 (i.e. log of power) | |
148 case 3: return { ColourScaleType::Log, 1.0 }; // dB (of magnitude) | |
149 case 4: return { ColourScaleType::Phase, 1.0 }; | |
150 default: return { ColourScaleType::Linear, 1.0 }; | |
151 } | |
152 } | |
153 | |
154 int | |
155 SpectrogramLayer::convertFromColourScale(ColourScaleType scale, double multiple) | |
156 { | |
157 switch (scale) { | |
158 case ColourScaleType::Linear: return 0; | |
159 case ColourScaleType::Meter: return 1; | |
160 case ColourScaleType::Log: return (multiple > 1.5 ? 2 : 3); | |
161 case ColourScaleType::Phase: return 4; | |
162 case ColourScaleType::PlusMinusOne: | |
163 case ColourScaleType::Absolute: | |
164 default: return 0; | |
165 } | |
166 } | |
167 | |
168 std::pair<ColumnNormalization, bool> | |
169 SpectrogramLayer::convertToColumnNorm(int value) | |
170 { | |
171 switch (value) { | |
172 default: | |
173 case 0: return { ColumnNormalization::None, false }; | |
174 case 1: return { ColumnNormalization::Max1, false }; | |
175 case 2: return { ColumnNormalization::None, true }; // visible area | |
176 case 3: return { ColumnNormalization::Hybrid, false }; | |
177 } | |
178 } | |
179 | |
180 int | |
181 SpectrogramLayer::convertFromColumnNorm(ColumnNormalization norm, bool visible) | |
182 { | |
183 if (visible) return 2; | |
184 switch (norm) { | |
185 case ColumnNormalization::None: return 0; | |
186 case ColumnNormalization::Max1: return 1; | |
187 case ColumnNormalization::Hybrid: return 3; | |
188 | |
189 case ColumnNormalization::Sum1: | |
190 default: return 0; | |
191 } | |
127 } | 192 } |
128 | 193 |
129 void | 194 void |
130 SpectrogramLayer::setModel(const DenseTimeValueModel *model) | 195 SpectrogramLayer::setModel(const DenseTimeValueModel *model) |
131 { | 196 { |
132 // cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << endl; | 197 // cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << endl; |
133 | 198 |
134 if (model == m_model) return; | 199 if (model == m_model) return; |
135 | 200 |
136 m_model = model; | 201 m_model = model; |
137 invalidateFFTModels(); | 202 |
203 recreateFFTModel(); | |
138 | 204 |
139 if (!m_model || !m_model->isOK()) return; | 205 if (!m_model || !m_model->isOK()) return; |
140 | 206 |
141 connectSignals(m_model); | 207 connectSignals(m_model); |
142 | 208 |
153 PropertyList list; | 219 PropertyList list; |
154 list.push_back("Colour"); | 220 list.push_back("Colour"); |
155 list.push_back("Colour Scale"); | 221 list.push_back("Colour Scale"); |
156 list.push_back("Window Size"); | 222 list.push_back("Window Size"); |
157 list.push_back("Window Increment"); | 223 list.push_back("Window Increment"); |
158 list.push_back("Normalize Columns"); | 224 list.push_back("Normalization"); |
159 list.push_back("Normalize Visible Area"); | |
160 list.push_back("Bin Display"); | 225 list.push_back("Bin Display"); |
161 list.push_back("Threshold"); | 226 list.push_back("Threshold"); |
162 list.push_back("Gain"); | 227 list.push_back("Gain"); |
163 list.push_back("Colour Rotation"); | 228 list.push_back("Colour Rotation"); |
164 // list.push_back("Min Frequency"); | 229 // list.push_back("Min Frequency"); |
165 // list.push_back("Max Frequency"); | 230 // list.push_back("Max Frequency"); |
166 list.push_back("Frequency Scale"); | 231 list.push_back("Frequency Scale"); |
167 //// list.push_back("Zero Padding"); | |
168 return list; | 232 return list; |
169 } | 233 } |
170 | 234 |
171 QString | 235 QString |
172 SpectrogramLayer::getPropertyLabel(const PropertyName &name) const | 236 SpectrogramLayer::getPropertyLabel(const PropertyName &name) const |
173 { | 237 { |
174 if (name == "Colour") return tr("Colour"); | 238 if (name == "Colour") return tr("Colour"); |
175 if (name == "Colour Scale") return tr("Colour Scale"); | 239 if (name == "Colour Scale") return tr("Colour Scale"); |
176 if (name == "Window Size") return tr("Window Size"); | 240 if (name == "Window Size") return tr("Window Size"); |
177 if (name == "Window Increment") return tr("Window Overlap"); | 241 if (name == "Window Increment") return tr("Window Overlap"); |
178 if (name == "Normalize Columns") return tr("Normalize Columns"); | 242 if (name == "Normalization") return tr("Normalization"); |
179 if (name == "Normalize Visible Area") return tr("Normalize Visible Area"); | |
180 if (name == "Bin Display") return tr("Bin Display"); | 243 if (name == "Bin Display") return tr("Bin Display"); |
181 if (name == "Threshold") return tr("Threshold"); | 244 if (name == "Threshold") return tr("Threshold"); |
182 if (name == "Gain") return tr("Gain"); | 245 if (name == "Gain") return tr("Gain"); |
183 if (name == "Colour Rotation") return tr("Colour Rotation"); | 246 if (name == "Colour Rotation") return tr("Colour Rotation"); |
184 if (name == "Min Frequency") return tr("Min Frequency"); | 247 if (name == "Min Frequency") return tr("Min Frequency"); |
185 if (name == "Max Frequency") return tr("Max Frequency"); | 248 if (name == "Max Frequency") return tr("Max Frequency"); |
186 if (name == "Frequency Scale") return tr("Frequency Scale"); | 249 if (name == "Frequency Scale") return tr("Frequency Scale"); |
187 if (name == "Zero Padding") return tr("Smoothing"); | |
188 return ""; | 250 return ""; |
189 } | 251 } |
190 | 252 |
191 QString | 253 QString |
192 SpectrogramLayer::getPropertyIconName(const PropertyName &name) const | 254 SpectrogramLayer::getPropertyIconName(const PropertyName &) const |
193 { | 255 { |
194 if (name == "Normalize Columns") return "normalise-columns"; | |
195 if (name == "Normalize Visible Area") return "normalise"; | |
196 return ""; | 256 return ""; |
197 } | 257 } |
198 | 258 |
199 Layer::PropertyType | 259 Layer::PropertyType |
200 SpectrogramLayer::getPropertyType(const PropertyName &name) const | 260 SpectrogramLayer::getPropertyType(const PropertyName &name) const |
201 { | 261 { |
202 if (name == "Gain") return RangeProperty; | 262 if (name == "Gain") return RangeProperty; |
203 if (name == "Colour Rotation") return RangeProperty; | 263 if (name == "Colour Rotation") return RangeProperty; |
204 if (name == "Normalize Columns") return ToggleProperty; | |
205 if (name == "Normalize Visible Area") return ToggleProperty; | |
206 if (name == "Threshold") return RangeProperty; | 264 if (name == "Threshold") return RangeProperty; |
207 if (name == "Zero Padding") return ToggleProperty; | 265 if (name == "Colour") return ColourMapProperty; |
208 return ValueProperty; | 266 return ValueProperty; |
209 } | 267 } |
210 | 268 |
211 QString | 269 QString |
212 SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const | 270 SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const |
213 { | 271 { |
214 if (name == "Bin Display" || | 272 if (name == "Bin Display" || |
215 name == "Frequency Scale") return tr("Bins"); | 273 name == "Frequency Scale") return tr("Bins"); |
216 if (name == "Window Size" || | 274 if (name == "Window Size" || |
217 name == "Window Increment" || | 275 name == "Window Increment") return tr("Window"); |
218 name == "Zero Padding") return tr("Window"); | |
219 if (name == "Colour" || | 276 if (name == "Colour" || |
220 name == "Threshold" || | 277 name == "Threshold" || |
221 name == "Colour Rotation") return tr("Colour"); | 278 name == "Colour Rotation") return tr("Colour"); |
222 if (name == "Normalize Columns" || | 279 if (name == "Normalization" || |
223 name == "Normalize Visible Area" || | |
224 name == "Gain" || | 280 name == "Gain" || |
225 name == "Colour Scale") return tr("Scale"); | 281 name == "Colour Scale") return tr("Scale"); |
226 return QString(); | 282 return QString(); |
227 } | 283 } |
228 | 284 |
250 if (val < *min) val = *min; | 306 if (val < *min) val = *min; |
251 if (val > *max) val = *max; | 307 if (val > *max) val = *max; |
252 | 308 |
253 } else if (name == "Threshold") { | 309 } else if (name == "Threshold") { |
254 | 310 |
255 *min = -50; | 311 *min = -81; |
256 *max = 0; | 312 *max = -1; |
257 | 313 |
258 *deflt = int(lrint(AudioLevel::multiplier_to_dB(m_initialThreshold))); | 314 *deflt = int(lrint(AudioLevel::multiplier_to_dB(m_initialThreshold))); |
259 if (*deflt < *min) *deflt = *min; | 315 if (*deflt < *min) *deflt = *min; |
260 if (*deflt > *max) *deflt = *max; | 316 if (*deflt > *max) *deflt = *max; |
261 | 317 |
271 | 327 |
272 val = m_colourRotation; | 328 val = m_colourRotation; |
273 | 329 |
274 } else if (name == "Colour Scale") { | 330 } else if (name == "Colour Scale") { |
275 | 331 |
332 // linear, meter, db^2, db, phase | |
276 *min = 0; | 333 *min = 0; |
277 *max = 4; | 334 *max = 4; |
278 *deflt = int(dBColourScale); | 335 *deflt = 2; |
279 | 336 |
280 val = (int)m_colourScale; | 337 val = convertFromColourScale(m_colourScale, m_colourScaleMultiple); |
281 | 338 |
282 } else if (name == "Colour") { | 339 } else if (name == "Colour") { |
283 | 340 |
284 *min = 0; | 341 *min = 0; |
285 *max = ColourMapper::getColourMapCount() - 1; | 342 *max = ColourMapper::getColourMapCount() - 1; |
302 *min = 0; | 359 *min = 0; |
303 *max = 5; | 360 *max = 5; |
304 *deflt = 2; | 361 *deflt = 2; |
305 | 362 |
306 val = m_windowHopLevel; | 363 val = m_windowHopLevel; |
307 | |
308 } else if (name == "Zero Padding") { | |
309 | |
310 *min = 0; | |
311 *max = 1; | |
312 *deflt = 0; | |
313 | |
314 val = m_zeroPadLevel > 0 ? 1 : 0; | |
315 | 364 |
316 } else if (name == "Min Frequency") { | 365 } else if (name == "Min Frequency") { |
317 | 366 |
318 *min = 0; | 367 *min = 0; |
319 *max = 9; | 368 *max = 9; |
353 | 402 |
354 } else if (name == "Frequency Scale") { | 403 } else if (name == "Frequency Scale") { |
355 | 404 |
356 *min = 0; | 405 *min = 0; |
357 *max = 1; | 406 *max = 1; |
358 *deflt = int(LinearFrequencyScale); | 407 *deflt = int(BinScale::Linear); |
359 val = (int)m_frequencyScale; | 408 val = (int)m_binScale; |
360 | 409 |
361 } else if (name == "Bin Display") { | 410 } else if (name == "Bin Display") { |
362 | 411 |
363 *min = 0; | 412 *min = 0; |
364 *max = 2; | 413 *max = 2; |
365 *deflt = int(AllBins); | 414 *deflt = int(BinDisplay::AllBins); |
366 val = (int)m_binDisplay; | 415 val = (int)m_binDisplay; |
367 | 416 |
368 } else if (name == "Normalize Columns") { | 417 } else if (name == "Normalization") { |
369 | 418 |
419 *min = 0; | |
420 *max = 3; | |
370 *deflt = 0; | 421 *deflt = 0; |
371 val = (m_normalizeColumns ? 1 : 0); | 422 |
372 | 423 val = convertFromColumnNorm(m_normalization, m_normalizeVisibleArea); |
373 } else if (name == "Normalize Visible Area") { | |
374 | |
375 *deflt = 0; | |
376 val = (m_normalizeVisibleArea ? 1 : 0); | |
377 | 424 |
378 } else { | 425 } else { |
379 val = Layer::getPropertyRangeAndValue(name, min, max, deflt); | 426 val = Layer::getPropertyRangeAndValue(name, min, max, deflt); |
380 } | 427 } |
381 | 428 |
396 case 1: return tr("Meter"); | 443 case 1: return tr("Meter"); |
397 case 2: return tr("dBV^2"); | 444 case 2: return tr("dBV^2"); |
398 case 3: return tr("dBV"); | 445 case 3: return tr("dBV"); |
399 case 4: return tr("Phase"); | 446 case 4: return tr("Phase"); |
400 } | 447 } |
448 } | |
449 if (name == "Normalization") { | |
450 switch(value) { | |
451 default: | |
452 case 0: return tr("None"); | |
453 case 1: return tr("Col"); | |
454 case 2: return tr("View"); | |
455 case 3: return tr("Hybrid"); | |
456 } | |
457 // return ""; // icon only | |
401 } | 458 } |
402 if (name == "Window Size") { | 459 if (name == "Window Size") { |
403 return QString("%1").arg(32 << value); | 460 return QString("%1").arg(32 << value); |
404 } | 461 } |
405 if (name == "Window Increment") { | 462 if (name == "Window Increment") { |
410 case 2: return tr("50 %"); | 467 case 2: return tr("50 %"); |
411 case 3: return tr("75 %"); | 468 case 3: return tr("75 %"); |
412 case 4: return tr("87.5 %"); | 469 case 4: return tr("87.5 %"); |
413 case 5: return tr("93.75 %"); | 470 case 5: return tr("93.75 %"); |
414 } | 471 } |
415 } | |
416 if (name == "Zero Padding") { | |
417 if (value == 0) return tr("None"); | |
418 return QString("%1x").arg(value + 1); | |
419 } | 472 } |
420 if (name == "Min Frequency") { | 473 if (name == "Min Frequency") { |
421 switch (value) { | 474 switch (value) { |
422 default: | 475 default: |
423 case 0: return tr("No min"); | 476 case 0: return tr("No min"); |
463 } | 516 } |
464 } | 517 } |
465 return tr("<unknown>"); | 518 return tr("<unknown>"); |
466 } | 519 } |
467 | 520 |
521 QString | |
522 SpectrogramLayer::getPropertyValueIconName(const PropertyName &name, | |
523 int value) const | |
524 { | |
525 if (name == "Normalization") { | |
526 switch(value) { | |
527 default: | |
528 case 0: return "normalise-none"; | |
529 case 1: return "normalise-columns"; | |
530 case 2: return "normalise"; | |
531 case 3: return "normalise-hybrid"; | |
532 } | |
533 } | |
534 return ""; | |
535 } | |
536 | |
468 RangeMapper * | 537 RangeMapper * |
469 SpectrogramLayer::getNewPropertyRangeMapper(const PropertyName &name) const | 538 SpectrogramLayer::getNewPropertyRangeMapper(const PropertyName &name) const |
470 { | 539 { |
471 if (name == "Gain") { | 540 if (name == "Gain") { |
472 return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); | 541 return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); |
473 } | 542 } |
474 if (name == "Threshold") { | 543 if (name == "Threshold") { |
475 return new LinearRangeMapper(-50, 0, -50, 0, tr("dB")); | 544 return new LinearRangeMapper(-81, -1, -81, -1, tr("dB"), false, |
545 { { -81, Strings::minus_infinity } }); | |
476 } | 546 } |
477 return 0; | 547 return 0; |
478 } | 548 } |
479 | 549 |
480 void | 550 void |
481 SpectrogramLayer::setProperty(const PropertyName &name, int value) | 551 SpectrogramLayer::setProperty(const PropertyName &name, int value) |
482 { | 552 { |
483 if (name == "Gain") { | 553 if (name == "Gain") { |
484 setGain(float(pow(10, float(value)/20.0))); | 554 setGain(float(pow(10, float(value)/20.0))); |
485 } else if (name == "Threshold") { | 555 } else if (name == "Threshold") { |
486 if (value == -50) setThreshold(0.0); | 556 if (value == -81) setThreshold(0.0); |
487 else setThreshold(float(AudioLevel::dB_to_multiplier(value))); | 557 else setThreshold(float(AudioLevel::dB_to_multiplier(value))); |
488 } else if (name == "Colour Rotation") { | 558 } else if (name == "Colour Rotation") { |
489 setColourRotation(value); | 559 setColourRotation(value); |
490 } else if (name == "Colour") { | 560 } else if (name == "Colour") { |
491 setColourMap(value); | 561 setColourMap(value); |
492 } else if (name == "Window Size") { | 562 } else if (name == "Window Size") { |
493 setWindowSize(32 << value); | 563 setWindowSize(32 << value); |
494 } else if (name == "Window Increment") { | 564 } else if (name == "Window Increment") { |
495 setWindowHopLevel(value); | 565 setWindowHopLevel(value); |
496 } else if (name == "Zero Padding") { | |
497 setZeroPadLevel(value > 0.1 ? 3 : 0); | |
498 } else if (name == "Min Frequency") { | 566 } else if (name == "Min Frequency") { |
499 switch (value) { | 567 switch (value) { |
500 default: | 568 default: |
501 case 0: setMinFrequency(0); break; | 569 case 0: setMinFrequency(0); break; |
502 case 1: setMinFrequency(10); break; | 570 case 1: setMinFrequency(10); break; |
532 if (vs != m_lastEmittedZoomStep) { | 600 if (vs != m_lastEmittedZoomStep) { |
533 emit verticalZoomChanged(); | 601 emit verticalZoomChanged(); |
534 m_lastEmittedZoomStep = vs; | 602 m_lastEmittedZoomStep = vs; |
535 } | 603 } |
536 } else if (name == "Colour Scale") { | 604 } else if (name == "Colour Scale") { |
605 setColourScaleMultiple(1.0); | |
537 switch (value) { | 606 switch (value) { |
538 default: | 607 default: |
539 case 0: setColourScale(LinearColourScale); break; | 608 case 0: setColourScale(ColourScaleType::Linear); break; |
540 case 1: setColourScale(MeterColourScale); break; | 609 case 1: setColourScale(ColourScaleType::Meter); break; |
541 case 2: setColourScale(dBSquaredColourScale); break; | 610 case 2: |
542 case 3: setColourScale(dBColourScale); break; | 611 setColourScale(ColourScaleType::Log); |
543 case 4: setColourScale(PhaseColourScale); break; | 612 setColourScaleMultiple(2.0); |
613 break; | |
614 case 3: setColourScale(ColourScaleType::Log); break; | |
615 case 4: setColourScale(ColourScaleType::Phase); break; | |
544 } | 616 } |
545 } else if (name == "Frequency Scale") { | 617 } else if (name == "Frequency Scale") { |
546 switch (value) { | 618 switch (value) { |
547 default: | 619 default: |
548 case 0: setFrequencyScale(LinearFrequencyScale); break; | 620 case 0: setBinScale(BinScale::Linear); break; |
549 case 1: setFrequencyScale(LogFrequencyScale); break; | 621 case 1: setBinScale(BinScale::Log); break; |
550 } | 622 } |
551 } else if (name == "Bin Display") { | 623 } else if (name == "Bin Display") { |
552 switch (value) { | 624 switch (value) { |
553 default: | 625 default: |
554 case 0: setBinDisplay(AllBins); break; | 626 case 0: setBinDisplay(BinDisplay::AllBins); break; |
555 case 1: setBinDisplay(PeakBins); break; | 627 case 1: setBinDisplay(BinDisplay::PeakBins); break; |
556 case 2: setBinDisplay(PeakFrequencies); break; | 628 case 2: setBinDisplay(BinDisplay::PeakFrequencies); break; |
557 } | 629 } |
558 } else if (name == "Normalize Columns") { | 630 } else if (name == "Normalization") { |
559 setNormalizeColumns(value ? true : false); | 631 auto n = convertToColumnNorm(value); |
560 } else if (name == "Normalize Visible Area") { | 632 setNormalization(n.first); |
561 setNormalizeVisibleArea(value ? true : false); | 633 setNormalizeVisibleArea(n.second); |
562 } | 634 } |
563 } | 635 } |
564 | 636 |
565 void | 637 void |
566 SpectrogramLayer::invalidateImageCaches() | 638 SpectrogramLayer::invalidateRenderers() |
567 { | 639 { |
568 for (ViewImageCache::iterator i = m_imageCaches.begin(); | 640 #ifdef DEBUG_SPECTROGRAM |
569 i != m_imageCaches.end(); ++i) { | 641 cerr << "SpectrogramLayer::invalidateRenderers called" << endl; |
570 i->second.validArea = QRect(); | |
571 } | |
572 } | |
573 | |
574 void | |
575 SpectrogramLayer::invalidateImageCaches(sv_frame_t startFrame, sv_frame_t endFrame) | |
576 { | |
577 for (ViewImageCache::iterator i = m_imageCaches.begin(); | |
578 i != m_imageCaches.end(); ++i) { | |
579 | |
580 //!!! when are views removed from the map? on setLayerDormant? | |
581 const View *v = i->first; | |
582 | |
583 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
584 SVDEBUG << "SpectrogramLayer::invalidateImageCaches(" | |
585 << startFrame << ", " << endFrame << "): view range is " | |
586 << v->getStartFrame() << ", " << v->getEndFrame() | |
587 << endl; | |
588 | |
589 cerr << "Valid area was: " << i->second.validArea.x() << ", " | |
590 << i->second.validArea.y() << " " | |
591 << i->second.validArea.width() << "x" | |
592 << i->second.validArea.height() << endl; | |
593 #endif | 642 #endif |
594 | 643 |
595 if (int(startFrame) > v->getStartFrame()) { | 644 for (ViewRendererMap::iterator i = m_renderers.begin(); |
596 if (startFrame >= v->getEndFrame()) { | 645 i != m_renderers.end(); ++i) { |
597 #ifdef DEBUG_SPECTROGRAM_REPAINT | 646 delete i->second; |
598 cerr << "Modified start frame is off right of view" << endl; | 647 } |
599 #endif | 648 m_renderers.clear(); |
600 return; | |
601 } | |
602 int x = v->getXForFrame(startFrame); | |
603 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
604 SVDEBUG << "clipping from 0 to " << x-1 << endl; | |
605 #endif | |
606 if (x > 1) { | |
607 i->second.validArea &= | |
608 QRect(0, 0, x-1, v->height()); | |
609 } else { | |
610 i->second.validArea = QRect(); | |
611 } | |
612 } else { | |
613 if (int(endFrame) < v->getStartFrame()) { | |
614 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
615 cerr << "Modified end frame is off left of view" << endl; | |
616 #endif | |
617 return; | |
618 } | |
619 int x = v->getXForFrame(endFrame); | |
620 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
621 SVDEBUG << "clipping from " << x+1 << " to " << v->width() | |
622 << endl; | |
623 #endif | |
624 if (x < v->width()) { | |
625 i->second.validArea &= | |
626 QRect(x+1, 0, v->width()-(x+1), v->height()); | |
627 } else { | |
628 i->second.validArea = QRect(); | |
629 } | |
630 } | |
631 | |
632 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
633 cerr << "Valid area is now: " << i->second.validArea.x() << ", " | |
634 << i->second.validArea.y() << " " | |
635 << i->second.validArea.width() << "x" | |
636 << i->second.validArea.height() << endl; | |
637 #endif | |
638 } | |
639 } | 649 } |
640 | 650 |
641 void | 651 void |
642 SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) | 652 SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) |
643 { | 653 { |
646 if (name == "Window Type") { | 656 if (name == "Window Type") { |
647 setWindowType(Preferences::getInstance()->getWindowType()); | 657 setWindowType(Preferences::getInstance()->getWindowType()); |
648 return; | 658 return; |
649 } | 659 } |
650 if (name == "Spectrogram Y Smoothing") { | 660 if (name == "Spectrogram Y Smoothing") { |
651 invalidateImageCaches(); | 661 setWindowSize(m_windowSize); |
662 invalidateRenderers(); | |
652 invalidateMagnitudes(); | 663 invalidateMagnitudes(); |
653 emit layerParametersChanged(); | 664 emit layerParametersChanged(); |
654 } | 665 } |
655 if (name == "Spectrogram X Smoothing") { | 666 if (name == "Spectrogram X Smoothing") { |
656 invalidateImageCaches(); | 667 invalidateRenderers(); |
657 invalidateMagnitudes(); | 668 invalidateMagnitudes(); |
658 emit layerParametersChanged(); | 669 emit layerParametersChanged(); |
659 } | 670 } |
660 if (name == "Tuning Frequency") { | 671 if (name == "Tuning Frequency") { |
661 emit layerParametersChanged(); | 672 emit layerParametersChanged(); |
665 void | 676 void |
666 SpectrogramLayer::setChannel(int ch) | 677 SpectrogramLayer::setChannel(int ch) |
667 { | 678 { |
668 if (m_channel == ch) return; | 679 if (m_channel == ch) return; |
669 | 680 |
670 invalidateImageCaches(); | 681 invalidateRenderers(); |
671 m_channel = ch; | 682 m_channel = ch; |
672 invalidateFFTModels(); | 683 recreateFFTModel(); |
673 | 684 |
674 emit layerParametersChanged(); | 685 emit layerParametersChanged(); |
675 } | 686 } |
676 | 687 |
677 int | 688 int |
678 SpectrogramLayer::getChannel() const | 689 SpectrogramLayer::getChannel() const |
679 { | 690 { |
680 return m_channel; | 691 return m_channel; |
681 } | 692 } |
682 | 693 |
694 int | |
695 SpectrogramLayer::getFFTOversampling() const | |
696 { | |
697 if (m_binDisplay != BinDisplay::AllBins) { | |
698 return 1; | |
699 } | |
700 | |
701 Preferences::SpectrogramSmoothing smoothing = | |
702 Preferences::getInstance()->getSpectrogramSmoothing(); | |
703 | |
704 if (smoothing == Preferences::NoSpectrogramSmoothing || | |
705 smoothing == Preferences::SpectrogramInterpolated) { | |
706 return 1; | |
707 } | |
708 | |
709 return 4; | |
710 } | |
711 | |
712 int | |
713 SpectrogramLayer::getFFTSize() const | |
714 { | |
715 return m_windowSize * getFFTOversampling(); | |
716 } | |
717 | |
683 void | 718 void |
684 SpectrogramLayer::setWindowSize(int ws) | 719 SpectrogramLayer::setWindowSize(int ws) |
685 { | 720 { |
686 if (m_windowSize == ws) return; | 721 if (m_windowSize == ws) return; |
687 | 722 |
688 invalidateImageCaches(); | 723 invalidateRenderers(); |
689 | 724 |
690 m_windowSize = ws; | 725 m_windowSize = ws; |
691 m_fftSize = ws * (m_zeroPadLevel + 1); | 726 |
692 | 727 recreateFFTModel(); |
693 invalidateFFTModels(); | |
694 | 728 |
695 emit layerParametersChanged(); | 729 emit layerParametersChanged(); |
696 } | 730 } |
697 | 731 |
698 int | 732 int |
704 void | 738 void |
705 SpectrogramLayer::setWindowHopLevel(int v) | 739 SpectrogramLayer::setWindowHopLevel(int v) |
706 { | 740 { |
707 if (m_windowHopLevel == v) return; | 741 if (m_windowHopLevel == v) return; |
708 | 742 |
709 invalidateImageCaches(); | 743 invalidateRenderers(); |
710 | 744 |
711 m_windowHopLevel = v; | 745 m_windowHopLevel = v; |
712 | 746 |
713 invalidateFFTModels(); | 747 recreateFFTModel(); |
714 | 748 |
715 emit layerParametersChanged(); | 749 emit layerParametersChanged(); |
716 | |
717 // fillCache(); | |
718 } | 750 } |
719 | 751 |
720 int | 752 int |
721 SpectrogramLayer::getWindowHopLevel() const | 753 SpectrogramLayer::getWindowHopLevel() const |
722 { | 754 { |
723 return m_windowHopLevel; | 755 return m_windowHopLevel; |
724 } | 756 } |
725 | 757 |
726 void | 758 void |
727 SpectrogramLayer::setZeroPadLevel(int v) | |
728 { | |
729 if (m_zeroPadLevel == v) return; | |
730 | |
731 invalidateImageCaches(); | |
732 | |
733 m_zeroPadLevel = v; | |
734 m_fftSize = m_windowSize * (v + 1); | |
735 | |
736 invalidateFFTModels(); | |
737 | |
738 emit layerParametersChanged(); | |
739 } | |
740 | |
741 int | |
742 SpectrogramLayer::getZeroPadLevel() const | |
743 { | |
744 return m_zeroPadLevel; | |
745 } | |
746 | |
747 void | |
748 SpectrogramLayer::setWindowType(WindowType w) | 759 SpectrogramLayer::setWindowType(WindowType w) |
749 { | 760 { |
750 if (m_windowType == w) return; | 761 if (m_windowType == w) return; |
751 | 762 |
752 invalidateImageCaches(); | 763 invalidateRenderers(); |
753 | 764 |
754 m_windowType = w; | 765 m_windowType = w; |
755 | 766 |
756 invalidateFFTModels(); | 767 recreateFFTModel(); |
757 | 768 |
758 emit layerParametersChanged(); | 769 emit layerParametersChanged(); |
759 } | 770 } |
760 | 771 |
761 WindowType | 772 WindowType |
770 // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " | 781 // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " |
771 // << m_gain << ")" << endl; | 782 // << m_gain << ")" << endl; |
772 | 783 |
773 if (m_gain == gain) return; | 784 if (m_gain == gain) return; |
774 | 785 |
775 invalidateImageCaches(); | 786 invalidateRenderers(); |
776 | 787 |
777 m_gain = gain; | 788 m_gain = gain; |
778 | 789 |
779 emit layerParametersChanged(); | 790 emit layerParametersChanged(); |
780 } | 791 } |
788 void | 799 void |
789 SpectrogramLayer::setThreshold(float threshold) | 800 SpectrogramLayer::setThreshold(float threshold) |
790 { | 801 { |
791 if (m_threshold == threshold) return; | 802 if (m_threshold == threshold) return; |
792 | 803 |
793 invalidateImageCaches(); | 804 invalidateRenderers(); |
794 | 805 |
795 m_threshold = threshold; | 806 m_threshold = threshold; |
796 | 807 |
797 emit layerParametersChanged(); | 808 emit layerParametersChanged(); |
798 } | 809 } |
808 { | 819 { |
809 if (m_minFrequency == mf) return; | 820 if (m_minFrequency == mf) return; |
810 | 821 |
811 // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; | 822 // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; |
812 | 823 |
813 invalidateImageCaches(); | 824 invalidateRenderers(); |
814 invalidateMagnitudes(); | 825 invalidateMagnitudes(); |
815 | 826 |
816 m_minFrequency = mf; | 827 m_minFrequency = mf; |
817 | 828 |
818 emit layerParametersChanged(); | 829 emit layerParametersChanged(); |
829 { | 840 { |
830 if (m_maxFrequency == mf) return; | 841 if (m_maxFrequency == mf) return; |
831 | 842 |
832 // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; | 843 // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; |
833 | 844 |
834 invalidateImageCaches(); | 845 invalidateRenderers(); |
835 invalidateMagnitudes(); | 846 invalidateMagnitudes(); |
836 | 847 |
837 m_maxFrequency = mf; | 848 m_maxFrequency = mf; |
838 | 849 |
839 emit layerParametersChanged(); | 850 emit layerParametersChanged(); |
846 } | 857 } |
847 | 858 |
848 void | 859 void |
849 SpectrogramLayer::setColourRotation(int r) | 860 SpectrogramLayer::setColourRotation(int r) |
850 { | 861 { |
851 invalidateImageCaches(); | |
852 | |
853 if (r < 0) r = 0; | 862 if (r < 0) r = 0; |
854 if (r > 256) r = 256; | 863 if (r > 256) r = 256; |
855 int distance = r - m_colourRotation; | 864 int distance = r - m_colourRotation; |
856 | 865 |
857 if (distance != 0) { | 866 if (distance != 0) { |
858 rotatePalette(-distance); | |
859 m_colourRotation = r; | 867 m_colourRotation = r; |
860 } | 868 } |
869 | |
870 // Initially the idea with colour rotation was that we would just | |
871 // rotate the palette of an already-generated cache. That's not | |
872 // really practical now that cacheing is handled in a separate | |
873 // class in which the main cache no longer has a palette. | |
874 invalidateRenderers(); | |
861 | 875 |
862 emit layerParametersChanged(); | 876 emit layerParametersChanged(); |
863 } | 877 } |
864 | 878 |
865 void | 879 void |
866 SpectrogramLayer::setColourScale(ColourScale colourScale) | 880 SpectrogramLayer::setColourScale(ColourScaleType colourScale) |
867 { | 881 { |
868 if (m_colourScale == colourScale) return; | 882 if (m_colourScale == colourScale) return; |
869 | 883 |
870 invalidateImageCaches(); | 884 invalidateRenderers(); |
871 | 885 |
872 m_colourScale = colourScale; | 886 m_colourScale = colourScale; |
873 | 887 |
874 emit layerParametersChanged(); | 888 emit layerParametersChanged(); |
875 } | 889 } |
876 | 890 |
877 SpectrogramLayer::ColourScale | 891 ColourScaleType |
878 SpectrogramLayer::getColourScale() const | 892 SpectrogramLayer::getColourScale() const |
879 { | 893 { |
880 return m_colourScale; | 894 return m_colourScale; |
881 } | 895 } |
882 | 896 |
883 void | 897 void |
898 SpectrogramLayer::setColourScaleMultiple(double multiple) | |
899 { | |
900 if (m_colourScaleMultiple == multiple) return; | |
901 | |
902 invalidateRenderers(); | |
903 | |
904 m_colourScaleMultiple = multiple; | |
905 | |
906 emit layerParametersChanged(); | |
907 } | |
908 | |
909 double | |
910 SpectrogramLayer::getColourScaleMultiple() const | |
911 { | |
912 return m_colourScaleMultiple; | |
913 } | |
914 | |
915 void | |
884 SpectrogramLayer::setColourMap(int map) | 916 SpectrogramLayer::setColourMap(int map) |
885 { | 917 { |
886 if (m_colourMap == map) return; | 918 if (m_colourMap == map) return; |
887 | 919 |
888 invalidateImageCaches(); | 920 invalidateRenderers(); |
889 | 921 |
890 m_colourMap = map; | 922 m_colourMap = map; |
891 initialisePalette(); | |
892 | 923 |
893 emit layerParametersChanged(); | 924 emit layerParametersChanged(); |
894 } | 925 } |
895 | 926 |
896 int | 927 int |
898 { | 929 { |
899 return m_colourMap; | 930 return m_colourMap; |
900 } | 931 } |
901 | 932 |
902 void | 933 void |
903 SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale) | 934 SpectrogramLayer::setBinScale(BinScale binScale) |
904 { | 935 { |
905 if (m_frequencyScale == frequencyScale) return; | 936 if (m_binScale == binScale) return; |
906 | 937 |
907 invalidateImageCaches(); | 938 invalidateRenderers(); |
908 m_frequencyScale = frequencyScale; | 939 m_binScale = binScale; |
909 | 940 |
910 emit layerParametersChanged(); | 941 emit layerParametersChanged(); |
911 } | 942 } |
912 | 943 |
913 SpectrogramLayer::FrequencyScale | 944 BinScale |
914 SpectrogramLayer::getFrequencyScale() const | 945 SpectrogramLayer::getBinScale() const |
915 { | 946 { |
916 return m_frequencyScale; | 947 return m_binScale; |
917 } | 948 } |
918 | 949 |
919 void | 950 void |
920 SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) | 951 SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) |
921 { | 952 { |
922 if (m_binDisplay == binDisplay) return; | 953 if (m_binDisplay == binDisplay) return; |
923 | 954 |
924 invalidateImageCaches(); | 955 invalidateRenderers(); |
925 m_binDisplay = binDisplay; | 956 m_binDisplay = binDisplay; |
926 | 957 |
927 emit layerParametersChanged(); | 958 emit layerParametersChanged(); |
928 } | 959 } |
929 | 960 |
930 SpectrogramLayer::BinDisplay | 961 BinDisplay |
931 SpectrogramLayer::getBinDisplay() const | 962 SpectrogramLayer::getBinDisplay() const |
932 { | 963 { |
933 return m_binDisplay; | 964 return m_binDisplay; |
934 } | 965 } |
935 | 966 |
936 void | 967 void |
937 SpectrogramLayer::setNormalizeColumns(bool n) | 968 SpectrogramLayer::setNormalization(ColumnNormalization n) |
938 { | 969 { |
939 if (m_normalizeColumns == n) return; | 970 if (m_normalization == n) return; |
940 | 971 |
941 invalidateImageCaches(); | 972 invalidateRenderers(); |
942 invalidateMagnitudes(); | 973 invalidateMagnitudes(); |
943 m_normalizeColumns = n; | 974 m_normalization = n; |
944 | 975 |
945 emit layerParametersChanged(); | 976 emit layerParametersChanged(); |
946 } | 977 } |
947 | 978 |
948 bool | 979 ColumnNormalization |
949 SpectrogramLayer::getNormalizeColumns() const | 980 SpectrogramLayer::getNormalization() const |
950 { | 981 { |
951 return m_normalizeColumns; | 982 return m_normalization; |
952 } | |
953 | |
954 void | |
955 SpectrogramLayer::setNormalizeHybrid(bool n) | |
956 { | |
957 if (m_normalizeHybrid == n) return; | |
958 | |
959 invalidateImageCaches(); | |
960 invalidateMagnitudes(); | |
961 m_normalizeHybrid = n; | |
962 | |
963 emit layerParametersChanged(); | |
964 } | |
965 | |
966 bool | |
967 SpectrogramLayer::getNormalizeHybrid() const | |
968 { | |
969 return m_normalizeHybrid; | |
970 } | 983 } |
971 | 984 |
972 void | 985 void |
973 SpectrogramLayer::setNormalizeVisibleArea(bool n) | 986 SpectrogramLayer::setNormalizeVisibleArea(bool n) |
974 { | 987 { |
975 SVDEBUG << "SpectrogramLayer::setNormalizeVisibleArea(" << n | |
976 << ") (from " << m_normalizeVisibleArea << ")" << endl; | |
977 | |
978 if (m_normalizeVisibleArea == n) return; | 988 if (m_normalizeVisibleArea == n) return; |
979 | 989 |
980 invalidateImageCaches(); | 990 invalidateRenderers(); |
981 invalidateMagnitudes(); | 991 invalidateMagnitudes(); |
982 m_normalizeVisibleArea = n; | 992 m_normalizeVisibleArea = n; |
983 | 993 |
984 emit layerParametersChanged(); | 994 emit layerParametersChanged(); |
985 } | 995 } |
986 | 996 |
987 bool | 997 bool |
988 SpectrogramLayer::getNormalizeVisibleArea() const | 998 SpectrogramLayer::getNormalizeVisibleArea() const |
989 { | 999 { |
990 return m_normalizeVisibleArea; | 1000 return m_normalizeVisibleArea; |
991 } | 1001 } |
992 | 1002 |
993 void | 1003 void |
994 SpectrogramLayer::setLayerDormant(const View *v, bool dormant) | 1004 SpectrogramLayer::setLayerDormant(const LayerGeometryProvider *v, bool dormant) |
995 { | 1005 { |
996 if (dormant) { | 1006 if (dormant) { |
997 | 1007 |
998 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1008 #ifdef DEBUG_SPECTROGRAM_REPAINT |
999 SVDEBUG << "SpectrogramLayer::setLayerDormant(" << dormant << ")" | 1009 cerr << "SpectrogramLayer::setLayerDormant(" << dormant << ")" |
1000 << endl; | 1010 << endl; |
1001 #endif | 1011 #endif |
1002 | 1012 |
1003 if (isLayerDormant(v)) { | 1013 if (isLayerDormant(v)) { |
1004 return; | 1014 return; |
1005 } | 1015 } |
1006 | 1016 |
1007 Layer::setLayerDormant(v, true); | 1017 Layer::setLayerDormant(v, true); |
1008 | 1018 |
1009 invalidateImageCaches(); | 1019 invalidateRenderers(); |
1010 m_imageCaches.erase(v); | |
1011 | |
1012 if (m_fftModels.find(v) != m_fftModels.end()) { | |
1013 | |
1014 if (m_sliceableModel == m_fftModels[v].first) { | |
1015 bool replaced = false; | |
1016 for (ViewFFTMap::iterator i = m_fftModels.begin(); | |
1017 i != m_fftModels.end(); ++i) { | |
1018 if (i->second.first != m_sliceableModel) { | |
1019 emit sliceableModelReplaced(m_sliceableModel, i->second.first); | |
1020 replaced = true; | |
1021 break; | |
1022 } | |
1023 } | |
1024 if (!replaced) emit sliceableModelReplaced(m_sliceableModel, 0); | |
1025 } | |
1026 | |
1027 delete m_fftModels[v].first; | |
1028 m_fftModels.erase(v); | |
1029 | |
1030 delete m_peakCaches[v]; | |
1031 m_peakCaches.erase(v); | |
1032 } | |
1033 | 1020 |
1034 } else { | 1021 } else { |
1035 | 1022 |
1036 Layer::setLayerDormant(v, false); | 1023 Layer::setLayerDormant(v, false); |
1037 } | 1024 } |
1039 | 1026 |
1040 void | 1027 void |
1041 SpectrogramLayer::cacheInvalid() | 1028 SpectrogramLayer::cacheInvalid() |
1042 { | 1029 { |
1043 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1030 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1044 SVDEBUG << "SpectrogramLayer::cacheInvalid()" << endl; | 1031 cerr << "SpectrogramLayer::cacheInvalid()" << endl; |
1045 #endif | 1032 #endif |
1046 | 1033 |
1047 invalidateImageCaches(); | 1034 invalidateRenderers(); |
1048 invalidateMagnitudes(); | 1035 invalidateMagnitudes(); |
1049 } | 1036 } |
1050 | 1037 |
1051 void | 1038 void |
1052 SpectrogramLayer::cacheInvalid(sv_frame_t from, sv_frame_t to) | 1039 SpectrogramLayer::cacheInvalid( |
1053 { | |
1054 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1040 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1055 SVDEBUG << "SpectrogramLayer::cacheInvalid(" << from << ", " << to << ")" << endl; | 1041 sv_frame_t from, sv_frame_t to |
1042 #else | |
1043 sv_frame_t , sv_frame_t | |
1056 #endif | 1044 #endif |
1057 | 1045 ) |
1058 invalidateImageCaches(from, to); | 1046 { |
1047 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1048 cerr << "SpectrogramLayer::cacheInvalid(" << from << ", " << to << ")" << endl; | |
1049 #endif | |
1050 | |
1051 // We used to call invalidateMagnitudes(from, to) to invalidate | |
1052 // only those caches whose views contained some of the (from, to) | |
1053 // range. That's the right thing to do; it has been lost in | |
1054 // pulling out the image cache code, but it might not matter very | |
1055 // much, since the underlying models for spectrogram layers don't | |
1056 // change very often. Let's see. | |
1057 invalidateRenderers(); | |
1059 invalidateMagnitudes(); | 1058 invalidateMagnitudes(); |
1060 } | |
1061 | |
1062 void | |
1063 SpectrogramLayer::fillTimerTimedOut() | |
1064 { | |
1065 if (!m_model) return; | |
1066 | |
1067 bool allDone = true; | |
1068 | |
1069 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1070 SVDEBUG << "SpectrogramLayer::fillTimerTimedOut: have " << m_fftModels.size() << " FFT models associated with views" << endl; | |
1071 #endif | |
1072 | |
1073 for (ViewFFTMap::iterator i = m_fftModels.begin(); | |
1074 i != m_fftModels.end(); ++i) { | |
1075 | |
1076 const FFTModel *model = i->second.first; | |
1077 sv_frame_t lastFill = i->second.second; | |
1078 | |
1079 if (model) { | |
1080 | |
1081 sv_frame_t fill = model->getFillExtent(); | |
1082 | |
1083 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1084 SVDEBUG << "SpectrogramLayer::fillTimerTimedOut: extent for " << model << ": " << fill << ", last " << lastFill << ", total " << m_model->getEndFrame() << endl; | |
1085 #endif | |
1086 | |
1087 if (fill >= lastFill) { | |
1088 if (fill >= m_model->getEndFrame() && lastFill > 0) { | |
1089 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1090 cerr << "complete!" << endl; | |
1091 #endif | |
1092 invalidateImageCaches(); | |
1093 i->second.second = -1; | |
1094 emit modelChanged(); | |
1095 | |
1096 } else if (fill > lastFill) { | |
1097 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1098 cerr << "SpectrogramLayer: emitting modelChanged(" | |
1099 << lastFill << "," << fill << ")" << endl; | |
1100 #endif | |
1101 invalidateImageCaches(lastFill, fill); | |
1102 i->second.second = fill; | |
1103 emit modelChangedWithin(lastFill, fill); | |
1104 } | |
1105 } else { | |
1106 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1107 cerr << "SpectrogramLayer: going backwards, emitting modelChanged(" | |
1108 << m_model->getStartFrame() << "," << m_model->getEndFrame() << ")" << endl; | |
1109 #endif | |
1110 invalidateImageCaches(); | |
1111 i->second.second = fill; | |
1112 emit modelChangedWithin(m_model->getStartFrame(), m_model->getEndFrame()); | |
1113 } | |
1114 | |
1115 if (i->second.second >= 0) { | |
1116 allDone = false; | |
1117 } | |
1118 } | |
1119 } | |
1120 | |
1121 if (allDone) { | |
1122 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1123 cerr << "SpectrogramLayer: all complete!" << endl; | |
1124 #endif | |
1125 delete m_updateTimer; | |
1126 m_updateTimer = 0; | |
1127 } | |
1128 } | 1059 } |
1129 | 1060 |
1130 bool | 1061 bool |
1131 SpectrogramLayer::hasLightBackground() const | 1062 SpectrogramLayer::hasLightBackground() const |
1132 { | 1063 { |
1133 return ColourMapper(m_colourMap, 1.f, 255.f).hasLightBackground(); | 1064 return ColourMapper(m_colourMap, 1.f, 255.f).hasLightBackground(); |
1134 } | 1065 } |
1135 | 1066 |
1136 void | |
1137 SpectrogramLayer::initialisePalette() | |
1138 { | |
1139 int formerRotation = m_colourRotation; | |
1140 | |
1141 if (m_colourMap == (int)ColourMapper::BlackOnWhite) { | |
1142 m_palette.setColour(NO_VALUE, Qt::white); | |
1143 } else { | |
1144 m_palette.setColour(NO_VALUE, Qt::black); | |
1145 } | |
1146 | |
1147 ColourMapper mapper(m_colourMap, 1.f, 255.f); | |
1148 | |
1149 for (int pixel = 1; pixel < 256; ++pixel) { | |
1150 m_palette.setColour((unsigned char)pixel, mapper.map(pixel)); | |
1151 } | |
1152 | |
1153 m_crosshairColour = mapper.getContrastingColour(); | |
1154 | |
1155 m_colourRotation = 0; | |
1156 rotatePalette(m_colourRotation - formerRotation); | |
1157 m_colourRotation = formerRotation; | |
1158 | |
1159 m_drawBuffer = QImage(); | |
1160 } | |
1161 | |
1162 void | |
1163 SpectrogramLayer::rotatePalette(int distance) | |
1164 { | |
1165 QColor newPixels[256]; | |
1166 | |
1167 newPixels[NO_VALUE] = m_palette.getColour(NO_VALUE); | |
1168 | |
1169 for (int pixel = 1; pixel < 256; ++pixel) { | |
1170 int target = pixel + distance; | |
1171 while (target < 1) target += 255; | |
1172 while (target > 255) target -= 255; | |
1173 newPixels[target] = m_palette.getColour((unsigned char)pixel); | |
1174 } | |
1175 | |
1176 for (int pixel = 0; pixel < 256; ++pixel) { | |
1177 m_palette.setColour((unsigned char)pixel, newPixels[pixel]); | |
1178 } | |
1179 | |
1180 m_drawBuffer = QImage(); | |
1181 } | |
1182 | |
1183 unsigned char | |
1184 SpectrogramLayer::getDisplayValue(View *v, double input) const | |
1185 { | |
1186 int value; | |
1187 | |
1188 double min = 0.0; | |
1189 double max = 1.0; | |
1190 | |
1191 if (m_normalizeVisibleArea) { | |
1192 min = m_viewMags[v].getMin(); | |
1193 max = m_viewMags[v].getMax(); | |
1194 } else if (!m_normalizeColumns) { | |
1195 if (m_colourScale == LinearColourScale //|| | |
1196 // m_colourScale == MeterColourScale) { | |
1197 ) { | |
1198 max = 0.1; | |
1199 } | |
1200 } | |
1201 | |
1202 double thresh = -80.0; | |
1203 | |
1204 if (max == 0.0) max = 1.0; | |
1205 if (max == min) min = max - 0.0001; | |
1206 | |
1207 switch (m_colourScale) { | |
1208 | |
1209 default: | |
1210 case LinearColourScale: | |
1211 value = int(((input - min) / (max - min)) * 255.0) + 1; | |
1212 break; | |
1213 | |
1214 case MeterColourScale: | |
1215 value = AudioLevel::multiplier_to_preview | |
1216 ((input - min) / (max - min), 254) + 1; | |
1217 break; | |
1218 | |
1219 case dBSquaredColourScale: | |
1220 input = ((input - min) * (input - min)) / ((max - min) * (max - min)); | |
1221 if (input > 0.0) { | |
1222 input = 10.0 * log10(input); | |
1223 } else { | |
1224 input = thresh; | |
1225 } | |
1226 if (min > 0.0) { | |
1227 thresh = 10.0 * log10(min * min); | |
1228 if (thresh < -80.0) thresh = -80.0; | |
1229 } | |
1230 input = (input - thresh) / (-thresh); | |
1231 if (input < 0.0) input = 0.0; | |
1232 if (input > 1.0) input = 1.0; | |
1233 value = int(input * 255.0) + 1; | |
1234 break; | |
1235 | |
1236 case dBColourScale: | |
1237 //!!! experiment with normalizing the visible area this way. | |
1238 //In any case, we need to have some indication of what the dB | |
1239 //scale is relative to. | |
1240 input = (input - min) / (max - min); | |
1241 if (input > 0.0) { | |
1242 input = 10.0 * log10(input); | |
1243 } else { | |
1244 input = thresh; | |
1245 } | |
1246 if (min > 0.0) { | |
1247 thresh = 10.0 * log10(min); | |
1248 if (thresh < -80.0) thresh = -80.0; | |
1249 } | |
1250 input = (input - thresh) / (-thresh); | |
1251 if (input < 0.0) input = 0.0; | |
1252 if (input > 1.0) input = 1.0; | |
1253 value = int(input * 255.0) + 1; | |
1254 break; | |
1255 | |
1256 case PhaseColourScale: | |
1257 value = int((input * 127.0 / M_PI) + 128); | |
1258 break; | |
1259 } | |
1260 | |
1261 if (value > UCHAR_MAX) value = UCHAR_MAX; | |
1262 if (value < 0) value = 0; | |
1263 return (unsigned char)value; | |
1264 } | |
1265 | |
1266 double | 1067 double |
1267 SpectrogramLayer::getEffectiveMinFrequency() const | 1068 SpectrogramLayer::getEffectiveMinFrequency() const |
1268 { | 1069 { |
1269 sv_samplerate_t sr = m_model->getSampleRate(); | 1070 sv_samplerate_t sr = m_model->getSampleRate(); |
1270 double minf = double(sr) / m_fftSize; | 1071 double minf = double(sr) / getFFTSize(); |
1271 | 1072 |
1272 if (m_minFrequency > 0.0) { | 1073 if (m_minFrequency > 0.0) { |
1273 int minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.01); | 1074 int minbin = int((double(m_minFrequency) * getFFTSize()) / sr + 0.01); |
1274 if (minbin < 1) minbin = 1; | 1075 if (minbin < 1) minbin = 1; |
1275 minf = minbin * sr / m_fftSize; | 1076 minf = minbin * sr / getFFTSize(); |
1276 } | 1077 } |
1277 | 1078 |
1278 return minf; | 1079 return minf; |
1279 } | 1080 } |
1280 | 1081 |
1283 { | 1084 { |
1284 sv_samplerate_t sr = m_model->getSampleRate(); | 1085 sv_samplerate_t sr = m_model->getSampleRate(); |
1285 double maxf = double(sr) / 2; | 1086 double maxf = double(sr) / 2; |
1286 | 1087 |
1287 if (m_maxFrequency > 0.0) { | 1088 if (m_maxFrequency > 0.0) { |
1288 int maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | 1089 int maxbin = int((double(m_maxFrequency) * getFFTSize()) / sr + 0.1); |
1289 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | 1090 if (maxbin > getFFTSize() / 2) maxbin = getFFTSize() / 2; |
1290 maxf = maxbin * sr / m_fftSize; | 1091 maxf = maxbin * sr / getFFTSize(); |
1291 } | 1092 } |
1292 | 1093 |
1293 return maxf; | 1094 return maxf; |
1294 } | 1095 } |
1295 | 1096 |
1296 bool | 1097 bool |
1297 SpectrogramLayer::getYBinRange(View *v, int y, double &q0, double &q1) const | 1098 SpectrogramLayer::getYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const |
1298 { | 1099 { |
1299 Profiler profiler("SpectrogramLayer::getYBinRange"); | 1100 Profiler profiler("SpectrogramLayer::getYBinRange"); |
1300 | 1101 int h = v->getPaintHeight(); |
1301 int h = v->height(); | |
1302 if (y < 0 || y >= h) return false; | 1102 if (y < 0 || y >= h) return false; |
1303 | 1103 q0 = getBinForY(v, y); |
1104 q1 = getBinForY(v, y-1); | |
1105 return true; | |
1106 } | |
1107 | |
1108 double | |
1109 SpectrogramLayer::getYForBin(const LayerGeometryProvider *v, double bin) const | |
1110 { | |
1111 double minf = getEffectiveMinFrequency(); | |
1112 double maxf = getEffectiveMaxFrequency(); | |
1113 bool logarithmic = (m_binScale == BinScale::Log); | |
1114 sv_samplerate_t sr = m_model->getSampleRate(); | |
1115 | |
1116 double freq = (bin * sr) / getFFTSize(); | |
1117 | |
1118 double y = v->getYForFrequency(freq, minf, maxf, logarithmic); | |
1119 | |
1120 return y; | |
1121 } | |
1122 | |
1123 double | |
1124 SpectrogramLayer::getBinForY(const LayerGeometryProvider *v, double y) const | |
1125 { | |
1304 sv_samplerate_t sr = m_model->getSampleRate(); | 1126 sv_samplerate_t sr = m_model->getSampleRate(); |
1305 double minf = getEffectiveMinFrequency(); | 1127 double minf = getEffectiveMinFrequency(); |
1306 double maxf = getEffectiveMaxFrequency(); | 1128 double maxf = getEffectiveMaxFrequency(); |
1307 | 1129 |
1308 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | 1130 bool logarithmic = (m_binScale == BinScale::Log); |
1309 | 1131 |
1310 q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); | 1132 double freq = v->getFrequencyForY(y, minf, maxf, logarithmic); |
1311 q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); | 1133 |
1312 | 1134 // Now map on to ("proportion of") actual bins |
1313 // Now map these on to ("proportions of") actual bins, using raw | 1135 double bin = (freq * getFFTSize()) / sr; |
1314 // FFT size (unsmoothed) | 1136 |
1315 | 1137 return bin; |
1316 q0 = (q0 * m_fftSize) / sr; | |
1317 q1 = (q1 * m_fftSize) / sr; | |
1318 | |
1319 return true; | |
1320 } | 1138 } |
1321 | 1139 |
1322 bool | 1140 bool |
1323 SpectrogramLayer::getSmoothedYBinRange(View *v, int y, double &q0, double &q1) const | 1141 SpectrogramLayer::getXBinRange(LayerGeometryProvider *v, int x, double &s0, double &s1) const |
1324 { | |
1325 Profiler profiler("SpectrogramLayer::getSmoothedYBinRange"); | |
1326 | |
1327 int h = v->height(); | |
1328 if (y < 0 || y >= h) return false; | |
1329 | |
1330 sv_samplerate_t sr = m_model->getSampleRate(); | |
1331 double minf = getEffectiveMinFrequency(); | |
1332 double maxf = getEffectiveMaxFrequency(); | |
1333 | |
1334 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | |
1335 | |
1336 q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); | |
1337 q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); | |
1338 | |
1339 // Now map these on to ("proportions of") actual bins, using raw | |
1340 // FFT size (unsmoothed) | |
1341 | |
1342 q0 = (q0 * getFFTSize(v)) / sr; | |
1343 q1 = (q1 * getFFTSize(v)) / sr; | |
1344 | |
1345 return true; | |
1346 } | |
1347 | |
1348 bool | |
1349 SpectrogramLayer::getXBinRange(View *v, int x, double &s0, double &s1) const | |
1350 { | 1142 { |
1351 sv_frame_t modelStart = m_model->getStartFrame(); | 1143 sv_frame_t modelStart = m_model->getStartFrame(); |
1352 sv_frame_t modelEnd = m_model->getEndFrame(); | 1144 sv_frame_t modelEnd = m_model->getEndFrame(); |
1353 | 1145 |
1354 // Each pixel column covers an exact range of sample frames: | 1146 // Each pixel column covers an exact range of sample frames: |
1368 | 1160 |
1369 return true; | 1161 return true; |
1370 } | 1162 } |
1371 | 1163 |
1372 bool | 1164 bool |
1373 SpectrogramLayer::getXBinSourceRange(View *v, int x, RealTime &min, RealTime &max) const | 1165 SpectrogramLayer::getXBinSourceRange(LayerGeometryProvider *v, int x, RealTime &min, RealTime &max) const |
1374 { | 1166 { |
1375 double s0 = 0, s1 = 0; | 1167 double s0 = 0, s1 = 0; |
1376 if (!getXBinRange(v, x, s0, s1)) return false; | 1168 if (!getXBinRange(v, x, s0, s1)) return false; |
1377 | 1169 |
1378 int s0i = int(s0 + 0.001); | 1170 int s0i = int(s0 + 0.001); |
1387 max = RealTime::frame2RealTime(w1, m_model->getSampleRate()); | 1179 max = RealTime::frame2RealTime(w1, m_model->getSampleRate()); |
1388 return true; | 1180 return true; |
1389 } | 1181 } |
1390 | 1182 |
1391 bool | 1183 bool |
1392 SpectrogramLayer::getYBinSourceRange(View *v, int y, double &freqMin, double &freqMax) | 1184 SpectrogramLayer::getYBinSourceRange(LayerGeometryProvider *v, int y, double &freqMin, double &freqMax) |
1393 const | 1185 const |
1394 { | 1186 { |
1395 double q0 = 0, q1 = 0; | 1187 double q0 = 0, q1 = 0; |
1396 if (!getYBinRange(v, y, q0, q1)) return false; | 1188 if (!getYBinRange(v, y, q0, q1)) return false; |
1397 | 1189 |
1399 int q1i = int(q1); | 1191 int q1i = int(q1); |
1400 | 1192 |
1401 sv_samplerate_t sr = m_model->getSampleRate(); | 1193 sv_samplerate_t sr = m_model->getSampleRate(); |
1402 | 1194 |
1403 for (int q = q0i; q <= q1i; ++q) { | 1195 for (int q = q0i; q <= q1i; ++q) { |
1404 if (q == q0i) freqMin = (sr * q) / m_fftSize; | 1196 if (q == q0i) freqMin = (sr * q) / getFFTSize(); |
1405 if (q == q1i) freqMax = (sr * (q+1)) / m_fftSize; | 1197 if (q == q1i) freqMax = (sr * (q+1)) / getFFTSize(); |
1406 } | 1198 } |
1407 return true; | 1199 return true; |
1408 } | 1200 } |
1409 | 1201 |
1410 bool | 1202 bool |
1411 SpectrogramLayer::getAdjustedYBinSourceRange(View *v, int x, int y, | 1203 SpectrogramLayer::getAdjustedYBinSourceRange(LayerGeometryProvider *v, int x, int y, |
1412 double &freqMin, double &freqMax, | 1204 double &freqMin, double &freqMax, |
1413 double &adjFreqMin, double &adjFreqMax) | 1205 double &adjFreqMin, double &adjFreqMax) |
1414 const | 1206 const |
1415 { | 1207 { |
1416 if (!m_model || !m_model->isOK() || !m_model->isReady()) { | 1208 if (!m_model || !m_model->isOK() || !m_model->isReady()) { |
1417 return false; | 1209 return false; |
1418 } | 1210 } |
1419 | 1211 |
1420 FFTModel *fft = getFFTModel(v); | 1212 FFTModel *fft = getFFTModel(); |
1421 if (!fft) return false; | 1213 if (!fft) return false; |
1422 | 1214 |
1423 double s0 = 0, s1 = 0; | 1215 double s0 = 0, s1 = 0; |
1424 if (!getXBinRange(v, x, s0, s1)) return false; | 1216 if (!getXBinRange(v, x, s0, s1)) return false; |
1425 | 1217 |
1434 | 1226 |
1435 sv_samplerate_t sr = m_model->getSampleRate(); | 1227 sv_samplerate_t sr = m_model->getSampleRate(); |
1436 | 1228 |
1437 bool haveAdj = false; | 1229 bool haveAdj = false; |
1438 | 1230 |
1439 bool peaksOnly = (m_binDisplay == PeakBins || | 1231 bool peaksOnly = (m_binDisplay == BinDisplay::PeakBins || |
1440 m_binDisplay == PeakFrequencies); | 1232 m_binDisplay == BinDisplay::PeakFrequencies); |
1441 | 1233 |
1442 for (int q = q0i; q <= q1i; ++q) { | 1234 for (int q = q0i; q <= q1i; ++q) { |
1443 | 1235 |
1444 for (int s = s0i; s <= s1i; ++s) { | 1236 for (int s = s0i; s <= s1i; ++s) { |
1445 | |
1446 if (!fft->isColumnAvailable(s)) continue; | |
1447 | 1237 |
1448 double binfreq = (double(sr) * q) / m_windowSize; | 1238 double binfreq = (double(sr) * q) / m_windowSize; |
1449 if (q == q0i) freqMin = binfreq; | 1239 if (q == q0i) freqMin = binfreq; |
1450 if (q == q1i) freqMax = binfreq; | 1240 if (q == q1i) freqMax = binfreq; |
1451 | 1241 |
1452 if (peaksOnly && !fft->isLocalPeak(s, q)) continue; | 1242 if (peaksOnly && !fft->isLocalPeak(s, q)) continue; |
1453 | 1243 |
1454 if (!fft->isOverThreshold(s, q, float(m_threshold * double(m_fftSize)/2.0))) continue; | 1244 if (!fft->isOverThreshold |
1245 (s, q, float(m_threshold * double(getFFTSize())/2.0))) { | |
1246 continue; | |
1247 } | |
1455 | 1248 |
1456 double freq = binfreq; | 1249 double freq = binfreq; |
1457 | 1250 |
1458 if (s < int(fft->getWidth()) - 1) { | 1251 if (s < int(fft->getWidth()) - 1) { |
1459 | 1252 |
1473 | 1266 |
1474 return haveAdj; | 1267 return haveAdj; |
1475 } | 1268 } |
1476 | 1269 |
1477 bool | 1270 bool |
1478 SpectrogramLayer::getXYBinSourceRange(View *v, int x, int y, | 1271 SpectrogramLayer::getXYBinSourceRange(LayerGeometryProvider *v, int x, int y, |
1479 double &min, double &max, | 1272 double &min, double &max, |
1480 double &phaseMin, double &phaseMax) const | 1273 double &phaseMin, double &phaseMax) const |
1481 { | 1274 { |
1482 if (!m_model || !m_model->isOK() || !m_model->isReady()) { | 1275 if (!m_model || !m_model->isOK() || !m_model->isReady()) { |
1483 return false; | 1276 return false; |
1495 int s0i = int(s0 + 0.001); | 1288 int s0i = int(s0 + 0.001); |
1496 int s1i = int(s1); | 1289 int s1i = int(s1); |
1497 | 1290 |
1498 bool rv = false; | 1291 bool rv = false; |
1499 | 1292 |
1500 int zp = getZeroPadLevel(v); | 1293 FFTModel *fft = getFFTModel(); |
1501 q0i *= zp + 1; | |
1502 q1i *= zp + 1; | |
1503 | |
1504 FFTModel *fft = getFFTModel(v); | |
1505 | 1294 |
1506 if (fft) { | 1295 if (fft) { |
1507 | 1296 |
1508 int cw = fft->getWidth(); | 1297 int cw = fft->getWidth(); |
1509 int ch = fft->getHeight(); | 1298 int ch = fft->getHeight(); |
1516 | 1305 |
1517 for (int q = q0i; q <= q1i; ++q) { | 1306 for (int q = q0i; q <= q1i; ++q) { |
1518 for (int s = s0i; s <= s1i; ++s) { | 1307 for (int s = s0i; s <= s1i; ++s) { |
1519 if (s >= 0 && q >= 0 && s < cw && q < ch) { | 1308 if (s >= 0 && q >= 0 && s < cw && q < ch) { |
1520 | 1309 |
1521 if (!fft->isColumnAvailable(s)) continue; | |
1522 | |
1523 double value; | 1310 double value; |
1524 | 1311 |
1525 value = fft->getPhaseAt(s, q); | 1312 value = fft->getPhaseAt(s, q); |
1526 if (!have || value < phaseMin) { phaseMin = value; } | 1313 if (!have || value < phaseMin) { phaseMin = value; } |
1527 if (!have || value > phaseMax) { phaseMax = value; } | 1314 if (!have || value > phaseMax) { phaseMax = value; } |
1528 | 1315 |
1529 value = fft->getMagnitudeAt(s, q) / (m_fftSize/2.0); | 1316 value = fft->getMagnitudeAt(s, q) / (getFFTSize()/2.0); |
1530 if (!have || value < min) { min = value; } | 1317 if (!have || value < min) { min = value; } |
1531 if (!have || value > max) { max = value; } | 1318 if (!have || value > max) { max = value; } |
1532 | 1319 |
1533 have = true; | 1320 have = true; |
1534 } | 1321 } |
1540 } | 1327 } |
1541 } | 1328 } |
1542 | 1329 |
1543 return rv; | 1330 return rv; |
1544 } | 1331 } |
1545 | 1332 |
1546 int | 1333 void |
1547 SpectrogramLayer::getZeroPadLevel(const View *v) const | 1334 SpectrogramLayer::recreateFFTModel() |
1548 { | 1335 { |
1549 //!!! tidy all this stuff | 1336 #ifdef DEBUG_SPECTROGRAM |
1550 | 1337 cerr << "SpectrogramLayer::recreateFFTModel called" << endl; |
1551 if (m_binDisplay != AllBins) return 0; | 1338 #endif |
1552 | 1339 |
1553 Preferences::SpectrogramSmoothing smoothing = | 1340 if (!m_model || !m_model->isOK()) { |
1554 Preferences::getInstance()->getSpectrogramSmoothing(); | 1341 emit sliceableModelReplaced(m_fftModel, 0); |
1555 | 1342 delete m_fftModel; |
1556 if (smoothing == Preferences::NoSpectrogramSmoothing || | 1343 delete m_peakCache; |
1557 smoothing == Preferences::SpectrogramInterpolated) return 0; | 1344 delete m_wholeCache; |
1558 | 1345 m_fftModel = 0; |
1559 if (m_frequencyScale == LogFrequencyScale) return 3; | 1346 m_peakCache = 0; |
1560 | 1347 m_wholeCache = 0; |
1561 sv_samplerate_t sr = m_model->getSampleRate(); | 1348 return; |
1562 | 1349 } |
1563 int maxbin = m_fftSize / 2; | 1350 |
1564 if (m_maxFrequency > 0) { | 1351 FFTModel *oldModel = m_fftModel; |
1565 maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | 1352 |
1566 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | 1353 m_fftModel = new FFTModel(m_model, |
1567 } | 1354 m_channel, |
1568 | 1355 m_windowType, |
1569 int minbin = 1; | 1356 m_windowSize, |
1570 if (m_minFrequency > 0) { | 1357 getWindowIncrement(), |
1571 minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.1); | 1358 getFFTSize()); |
1572 if (minbin < 1) minbin = 1; | 1359 |
1573 if (minbin >= maxbin) minbin = maxbin - 1; | 1360 delete m_peakCache; |
1574 } | 1361 m_peakCache = 0; |
1575 | 1362 |
1576 double perPixel = | 1363 delete m_wholeCache; |
1577 double(v->height()) / | 1364 m_wholeCache = 0; |
1578 double((maxbin - minbin) / (m_zeroPadLevel + 1)); | 1365 |
1579 | 1366 if (!m_fftModel->isOK()) { |
1580 if (perPixel > 2.8) { | 1367 QMessageBox::critical |
1581 return 3; // 4x oversampling | 1368 (0, tr("FFT cache failed"), |
1582 } else if (perPixel > 1.5) { | 1369 tr("Failed to create the FFT model for this spectrogram.\n" |
1583 return 1; // 2x | 1370 "There may be insufficient memory or disc space to continue.")); |
1371 delete m_fftModel; | |
1372 m_fftModel = 0; | |
1373 return; | |
1374 } | |
1375 | |
1376 if (canStoreWholeCache()) { // i.e. if enough memory | |
1377 m_wholeCache = new Dense3DModelPeakCache(m_fftModel, 1); | |
1378 m_peakCache = new Dense3DModelPeakCache(m_wholeCache, m_peakCacheDivisor); | |
1584 } else { | 1379 } else { |
1585 return 0; // 1x | 1380 m_peakCache = new Dense3DModelPeakCache(m_fftModel, m_peakCacheDivisor); |
1586 } | 1381 } |
1587 } | 1382 |
1588 | 1383 emit sliceableModelReplaced(oldModel, m_fftModel); |
1589 int | 1384 |
1590 SpectrogramLayer::getFFTSize(const View *v) const | 1385 delete oldModel; |
1591 { | 1386 } |
1592 return m_fftSize * (getZeroPadLevel(v) + 1); | 1387 |
1593 } | 1388 bool |
1594 | 1389 SpectrogramLayer::canStoreWholeCache() const |
1595 FFTModel * | 1390 { |
1596 SpectrogramLayer::getFFTModel(const View *v) const | 1391 if (!m_fftModel) { |
1597 { | 1392 return false; // or true, doesn't really matter |
1598 if (!m_model) return 0; | 1393 } |
1599 | 1394 |
1600 int fftSize = getFFTSize(v); | 1395 size_t sz = |
1601 | 1396 size_t(m_fftModel->getWidth()) * |
1602 if (m_fftModels.find(v) != m_fftModels.end()) { | 1397 size_t(m_fftModel->getHeight()) * |
1603 if (m_fftModels[v].first == 0) { | 1398 sizeof(float); |
1604 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1399 |
1605 SVDEBUG << "SpectrogramLayer::getFFTModel(" << v << "): Found null model" << endl; | 1400 try { |
1606 #endif | 1401 SVDEBUG << "Requesting advice from StorageAdviser on whether to create whole-model cache" << endl; |
1607 return 0; | 1402 StorageAdviser::Recommendation recommendation = |
1403 StorageAdviser::recommend | |
1404 (StorageAdviser::Criteria(StorageAdviser::SpeedCritical | | |
1405 StorageAdviser::PrecisionCritical | | |
1406 StorageAdviser::FrequentLookupLikely), | |
1407 sz / 1024, sz / 1024); | |
1408 if ((recommendation & StorageAdviser::UseDisc) || | |
1409 (recommendation & StorageAdviser::ConserveSpace)) { | |
1410 SVDEBUG << "Seems inadvisable to create whole-model cache" << endl; | |
1411 return false; | |
1412 } else { | |
1413 SVDEBUG << "Seems fine to create whole-model cache" << endl; | |
1414 return true; | |
1608 } | 1415 } |
1609 if (m_fftModels[v].first->getHeight() != fftSize / 2 + 1) { | 1416 } catch (const InsufficientDiscSpace &) { |
1610 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1417 SVDEBUG << "Seems like a terrible idea to create whole-model cache" << endl; |
1611 SVDEBUG << "SpectrogramLayer::getFFTModel(" << v << "): Found a model with the wrong height (" << m_fftModels[v].first->getHeight() << ", wanted " << (fftSize / 2 + 1) << ")" << endl; | 1418 return false; |
1612 #endif | 1419 } |
1613 delete m_fftModels[v].first; | |
1614 m_fftModels.erase(v); | |
1615 delete m_peakCaches[v]; | |
1616 m_peakCaches.erase(v); | |
1617 } else { | |
1618 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1619 SVDEBUG << "SpectrogramLayer::getFFTModel(" << v << "): Found a good model of height " << m_fftModels[v].first->getHeight() << endl; | |
1620 #endif | |
1621 return m_fftModels[v].first; | |
1622 } | |
1623 } | |
1624 | |
1625 if (m_fftModels.find(v) == m_fftModels.end()) { | |
1626 | |
1627 FFTModel *model = new FFTModel(m_model, | |
1628 m_channel, | |
1629 m_windowType, | |
1630 m_windowSize, | |
1631 getWindowIncrement(), | |
1632 fftSize, | |
1633 true, // polar | |
1634 StorageAdviser::SpeedCritical, | |
1635 m_candidateFillStartFrame); | |
1636 | |
1637 if (!model->isOK()) { | |
1638 QMessageBox::critical | |
1639 (0, tr("FFT cache failed"), | |
1640 tr("Failed to create the FFT model for this spectrogram.\n" | |
1641 "There may be insufficient memory or disc space to continue.")); | |
1642 delete model; | |
1643 m_fftModels[v] = FFTFillPair(0, 0); | |
1644 return 0; | |
1645 } | |
1646 | |
1647 if (!m_sliceableModel) { | |
1648 #ifdef DEBUG_SPECTROGRAM | |
1649 cerr << "SpectrogramLayer: emitting sliceableModelReplaced(0, " << model << ")" << endl; | |
1650 #endif | |
1651 ((SpectrogramLayer *)this)->sliceableModelReplaced(0, model); | |
1652 m_sliceableModel = model; | |
1653 } | |
1654 | |
1655 m_fftModels[v] = FFTFillPair(model, 0); | |
1656 | |
1657 model->resume(); | |
1658 | |
1659 delete m_updateTimer; | |
1660 m_updateTimer = new QTimer((SpectrogramLayer *)this); | |
1661 connect(m_updateTimer, SIGNAL(timeout()), | |
1662 this, SLOT(fillTimerTimedOut())); | |
1663 m_updateTimer->start(200); | |
1664 } | |
1665 | |
1666 return m_fftModels[v].first; | |
1667 } | |
1668 | |
1669 Dense3DModelPeakCache * | |
1670 SpectrogramLayer::getPeakCache(const View *v) const | |
1671 { | |
1672 if (!m_peakCaches[v]) { | |
1673 FFTModel *f = getFFTModel(v); | |
1674 if (!f) return 0; | |
1675 m_peakCaches[v] = new Dense3DModelPeakCache(f, 8); | |
1676 } | |
1677 return m_peakCaches[v]; | |
1678 } | 1420 } |
1679 | 1421 |
1680 const Model * | 1422 const Model * |
1681 SpectrogramLayer::getSliceableModel() const | 1423 SpectrogramLayer::getSliceableModel() const |
1682 { | 1424 { |
1683 if (m_sliceableModel) return m_sliceableModel; | 1425 return m_fftModel; |
1684 if (m_fftModels.empty()) return 0; | |
1685 m_sliceableModel = m_fftModels.begin()->second.first; | |
1686 return m_sliceableModel; | |
1687 } | |
1688 | |
1689 void | |
1690 SpectrogramLayer::invalidateFFTModels() | |
1691 { | |
1692 for (ViewFFTMap::iterator i = m_fftModels.begin(); | |
1693 i != m_fftModels.end(); ++i) { | |
1694 delete i->second.first; | |
1695 } | |
1696 for (PeakCacheMap::iterator i = m_peakCaches.begin(); | |
1697 i != m_peakCaches.end(); ++i) { | |
1698 delete i->second; | |
1699 } | |
1700 | |
1701 m_fftModels.clear(); | |
1702 m_peakCaches.clear(); | |
1703 | |
1704 if (m_sliceableModel) { | |
1705 cerr << "SpectrogramLayer: emitting sliceableModelReplaced(" << m_sliceableModel << ", 0)" << endl; | |
1706 emit sliceableModelReplaced(m_sliceableModel, 0); | |
1707 m_sliceableModel = 0; | |
1708 } | |
1709 } | 1426 } |
1710 | 1427 |
1711 void | 1428 void |
1712 SpectrogramLayer::invalidateMagnitudes() | 1429 SpectrogramLayer::invalidateMagnitudes() |
1713 { | 1430 { |
1431 #ifdef DEBUG_SPECTROGRAM | |
1432 cerr << "SpectrogramLayer::invalidateMagnitudes called" << endl; | |
1433 #endif | |
1714 m_viewMags.clear(); | 1434 m_viewMags.clear(); |
1715 for (std::vector<MagnitudeRange>::iterator i = m_columnMags.begin(); | 1435 } |
1716 i != m_columnMags.end(); ++i) { | 1436 |
1717 *i = MagnitudeRange(); | 1437 void |
1718 } | 1438 SpectrogramLayer::setSynchronousPainting(bool synchronous) |
1719 } | 1439 { |
1720 | 1440 m_synchronous = synchronous; |
1721 bool | 1441 } |
1722 SpectrogramLayer::updateViewMagnitudes(View *v) const | 1442 |
1723 { | 1443 Colour3DPlotRenderer * |
1724 MagnitudeRange mag; | 1444 SpectrogramLayer::getRenderer(LayerGeometryProvider *v) const |
1725 | 1445 { |
1726 int x0 = 0, x1 = v->width(); | 1446 int viewId = v->getId(); |
1727 double s00 = 0, s01 = 0, s10 = 0, s11 = 0; | 1447 |
1728 | 1448 if (m_renderers.find(viewId) == m_renderers.end()) { |
1729 if (!getXBinRange(v, x0, s00, s01)) { | 1449 |
1730 s00 = s01 = double(m_model->getStartFrame()) / getWindowIncrement(); | 1450 Colour3DPlotRenderer::Sources sources; |
1731 } | 1451 sources.verticalBinLayer = this; |
1732 | 1452 sources.fft = getFFTModel(); |
1733 if (!getXBinRange(v, x1, s10, s11)) { | 1453 sources.source = sources.fft; |
1734 s10 = s11 = double(m_model->getEndFrame()) / getWindowIncrement(); | 1454 if (m_peakCache) sources.peakCaches.push_back(m_peakCache); |
1735 } | 1455 if (m_wholeCache) sources.peakCaches.push_back(m_wholeCache); |
1736 | 1456 |
1737 int s0 = int(std::min(s00, s10) + 0.0001); | 1457 ColourScale::Parameters cparams; |
1738 int s1 = int(std::max(s01, s11) + 0.0001); | 1458 cparams.colourMap = m_colourMap; |
1739 | 1459 cparams.scaleType = m_colourScale; |
1740 // SVDEBUG << "SpectrogramLayer::updateViewMagnitudes: x0 = " << x0 << ", x1 = " << x1 << ", s00 = " << s00 << ", s11 = " << s11 << " s0 = " << s0 << ", s1 = " << s1 << endl; | 1460 cparams.multiple = m_colourScaleMultiple; |
1741 | 1461 |
1742 if (int(m_columnMags.size()) <= s1) { | 1462 if (m_colourScale != ColourScaleType::Phase) { |
1743 m_columnMags.resize(s1 + 1); | 1463 cparams.gain = m_gain; |
1744 } | 1464 cparams.threshold = m_threshold; |
1745 | |
1746 for (int s = s0; s <= s1; ++s) { | |
1747 if (m_columnMags[s].isSet()) { | |
1748 mag.sample(m_columnMags[s]); | |
1749 } | 1465 } |
1750 } | 1466 |
1467 float minValue = 0.0f; | |
1468 float maxValue = 1.0f; | |
1469 | |
1470 if (m_normalizeVisibleArea && m_viewMags[viewId].isSet()) { | |
1471 minValue = m_viewMags[viewId].getMin(); | |
1472 maxValue = m_viewMags[viewId].getMax(); | |
1473 } else if (m_colourScale == ColourScaleType::Linear && | |
1474 m_normalization == ColumnNormalization::None) { | |
1475 maxValue = 0.1f; | |
1476 } | |
1477 | |
1478 if (maxValue <= minValue) { | |
1479 maxValue = minValue + 0.1f; | |
1480 } | |
1481 if (maxValue <= m_threshold) { | |
1482 maxValue = m_threshold + 0.1f; | |
1483 } | |
1484 | |
1485 cparams.minValue = minValue; | |
1486 cparams.maxValue = maxValue; | |
1487 | |
1488 m_lastRenderedMags[viewId] = MagnitudeRange(minValue, maxValue); | |
1489 | |
1490 Colour3DPlotRenderer::Parameters params; | |
1491 params.colourScale = ColourScale(cparams); | |
1492 params.normalization = m_normalization; | |
1493 params.binDisplay = m_binDisplay; | |
1494 params.binScale = m_binScale; | |
1495 params.alwaysOpaque = true; | |
1496 params.invertVertical = false; | |
1497 params.scaleFactor = 1.0; | |
1498 params.colourRotation = m_colourRotation; | |
1499 | |
1500 if (m_colourScale != ColourScaleType::Phase && | |
1501 m_normalization != ColumnNormalization::Hybrid) { | |
1502 params.scaleFactor *= 2.f / float(getFFTSize()); | |
1503 } | |
1504 | |
1505 Preferences::SpectrogramSmoothing smoothing = | |
1506 Preferences::getInstance()->getSpectrogramSmoothing(); | |
1507 params.interpolate = | |
1508 (smoothing == Preferences::SpectrogramInterpolated || | |
1509 smoothing == Preferences::SpectrogramZeroPaddedAndInterpolated); | |
1510 | |
1511 m_renderers[v->getId()] = new Colour3DPlotRenderer(sources, params); | |
1512 } | |
1513 | |
1514 return m_renderers[v->getId()]; | |
1515 } | |
1516 | |
1517 void | |
1518 SpectrogramLayer::paintWithRenderer(LayerGeometryProvider *v, QPainter &paint, QRect rect) const | |
1519 { | |
1520 Colour3DPlotRenderer *renderer = getRenderer(v); | |
1521 | |
1522 Colour3DPlotRenderer::RenderResult result; | |
1523 MagnitudeRange magRange; | |
1524 int viewId = v->getId(); | |
1525 | |
1526 bool continuingPaint = !renderer->geometryChanged(v); | |
1527 | |
1528 if (continuingPaint) { | |
1529 magRange = m_viewMags[viewId]; | |
1530 } | |
1531 | |
1532 if (m_synchronous) { | |
1533 | |
1534 result = renderer->render(v, paint, rect); | |
1535 | |
1536 } else { | |
1537 | |
1538 result = renderer->renderTimeConstrained(v, paint, rect); | |
1751 | 1539 |
1752 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1540 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1753 SVDEBUG << "SpectrogramLayer::updateViewMagnitudes returning from cols " | 1541 cerr << "rect width from this paint: " << result.rendered.width() |
1754 << s0 << " -> " << s1 << " inclusive" << endl; | 1542 << ", mag range in this paint: " << result.range.getMin() << " -> " |
1543 << result.range.getMax() << endl; | |
1755 #endif | 1544 #endif |
1756 | 1545 |
1757 if (!mag.isSet()) return false; | 1546 QRect uncached = renderer->getLargestUncachedRect(v); |
1758 if (mag == m_viewMags[v]) return false; | 1547 if (uncached.width() > 0) { |
1759 m_viewMags[v] = mag; | 1548 v->updatePaintRect(uncached); |
1760 return true; | 1549 } |
1761 } | 1550 } |
1762 | 1551 |
1763 void | 1552 magRange.sample(result.range); |
1764 SpectrogramLayer::setSynchronousPainting(bool synchronous) | 1553 |
1765 { | 1554 if (magRange.isSet()) { |
1766 m_synchronous = synchronous; | 1555 if (m_viewMags[viewId] != magRange) { |
1767 } | 1556 m_viewMags[viewId] = magRange; |
1768 | 1557 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1769 void | 1558 cerr << "mag range in this view has changed: " |
1770 SpectrogramLayer::paint(View *v, QPainter &paint, QRect rect) const | 1559 << magRange.getMin() << " -> " << magRange.getMax() << endl; |
1771 { | 1560 #endif |
1772 // What a lovely, old-fashioned function this is. | 1561 } |
1773 // It's practically FORTRAN 77 in its clarity and linearity. | 1562 } |
1774 | 1563 |
1564 if (!continuingPaint && m_normalizeVisibleArea && | |
1565 m_viewMags[viewId] != m_lastRenderedMags[viewId]) { | |
1566 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1567 cerr << "mag range has changed from last rendered range: re-rendering" | |
1568 << endl; | |
1569 #endif | |
1570 delete m_renderers[viewId]; | |
1571 m_renderers.erase(viewId); | |
1572 v->updatePaintRect(v->getPaintRect()); | |
1573 } | |
1574 } | |
1575 | |
1576 void | |
1577 SpectrogramLayer::paint(LayerGeometryProvider *v, QPainter &paint, QRect rect) const | |
1578 { | |
1775 Profiler profiler("SpectrogramLayer::paint", false); | 1579 Profiler profiler("SpectrogramLayer::paint", false); |
1776 | 1580 |
1777 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1581 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1778 SVDEBUG << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << ", m_updateTimer " << m_updateTimer << endl; | 1582 cerr << "SpectrogramLayer::paint() entering: m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << endl; |
1779 | 1583 |
1780 cerr << "rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << endl; | 1584 cerr << "SpectrogramLayer::paint(): rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << endl; |
1781 #endif | 1585 #endif |
1782 | |
1783 sv_frame_t startFrame = v->getStartFrame(); | |
1784 if (startFrame < 0) m_candidateFillStartFrame = 0; | |
1785 else m_candidateFillStartFrame = startFrame; | |
1786 | 1586 |
1787 if (!m_model || !m_model->isOK() || !m_model->isReady()) { | 1587 if (!m_model || !m_model->isOK() || !m_model->isReady()) { |
1788 return; | 1588 return; |
1789 } | 1589 } |
1790 | 1590 |
1791 if (isLayerDormant(v)) { | 1591 if (isLayerDormant(v)) { |
1792 SVDEBUG << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << endl; | 1592 SVDEBUG << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << endl; |
1793 } | 1593 } |
1794 | 1594 |
1795 // Need to do this even if !isLayerDormant, as that could mean v | 1595 paintWithRenderer(v, paint, rect); |
1796 // is not in the dormancy map at all -- we need it to be present | |
1797 // and accountable for when determining whether we need the cache | |
1798 // in the cache-fill thread above. | |
1799 //!!! no inter use cache-fill thread | |
1800 const_cast<SpectrogramLayer *>(this)->Layer::setLayerDormant(v, false); | |
1801 | |
1802 int fftSize = getFFTSize(v); | |
1803 /* | |
1804 FFTModel *fft = getFFTModel(v); | |
1805 if (!fft) { | |
1806 cerr << "ERROR: SpectrogramLayer::paint(): No FFT model, returning" << endl; | |
1807 return; | |
1808 } | |
1809 */ | |
1810 ImageCache &cache = m_imageCaches[v]; | |
1811 | |
1812 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1813 SVDEBUG << "SpectrogramLayer::paint(): image cache valid area " << cache. | |
1814 | |
1815 validArea.x() << ", " << cache.validArea.y() << ", " << cache.validArea.width() << "x" << cache.validArea.height() << endl; | |
1816 #endif | |
1817 | |
1818 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1819 bool stillCacheing = (m_updateTimer != 0); | |
1820 SVDEBUG << "SpectrogramLayer::paint(): Still cacheing = " << stillCacheing << endl; | |
1821 #endif | |
1822 | |
1823 int zoomLevel = v->getZoomLevel(); | |
1824 | |
1825 int x0 = 0; | |
1826 int x1 = v->width(); | |
1827 | |
1828 bool recreateWholeImageCache = true; | |
1829 | |
1830 x0 = rect.left(); | |
1831 x1 = rect.right() + 1; | |
1832 /* | |
1833 double xPixelRatio = double(fft->getResolution()) / double(zoomLevel); | |
1834 cerr << "xPixelRatio = " << xPixelRatio << endl; | |
1835 if (xPixelRatio < 1.f) xPixelRatio = 1.f; | |
1836 */ | |
1837 if (cache.validArea.width() > 0) { | |
1838 | |
1839 int cw = cache.image.width(); | |
1840 int ch = cache.image.height(); | |
1841 | |
1842 if (int(cache.zoomLevel) == zoomLevel && | |
1843 cw == v->width() && | |
1844 ch == v->height()) { | |
1845 | |
1846 if (v->getXForFrame(cache.startFrame) == | |
1847 v->getXForFrame(startFrame) && | |
1848 cache.validArea.x() <= x0 && | |
1849 cache.validArea.x() + cache.validArea.width() >= x1) { | |
1850 | |
1851 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1852 cerr << "SpectrogramLayer: image cache good" << endl; | |
1853 #endif | |
1854 | |
1855 paint.drawImage(rect, cache.image, rect); | |
1856 //!!! | |
1857 // paint.drawImage(v->rect(), cache.image, | |
1858 // QRect(QPoint(0, 0), cache.image.size())); | |
1859 | |
1860 illuminateLocalFeatures(v, paint); | |
1861 return; | |
1862 | |
1863 } else { | |
1864 | |
1865 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1866 cerr << "SpectrogramLayer: image cache partially OK" << endl; | |
1867 #endif | |
1868 | |
1869 recreateWholeImageCache = false; | |
1870 | |
1871 int dx = v->getXForFrame(cache.startFrame) - | |
1872 v->getXForFrame(startFrame); | |
1873 | |
1874 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1875 cerr << "SpectrogramLayer: dx = " << dx << " (image cache " << cw << "x" << ch << ")" << endl; | |
1876 #endif | |
1877 | |
1878 if (dx != 0 && | |
1879 dx > -cw && | |
1880 dx < cw) { | |
1881 | |
1882 int dxp = dx; | |
1883 if (dxp < 0) dxp = -dxp; | |
1884 size_t copy = (cw - dxp) * sizeof(QRgb); | |
1885 for (int y = 0; y < ch; ++y) { | |
1886 QRgb *line = (QRgb *)cache.image.scanLine(y); | |
1887 if (dx < 0) { | |
1888 memmove(line, line + dxp, copy); | |
1889 } else { | |
1890 memmove(line + dxp, line, copy); | |
1891 } | |
1892 } | |
1893 | |
1894 int px = cache.validArea.x(); | |
1895 int pw = cache.validArea.width(); | |
1896 | |
1897 if (dx < 0) { | |
1898 x0 = cw + dx; | |
1899 x1 = cw; | |
1900 px += dx; | |
1901 if (px < 0) { | |
1902 pw += px; | |
1903 px = 0; | |
1904 if (pw < 0) pw = 0; | |
1905 } | |
1906 } else { | |
1907 x0 = 0; | |
1908 x1 = dx; | |
1909 px += dx; | |
1910 if (px + pw > cw) { | |
1911 pw = int(cw) - px; | |
1912 if (pw < 0) pw = 0; | |
1913 } | |
1914 } | |
1915 | |
1916 cache.validArea = | |
1917 QRect(px, cache.validArea.y(), | |
1918 pw, cache.validArea.height()); | |
1919 | |
1920 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1921 cerr << "valid area now " | |
1922 << px << "," << cache.validArea.y() | |
1923 << " " << pw << "x" << cache.validArea.height() | |
1924 << endl; | |
1925 #endif | |
1926 /* | |
1927 paint.drawImage(rect & cache.validArea, | |
1928 cache.image, | |
1929 rect & cache.validArea); | |
1930 */ | |
1931 } else if (dx != 0) { | |
1932 | |
1933 // we scrolled too far to be of use | |
1934 | |
1935 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1936 cerr << "dx == " << dx << ": scrolled too far for cache to be useful" << endl; | |
1937 #endif | |
1938 | |
1939 cache.validArea = QRect(); | |
1940 recreateWholeImageCache = true; | |
1941 } | |
1942 } | |
1943 } else { | |
1944 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1945 cerr << "SpectrogramLayer: image cache useless" << endl; | |
1946 if (int(cache.zoomLevel) != zoomLevel) { | |
1947 cerr << "(cache zoomLevel " << cache.zoomLevel | |
1948 << " != " << zoomLevel << ")" << endl; | |
1949 } | |
1950 if (cw != v->width()) { | |
1951 cerr << "(cache width " << cw | |
1952 << " != " << v->width(); | |
1953 } | |
1954 if (ch != v->height()) { | |
1955 cerr << "(cache height " << ch | |
1956 << " != " << v->height(); | |
1957 } | |
1958 #endif | |
1959 cache.validArea = QRect(); | |
1960 // recreateWholeImageCache = true; | |
1961 } | |
1962 } | |
1963 | |
1964 if (updateViewMagnitudes(v)) { | |
1965 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1966 cerr << "SpectrogramLayer: magnitude range changed to [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << endl; | |
1967 #endif | |
1968 if (m_normalizeVisibleArea) { | |
1969 cache.validArea = QRect(); | |
1970 recreateWholeImageCache = true; | |
1971 } | |
1972 } else { | |
1973 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1974 cerr << "No change in magnitude range [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << endl; | |
1975 #endif | |
1976 } | |
1977 | |
1978 if (recreateWholeImageCache) { | |
1979 x0 = 0; | |
1980 x1 = v->width(); | |
1981 } | |
1982 | |
1983 struct timeval tv; | |
1984 (void)gettimeofday(&tv, 0); | |
1985 RealTime mainPaintStart = RealTime::fromTimeval(tv); | |
1986 | |
1987 int paintBlockWidth = m_lastPaintBlockWidth; | |
1988 | |
1989 if (m_synchronous) { | |
1990 if (paintBlockWidth < x1 - x0) { | |
1991 // always paint full width | |
1992 paintBlockWidth = x1 - x0; | |
1993 } | |
1994 } else { | |
1995 if (paintBlockWidth == 0) { | |
1996 paintBlockWidth = (300000 / zoomLevel); | |
1997 } else { | |
1998 RealTime lastTime = m_lastPaintTime; | |
1999 while (lastTime > RealTime::fromMilliseconds(200) && | |
2000 paintBlockWidth > 50) { | |
2001 paintBlockWidth /= 2; | |
2002 lastTime = lastTime / 2; | |
2003 } | |
2004 while (lastTime < RealTime::fromMilliseconds(90) && | |
2005 paintBlockWidth < 1500) { | |
2006 paintBlockWidth *= 2; | |
2007 lastTime = lastTime * 2; | |
2008 } | |
2009 } | |
2010 | |
2011 if (paintBlockWidth < 20) paintBlockWidth = 20; | |
2012 } | |
2013 | |
2014 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2015 cerr << "[" << this << "]: last paint width: " << m_lastPaintBlockWidth << ", last paint time: " << m_lastPaintTime << ", new paint width: " << paintBlockWidth << endl; | |
2016 #endif | |
2017 | |
2018 // We always paint the full height when refreshing the cache. | |
2019 // Smaller heights can be used when painting direct from cache | |
2020 // (further up in this function), but we want to ensure the cache | |
2021 // is coherent without having to worry about vertical matching of | |
2022 // required and valid areas as well as horizontal. | |
2023 | |
2024 int h = v->height(); | |
2025 | |
2026 if (cache.validArea.width() > 0) { | |
2027 | |
2028 // If part of the cache is known to be valid, select a strip | |
2029 // immediately to left or right of the valid part | |
2030 | |
2031 //!!! this really needs to be coordinated with the selection | |
2032 //!!! of m_drawBuffer boundaries in the bufferBinResolution | |
2033 //!!! case below | |
2034 | |
2035 int vx0 = 0, vx1 = 0; | |
2036 vx0 = cache.validArea.x(); | |
2037 vx1 = cache.validArea.x() + cache.validArea.width(); | |
2038 | |
2039 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2040 cerr << "x0 " << x0 << ", x1 " << x1 << ", vx0 " << vx0 << ", vx1 " << vx1 << ", paintBlockWidth " << paintBlockWidth << endl; | |
2041 #endif | |
2042 if (x0 < vx0) { | |
2043 if (x0 + paintBlockWidth < vx0) { | |
2044 x0 = vx0 - paintBlockWidth; | |
2045 } | |
2046 x1 = vx0; | |
2047 } else if (x0 >= vx1) { | |
2048 x0 = vx1; | |
2049 if (x1 > x0 + paintBlockWidth) { | |
2050 x1 = x0 + paintBlockWidth; | |
2051 } | |
2052 } else { | |
2053 // x0 is within the valid area | |
2054 if (x1 > vx1) { | |
2055 x0 = vx1; | |
2056 if (x0 + paintBlockWidth < x1) { | |
2057 x1 = x0 + paintBlockWidth; | |
2058 } | |
2059 } else { | |
2060 x1 = x0; // it's all valid, paint nothing | |
2061 } | |
2062 } | |
2063 | |
2064 cache.validArea = QRect | |
2065 (std::min(vx0, x0), cache.validArea.y(), | |
2066 std::max(vx1 - std::min(vx0, x0), | |
2067 x1 - std::min(vx0, x0)), | |
2068 cache.validArea.height()); | |
2069 | |
2070 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2071 cerr << "Valid area becomes " << cache.validArea.x() | |
2072 << ", " << cache.validArea.y() << ", " | |
2073 << cache.validArea.width() << "x" | |
2074 << cache.validArea.height() << endl; | |
2075 #endif | |
2076 | |
2077 } else { | |
2078 if (x1 > x0 + paintBlockWidth) { | |
2079 int sfx = x1; | |
2080 if (startFrame < 0) sfx = v->getXForFrame(0); | |
2081 if (sfx >= x0 && sfx + paintBlockWidth <= x1) { | |
2082 x0 = sfx; | |
2083 x1 = x0 + paintBlockWidth; | |
2084 } else { | |
2085 int mid = (x1 + x0) / 2; | |
2086 x0 = mid - paintBlockWidth/2; | |
2087 x1 = x0 + paintBlockWidth; | |
2088 } | |
2089 } | |
2090 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2091 cerr << "Valid area becomes " << x0 << ", 0, " << (x1-x0) | |
2092 << "x" << h << endl; | |
2093 #endif | |
2094 cache.validArea = QRect(x0, 0, x1 - x0, h); | |
2095 } | |
2096 | |
2097 /* | |
2098 if (xPixelRatio != 1.f) { | |
2099 x0 = int((int(x0 / xPixelRatio) - 4) * xPixelRatio + 0.0001); | |
2100 x1 = int((int(x1 / xPixelRatio) + 4) * xPixelRatio + 0.0001); | |
2101 } | |
2102 */ | |
2103 int w = x1 - x0; | |
2104 | |
2105 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2106 cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << endl; | |
2107 #endif | |
2108 | |
2109 sv_samplerate_t sr = m_model->getSampleRate(); | |
2110 | |
2111 // Set minFreq and maxFreq to the frequency extents of the possibly | |
2112 // zero-padded visible bin range, and displayMinFreq and displayMaxFreq | |
2113 // to the actual scale frequency extents (presumably not zero padded). | |
2114 | |
2115 // If we are zero padding, we want to use the zero-padded | |
2116 // equivalents of the bins that we would be using if not zero | |
2117 // padded, to avoid spaces at the top and bottom of the display. | |
2118 | |
2119 // Note fftSize is the actual zero-padded fft size, m_fftSize the | |
2120 // nominal fft size. | |
2121 | |
2122 int maxbin = m_fftSize / 2; | |
2123 if (m_maxFrequency > 0) { | |
2124 maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.001); | |
2125 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | |
2126 } | |
2127 | |
2128 int minbin = 1; | |
2129 if (m_minFrequency > 0) { | |
2130 minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.001); | |
2131 // cerr << "m_minFrequency = " << m_minFrequency << " -> minbin = " << minbin << endl; | |
2132 if (minbin < 1) minbin = 1; | |
2133 if (minbin >= maxbin) minbin = maxbin - 1; | |
2134 } | |
2135 | |
2136 int zpl = getZeroPadLevel(v) + 1; | |
2137 minbin = minbin * zpl; | |
2138 maxbin = (maxbin + 1) * zpl - 1; | |
2139 | |
2140 double minFreq = (double(minbin) * sr) / fftSize; | |
2141 double maxFreq = (double(maxbin) * sr) / fftSize; | |
2142 | |
2143 double displayMinFreq = minFreq; | |
2144 double displayMaxFreq = maxFreq; | |
2145 | |
2146 if (fftSize != m_fftSize) { | |
2147 displayMinFreq = getEffectiveMinFrequency(); | |
2148 displayMaxFreq = getEffectiveMaxFrequency(); | |
2149 } | |
2150 | |
2151 // cerr << "(giving actual minFreq " << minFreq << " and display minFreq " << displayMinFreq << ")" << endl; | |
2152 | |
2153 int increment = getWindowIncrement(); | |
2154 | |
2155 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | |
2156 /* | |
2157 double yforbin[maxbin - minbin + 1]; | |
2158 | |
2159 for (int q = minbin; q <= maxbin; ++q) { | |
2160 double f0 = (double(q) * sr) / fftSize; | |
2161 yforbin[q - minbin] = | |
2162 v->getYForFrequency(f0, displayMinFreq, displayMaxFreq, | |
2163 logarithmic); | |
2164 } | |
2165 */ | |
2166 MagnitudeRange overallMag = m_viewMags[v]; | |
2167 bool overallMagChanged = false; | |
2168 | |
2169 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2170 cerr << ((double(v->getFrameForX(1) - v->getFrameForX(0))) / increment) << " bin(s) per pixel" << endl; | |
2171 #endif | |
2172 | |
2173 if (w == 0) { | |
2174 SVDEBUG << "*** NOTE: w == 0" << endl; | |
2175 } | |
2176 | |
2177 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2178 int pixels = 0; | |
2179 #endif | |
2180 | |
2181 Profiler outerprof("SpectrogramLayer::paint: all cols"); | |
2182 | |
2183 // The draw buffer contains a fragment at either our pixel | |
2184 // resolution (if there is more than one time-bin per pixel) or | |
2185 // time-bin resolution (if a time-bin spans more than one pixel). | |
2186 // We need to ensure that it starts and ends at points where a | |
2187 // time-bin boundary occurs at an exact pixel boundary, and with a | |
2188 // certain amount of overlap across existing pixels so that we can | |
2189 // scale and draw from it without smoothing errors at the edges. | |
2190 | |
2191 // If (getFrameForX(x) / increment) * increment == | |
2192 // getFrameForX(x), then x is a time-bin boundary. We want two | |
2193 // such boundaries at either side of the draw buffer -- one which | |
2194 // we draw up to, and one which we subsequently crop at. | |
2195 | |
2196 bool bufferBinResolution = false; | |
2197 if (increment > zoomLevel) bufferBinResolution = true; | |
2198 | |
2199 sv_frame_t leftBoundaryFrame = -1, leftCropFrame = -1; | |
2200 sv_frame_t rightBoundaryFrame = -1, rightCropFrame = -1; | |
2201 | |
2202 int bufwid; | |
2203 | |
2204 if (bufferBinResolution) { | |
2205 | |
2206 for (int x = x0; ; --x) { | |
2207 sv_frame_t f = v->getFrameForX(x); | |
2208 if ((f / increment) * increment == f) { | |
2209 if (leftCropFrame == -1) leftCropFrame = f; | |
2210 else if (x < x0 - 2) { leftBoundaryFrame = f; break; } | |
2211 } | |
2212 } | |
2213 for (int x = x0 + w; ; ++x) { | |
2214 sv_frame_t f = v->getFrameForX(x); | |
2215 if ((f / increment) * increment == f) { | |
2216 if (rightCropFrame == -1) rightCropFrame = f; | |
2217 else if (x > x0 + w + 2) { rightBoundaryFrame = f; break; } | |
2218 } | |
2219 } | |
2220 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2221 cerr << "Left: crop: " << leftCropFrame << " (bin " << leftCropFrame/increment << "); boundary: " << leftBoundaryFrame << " (bin " << leftBoundaryFrame/increment << ")" << endl; | |
2222 cerr << "Right: crop: " << rightCropFrame << " (bin " << rightCropFrame/increment << "); boundary: " << rightBoundaryFrame << " (bin " << rightBoundaryFrame/increment << ")" << endl; | |
2223 #endif | |
2224 | |
2225 bufwid = int((rightBoundaryFrame - leftBoundaryFrame) / increment); | |
2226 | |
2227 } else { | |
2228 | |
2229 bufwid = w; | |
2230 } | |
2231 | |
2232 vector<int> binforx(bufwid); | |
2233 vector<double> binfory(h); | |
2234 | |
2235 bool usePeaksCache = false; | |
2236 | |
2237 if (bufferBinResolution) { | |
2238 for (int x = 0; x < bufwid; ++x) { | |
2239 binforx[x] = int(leftBoundaryFrame / increment) + x; | |
2240 // cerr << "binforx[" << x << "] = " << binforx[x] << endl; | |
2241 } | |
2242 m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); | |
2243 } else { | |
2244 for (int x = 0; x < bufwid; ++x) { | |
2245 double s0 = 0, s1 = 0; | |
2246 if (getXBinRange(v, x + x0, s0, s1)) { | |
2247 binforx[x] = int(s0 + 0.0001); | |
2248 } else { | |
2249 binforx[x] = -1; //??? | |
2250 } | |
2251 } | |
2252 if (m_drawBuffer.width() < bufwid || m_drawBuffer.height() < h) { | |
2253 m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); | |
2254 } | |
2255 usePeaksCache = (increment * 8) < zoomLevel; | |
2256 if (m_colourScale == PhaseColourScale) usePeaksCache = false; | |
2257 } | |
2258 | |
2259 // No longer exists in Qt5: m_drawBuffer.setNumColors(256); | |
2260 for (int pixel = 0; pixel < 256; ++pixel) { | |
2261 m_drawBuffer.setColor((unsigned char)pixel, | |
2262 m_palette.getColour((unsigned char)pixel).rgb()); | |
2263 } | |
2264 | |
2265 m_drawBuffer.fill(0); | |
2266 | |
2267 if (m_binDisplay != PeakFrequencies) { | |
2268 | |
2269 for (int y = 0; y < h; ++y) { | |
2270 double q0 = 0, q1 = 0; | |
2271 if (!getSmoothedYBinRange(v, h-y-1, q0, q1)) { | |
2272 binfory[y] = -1; | |
2273 } else { | |
2274 binfory[y] = q0; | |
2275 // cerr << "binfory[" << y << "] = " << binfory[y] << endl; | |
2276 } | |
2277 } | |
2278 | |
2279 paintDrawBuffer(v, bufwid, h, binforx, binfory, usePeaksCache, | |
2280 overallMag, overallMagChanged); | |
2281 | |
2282 } else { | |
2283 | |
2284 paintDrawBufferPeakFrequencies(v, bufwid, h, binforx, | |
2285 minbin, maxbin, | |
2286 displayMinFreq, displayMaxFreq, | |
2287 logarithmic, | |
2288 overallMag, overallMagChanged); | |
2289 } | |
2290 | |
2291 /* | |
2292 for (int x = 0; x < w / xPixelRatio; ++x) { | |
2293 | |
2294 Profiler innerprof("SpectrogramLayer::paint: 1 pixel column"); | |
2295 | |
2296 runOutOfData = !paintColumnValues(v, fft, x0, x, | |
2297 minbin, maxbin, | |
2298 displayMinFreq, displayMaxFreq, | |
2299 xPixelRatio, | |
2300 h, yforbin); | |
2301 | |
2302 if (runOutOfData) { | |
2303 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2304 cerr << "Run out of data -- dropping out of loop" << endl; | |
2305 #endif | |
2306 break; | |
2307 } | |
2308 } | |
2309 */ | |
2310 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2311 // cerr << pixels << " pixels drawn" << endl; | |
2312 #endif | |
2313 | |
2314 if (overallMagChanged) { | |
2315 m_viewMags[v] = overallMag; | |
2316 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2317 cerr << "Overall mag is now [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "] - will be updating" << endl; | |
2318 #endif | |
2319 } else { | |
2320 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2321 cerr << "Overall mag unchanged at [" << m_viewMags[v].getMin() << "->" << m_viewMags[v].getMax() << "]" << endl; | |
2322 #endif | |
2323 } | |
2324 | |
2325 outerprof.end(); | |
2326 | |
2327 Profiler profiler2("SpectrogramLayer::paint: draw image"); | |
2328 | |
2329 if (recreateWholeImageCache) { | |
2330 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2331 SVDEBUG << "Recreating image cache: width = " << v->width() | |
2332 << ", height = " << h << endl; | |
2333 #endif | |
2334 cache.image = QImage(v->width(), h, QImage::Format_ARGB32_Premultiplied); | |
2335 } | |
2336 | |
2337 if (w > 0) { | |
2338 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2339 SVDEBUG << "Painting " << w << "x" << h | |
2340 << " from draw buffer at " << 0 << "," << 0 | |
2341 << " to " << w << "x" << h << " on cache at " | |
2342 << x0 << "," << 0 << endl; | |
2343 #endif | |
2344 | |
2345 QPainter cachePainter(&cache.image); | |
2346 | |
2347 if (bufferBinResolution) { | |
2348 int scaledLeft = v->getXForFrame(leftBoundaryFrame); | |
2349 int scaledRight = v->getXForFrame(rightBoundaryFrame); | |
2350 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2351 SVDEBUG << "Rescaling image from " << bufwid | |
2352 << "x" << h << " to " | |
2353 << scaledRight-scaledLeft << "x" << h << endl; | |
2354 #endif | |
2355 Preferences::SpectrogramXSmoothing xsmoothing = | |
2356 Preferences::getInstance()->getSpectrogramXSmoothing(); | |
2357 // SVDEBUG << "xsmoothing == " << xsmoothing << endl; | |
2358 QImage scaled = m_drawBuffer.scaled | |
2359 (scaledRight - scaledLeft, h, | |
2360 Qt::IgnoreAspectRatio, | |
2361 ((xsmoothing == Preferences::SpectrogramXInterpolated) ? | |
2362 Qt::SmoothTransformation : Qt::FastTransformation)); | |
2363 int scaledLeftCrop = v->getXForFrame(leftCropFrame); | |
2364 int scaledRightCrop = v->getXForFrame(rightCropFrame); | |
2365 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2366 SVDEBUG << "Drawing image region of width " << scaledRightCrop - scaledLeftCrop << " to " | |
2367 << scaledLeftCrop << " from " << scaledLeftCrop - scaledLeft << endl; | |
2368 #endif | |
2369 cachePainter.drawImage | |
2370 (QRect(scaledLeftCrop, 0, | |
2371 scaledRightCrop - scaledLeftCrop, h), | |
2372 scaled, | |
2373 QRect(scaledLeftCrop - scaledLeft, 0, | |
2374 scaledRightCrop - scaledLeftCrop, h)); | |
2375 } else { | |
2376 cachePainter.drawImage(QRect(x0, 0, w, h), | |
2377 m_drawBuffer, | |
2378 QRect(0, 0, w, h)); | |
2379 } | |
2380 | |
2381 cachePainter.end(); | |
2382 } | |
2383 | |
2384 QRect pr = rect & cache.validArea; | |
2385 | |
2386 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2387 SVDEBUG << "Painting " << pr.width() << "x" << pr.height() | |
2388 << " from cache at " << pr.x() << "," << pr.y() | |
2389 << " to window" << endl; | |
2390 #endif | |
2391 | |
2392 paint.drawImage(pr.x(), pr.y(), cache.image, | |
2393 pr.x(), pr.y(), pr.width(), pr.height()); | |
2394 //!!! | |
2395 // paint.drawImage(v->rect(), cache.image, | |
2396 // QRect(QPoint(0, 0), cache.image.size())); | |
2397 | |
2398 cache.startFrame = startFrame; | |
2399 cache.zoomLevel = zoomLevel; | |
2400 | |
2401 if (!m_synchronous) { | |
2402 | |
2403 if (!m_normalizeVisibleArea || !overallMagChanged) { | |
2404 | |
2405 if (cache.validArea.x() > 0) { | |
2406 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2407 SVDEBUG << "SpectrogramLayer::paint() updating left (0, " | |
2408 << cache.validArea.x() << ")" << endl; | |
2409 #endif | |
2410 v->update(0, 0, cache.validArea.x(), h); | |
2411 } | |
2412 | |
2413 if (cache.validArea.x() + cache.validArea.width() < | |
2414 cache.image.width()) { | |
2415 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2416 SVDEBUG << "SpectrogramLayer::paint() updating right (" | |
2417 << cache.validArea.x() + cache.validArea.width() | |
2418 << ", " | |
2419 << cache.image.width() - (cache.validArea.x() + | |
2420 cache.validArea.width()) | |
2421 << ")" << endl; | |
2422 #endif | |
2423 v->update(cache.validArea.x() + cache.validArea.width(), | |
2424 0, | |
2425 cache.image.width() - (cache.validArea.x() + | |
2426 cache.validArea.width()), | |
2427 h); | |
2428 } | |
2429 } else { | |
2430 // overallMagChanged | |
2431 cerr << "\noverallMagChanged - updating all\n" << endl; | |
2432 cache.validArea = QRect(); | |
2433 v->update(); | |
2434 } | |
2435 } | |
2436 | 1596 |
2437 illuminateLocalFeatures(v, paint); | 1597 illuminateLocalFeatures(v, paint); |
2438 | 1598 } |
2439 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1599 |
2440 SVDEBUG << "SpectrogramLayer::paint() returning" << endl; | 1600 void |
2441 #endif | 1601 SpectrogramLayer::illuminateLocalFeatures(LayerGeometryProvider *v, QPainter &paint) const |
2442 | |
2443 if (!m_synchronous) { | |
2444 m_lastPaintBlockWidth = paintBlockWidth; | |
2445 (void)gettimeofday(&tv, 0); | |
2446 m_lastPaintTime = RealTime::fromTimeval(tv) - mainPaintStart; | |
2447 } | |
2448 | |
2449 //!!! if (fftSuspended) fft->resume(); | |
2450 } | |
2451 | |
2452 bool | |
2453 SpectrogramLayer::paintDrawBufferPeakFrequencies(View *v, | |
2454 int w, | |
2455 int h, | |
2456 const vector<int> &binforx, | |
2457 int minbin, | |
2458 int maxbin, | |
2459 double displayMinFreq, | |
2460 double displayMaxFreq, | |
2461 bool logarithmic, | |
2462 MagnitudeRange &overallMag, | |
2463 bool &overallMagChanged) const | |
2464 { | |
2465 Profiler profiler("SpectrogramLayer::paintDrawBufferPeakFrequencies"); | |
2466 | |
2467 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2468 cerr << "minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; | |
2469 #endif | |
2470 if (minbin < 0) minbin = 0; | |
2471 if (maxbin < 0) maxbin = minbin+1; | |
2472 | |
2473 FFTModel *fft = getFFTModel(v); | |
2474 if (!fft) return false; | |
2475 | |
2476 FFTModel::PeakSet peakfreqs; | |
2477 | |
2478 int psx = -1; | |
2479 | |
2480 #ifdef __GNUC__ | |
2481 float values[maxbin - minbin + 1]; | |
2482 #else | |
2483 float *values = (float *)alloca((maxbin - minbin + 1) * sizeof(float)); | |
2484 #endif | |
2485 | |
2486 for (int x = 0; x < w; ++x) { | |
2487 | |
2488 if (binforx[x] < 0) continue; | |
2489 | |
2490 int sx0 = binforx[x]; | |
2491 int sx1 = sx0; | |
2492 if (x+1 < w) sx1 = binforx[x+1]; | |
2493 if (sx0 < 0) sx0 = sx1 - 1; | |
2494 if (sx0 < 0) continue; | |
2495 if (sx1 <= sx0) sx1 = sx0 + 1; | |
2496 | |
2497 for (int sx = sx0; sx < sx1; ++sx) { | |
2498 | |
2499 if (sx < 0 || sx >= int(fft->getWidth())) continue; | |
2500 | |
2501 if (!m_synchronous) { | |
2502 if (!fft->isColumnAvailable(sx)) { | |
2503 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2504 cerr << "Met unavailable column at col " << sx << endl; | |
2505 #endif | |
2506 return false; | |
2507 } | |
2508 } | |
2509 | |
2510 MagnitudeRange mag; | |
2511 | |
2512 if (sx != psx) { | |
2513 peakfreqs = fft->getPeakFrequencies(FFTModel::AllPeaks, sx, | |
2514 minbin, maxbin - 1); | |
2515 if (m_colourScale == PhaseColourScale) { | |
2516 fft->getPhasesAt(sx, values, minbin, maxbin - minbin + 1); | |
2517 } else if (m_normalizeColumns) { | |
2518 fft->getNormalizedMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); | |
2519 } else if (m_normalizeHybrid) { | |
2520 fft->getNormalizedMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); | |
2521 double max = fft->getMaximumMagnitudeAt(sx); | |
2522 if (max > 0.f) { | |
2523 for (int i = minbin; i <= maxbin; ++i) { | |
2524 values[i - minbin] = float(values[i - minbin] * log10(max)); | |
2525 } | |
2526 } | |
2527 } else { | |
2528 fft->getMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); | |
2529 } | |
2530 psx = sx; | |
2531 } | |
2532 | |
2533 for (FFTModel::PeakSet::const_iterator pi = peakfreqs.begin(); | |
2534 pi != peakfreqs.end(); ++pi) { | |
2535 | |
2536 int bin = pi->first; | |
2537 double freq = pi->second; | |
2538 | |
2539 if (bin < minbin) continue; | |
2540 if (bin > maxbin) break; | |
2541 | |
2542 double value = values[bin - minbin]; | |
2543 | |
2544 if (m_colourScale != PhaseColourScale) { | |
2545 if (!m_normalizeColumns && !m_normalizeHybrid) { | |
2546 value /= (m_fftSize/2.0); | |
2547 } | |
2548 mag.sample(float(value)); | |
2549 value *= m_gain; | |
2550 } | |
2551 | |
2552 double y = v->getYForFrequency | |
2553 (freq, displayMinFreq, displayMaxFreq, logarithmic); | |
2554 | |
2555 int iy = int(y + 0.5); | |
2556 if (iy < 0 || iy >= h) continue; | |
2557 | |
2558 m_drawBuffer.setPixel(x, iy, getDisplayValue(v, value)); | |
2559 } | |
2560 | |
2561 if (mag.isSet()) { | |
2562 if (sx >= int(m_columnMags.size())) { | |
2563 #ifdef DEBUG_SPECTROGRAM | |
2564 cerr << "INTERNAL ERROR: " << sx << " >= " | |
2565 << m_columnMags.size() | |
2566 << " at SpectrogramLayer.cpp::paintDrawBuffer" | |
2567 << endl; | |
2568 #endif | |
2569 } else { | |
2570 m_columnMags[sx].sample(mag); | |
2571 if (overallMag.sample(mag)) overallMagChanged = true; | |
2572 } | |
2573 } | |
2574 } | |
2575 } | |
2576 | |
2577 return true; | |
2578 } | |
2579 | |
2580 bool | |
2581 SpectrogramLayer::paintDrawBuffer(View *v, | |
2582 int w, | |
2583 int h, | |
2584 const vector<int> &binforx, | |
2585 const vector<double> &binfory, | |
2586 bool usePeaksCache, | |
2587 MagnitudeRange &overallMag, | |
2588 bool &overallMagChanged) const | |
2589 { | |
2590 Profiler profiler("SpectrogramLayer::paintDrawBuffer"); | |
2591 | |
2592 int minbin = int(binfory[0] + 0.0001); | |
2593 int maxbin = int(binfory[h-1]); | |
2594 | |
2595 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2596 cerr << "minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; | |
2597 #endif | |
2598 if (minbin < 0) minbin = 0; | |
2599 if (maxbin < 0) maxbin = minbin+1; | |
2600 | |
2601 DenseThreeDimensionalModel *sourceModel = 0; | |
2602 FFTModel *fft = 0; | |
2603 int divisor = 1; | |
2604 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2605 cerr << "Note: bin display = " << m_binDisplay << ", w = " << w << ", binforx[" << w-1 << "] = " << binforx[w-1] << ", binforx[0] = " << binforx[0] << endl; | |
2606 #endif | |
2607 if (usePeaksCache) { //!!! | |
2608 sourceModel = getPeakCache(v); | |
2609 divisor = 8;//!!! | |
2610 minbin = 0; | |
2611 maxbin = sourceModel->getHeight(); | |
2612 } else { | |
2613 sourceModel = fft = getFFTModel(v); | |
2614 } | |
2615 | |
2616 if (!sourceModel) return false; | |
2617 | |
2618 bool interpolate = false; | |
2619 Preferences::SpectrogramSmoothing smoothing = | |
2620 Preferences::getInstance()->getSpectrogramSmoothing(); | |
2621 if (smoothing == Preferences::SpectrogramInterpolated || | |
2622 smoothing == Preferences::SpectrogramZeroPaddedAndInterpolated) { | |
2623 if (m_binDisplay != PeakBins && | |
2624 m_binDisplay != PeakFrequencies) { | |
2625 interpolate = true; | |
2626 } | |
2627 } | |
2628 | |
2629 int psx = -1; | |
2630 | |
2631 #ifdef __GNUC__ | |
2632 float autoarray[maxbin - minbin + 1]; | |
2633 float peaks[h]; | |
2634 #else | |
2635 float *autoarray = (float *)alloca((maxbin - minbin + 1) * sizeof(float)); | |
2636 float *peaks = (float *)alloca(h * sizeof(float)); | |
2637 #endif | |
2638 | |
2639 const float *values = autoarray; | |
2640 DenseThreeDimensionalModel::Column c; | |
2641 | |
2642 for (int x = 0; x < w; ++x) { | |
2643 | |
2644 if (binforx[x] < 0) continue; | |
2645 | |
2646 // float columnGain = m_gain; | |
2647 float columnMax = 0.f; | |
2648 | |
2649 int sx0 = binforx[x] / divisor; | |
2650 int sx1 = sx0; | |
2651 if (x+1 < w) sx1 = binforx[x+1] / divisor; | |
2652 if (sx0 < 0) sx0 = sx1 - 1; | |
2653 if (sx0 < 0) continue; | |
2654 if (sx1 <= sx0) sx1 = sx0 + 1; | |
2655 | |
2656 for (int y = 0; y < h; ++y) peaks[y] = 0.f; | |
2657 | |
2658 for (int sx = sx0; sx < sx1; ++sx) { | |
2659 | |
2660 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2661 // cerr << "sx = " << sx << endl; | |
2662 #endif | |
2663 | |
2664 if (sx < 0 || sx >= int(sourceModel->getWidth())) continue; | |
2665 | |
2666 if (!m_synchronous) { | |
2667 if (!sourceModel->isColumnAvailable(sx)) { | |
2668 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2669 cerr << "Met unavailable column at col " << sx << endl; | |
2670 #endif | |
2671 return false; | |
2672 } | |
2673 } | |
2674 | |
2675 MagnitudeRange mag; | |
2676 | |
2677 if (sx != psx) { | |
2678 if (fft) { | |
2679 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2680 SVDEBUG << "Retrieving column " << sx << " from fft directly" << endl; | |
2681 #endif | |
2682 if (m_colourScale == PhaseColourScale) { | |
2683 fft->getPhasesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2684 } else if (m_normalizeColumns) { | |
2685 fft->getNormalizedMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2686 } else if (m_normalizeHybrid) { | |
2687 fft->getNormalizedMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2688 double max = fft->getMaximumMagnitudeAt(sx); | |
2689 for (int i = minbin; i <= maxbin; ++i) { | |
2690 if (max > 0.0) { | |
2691 autoarray[i - minbin] = float(autoarray[i - minbin] * log10(max)); | |
2692 } | |
2693 } | |
2694 } else { | |
2695 fft->getMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2696 } | |
2697 } else { | |
2698 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2699 SVDEBUG << "Retrieving column " << sx << " from peaks cache" << endl; | |
2700 #endif | |
2701 c = sourceModel->getColumn(sx); | |
2702 if (m_normalizeColumns || m_normalizeHybrid) { | |
2703 for (int y = 0; y < h; ++y) { | |
2704 if (c[y] > columnMax) columnMax = c[y]; | |
2705 } | |
2706 } | |
2707 values = c.constData() + minbin; | |
2708 } | |
2709 psx = sx; | |
2710 } | |
2711 | |
2712 for (int y = 0; y < h; ++y) { | |
2713 | |
2714 double sy0 = binfory[y]; | |
2715 double sy1 = sy0 + 1; | |
2716 if (y+1 < h) sy1 = binfory[y+1]; | |
2717 | |
2718 double value = 0.0; | |
2719 | |
2720 if (interpolate && fabs(sy1 - sy0) < 1.0) { | |
2721 | |
2722 double centre = (sy0 + sy1) / 2; | |
2723 double dist = (centre - 0.5) - rint(centre - 0.5); | |
2724 int bin = int(centre); | |
2725 int other = (dist < 0 ? (bin-1) : (bin+1)); | |
2726 if (bin < minbin) bin = minbin; | |
2727 if (bin > maxbin) bin = maxbin; | |
2728 if (other < minbin || other > maxbin) other = bin; | |
2729 double prop = 1.0 - fabs(dist); | |
2730 | |
2731 double v0 = values[bin - minbin]; | |
2732 double v1 = values[other - minbin]; | |
2733 if (m_binDisplay == PeakBins) { | |
2734 if (bin == minbin || bin == maxbin || | |
2735 v0 < values[bin-minbin-1] || | |
2736 v0 < values[bin-minbin+1]) v0 = 0.0; | |
2737 if (other == minbin || other == maxbin || | |
2738 v1 < values[other-minbin-1] || | |
2739 v1 < values[other-minbin+1]) v1 = 0.0; | |
2740 } | |
2741 if (v0 == 0.0 && v1 == 0.0) continue; | |
2742 value = prop * v0 + (1.0 - prop) * v1; | |
2743 | |
2744 if (m_colourScale != PhaseColourScale) { | |
2745 if (!m_normalizeColumns) { | |
2746 value /= (m_fftSize/2.0); | |
2747 } | |
2748 mag.sample(float(value)); | |
2749 value *= m_gain; | |
2750 } | |
2751 | |
2752 peaks[y] = float(value); | |
2753 | |
2754 } else { | |
2755 | |
2756 int by0 = int(sy0 + 0.0001); | |
2757 int by1 = int(sy1 + 0.0001); | |
2758 if (by1 < by0 + 1) by1 = by0 + 1; | |
2759 | |
2760 for (int bin = by0; bin < by1; ++bin) { | |
2761 | |
2762 value = values[bin - minbin]; | |
2763 if (m_binDisplay == PeakBins) { | |
2764 if (bin == minbin || bin == maxbin || | |
2765 value < values[bin-minbin-1] || | |
2766 value < values[bin-minbin+1]) continue; | |
2767 } | |
2768 | |
2769 if (m_colourScale != PhaseColourScale) { | |
2770 if (!m_normalizeColumns) { | |
2771 value /= (m_fftSize/2.0); | |
2772 } | |
2773 mag.sample(float(value)); | |
2774 value *= m_gain; | |
2775 } | |
2776 | |
2777 if (value > peaks[y]) { | |
2778 peaks[y] = float(value); //!!! not right for phase! | |
2779 } | |
2780 } | |
2781 } | |
2782 } | |
2783 | |
2784 if (mag.isSet()) { | |
2785 if (sx >= int(m_columnMags.size())) { | |
2786 #ifdef DEBUG_SPECTROGRAM | |
2787 cerr << "INTERNAL ERROR: " << sx << " >= " | |
2788 << m_columnMags.size() | |
2789 << " at SpectrogramLayer.cpp::paintDrawBuffer" | |
2790 << endl; | |
2791 #endif | |
2792 } else { | |
2793 m_columnMags[sx].sample(mag); | |
2794 if (overallMag.sample(mag)) overallMagChanged = true; | |
2795 } | |
2796 } | |
2797 } | |
2798 | |
2799 for (int y = 0; y < h; ++y) { | |
2800 | |
2801 double peak = peaks[y]; | |
2802 | |
2803 if (m_colourScale != PhaseColourScale && | |
2804 (m_normalizeColumns || m_normalizeHybrid) && | |
2805 columnMax > 0.f) { | |
2806 peak /= columnMax; | |
2807 if (m_normalizeHybrid) { | |
2808 peak *= log10(columnMax); | |
2809 } | |
2810 } | |
2811 | |
2812 unsigned char peakpix = getDisplayValue(v, peak); | |
2813 | |
2814 m_drawBuffer.setPixel(x, h-y-1, peakpix); | |
2815 } | |
2816 } | |
2817 | |
2818 return true; | |
2819 } | |
2820 | |
2821 void | |
2822 SpectrogramLayer::illuminateLocalFeatures(View *v, QPainter &paint) const | |
2823 { | 1602 { |
2824 Profiler profiler("SpectrogramLayer::illuminateLocalFeatures"); | 1603 Profiler profiler("SpectrogramLayer::illuminateLocalFeatures"); |
2825 | 1604 |
2826 QPoint localPos; | 1605 QPoint localPos; |
2827 if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { | 1606 if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { |
2828 return; | 1607 return; |
2829 } | 1608 } |
2830 | 1609 |
2831 // cerr << "SpectrogramLayer: illuminateLocalFeatures(" | 1610 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2832 // << localPos.x() << "," << localPos.y() << ")" << endl; | 1611 cerr << "SpectrogramLayer: illuminateLocalFeatures(" |
1612 << localPos.x() << "," << localPos.y() << ")" << endl; | |
1613 #endif | |
2833 | 1614 |
2834 double s0, s1; | 1615 double s0, s1; |
2835 double f0, f1; | 1616 double f0, f1; |
2836 | 1617 |
2837 if (getXBinRange(v, localPos.x(), s0, s1) && | 1618 if (getXBinRange(v, localPos.x(), s0, s1) && |
2844 int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); | 1625 int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); |
2845 | 1626 |
2846 int y1 = int(getYForFrequency(v, f1)); | 1627 int y1 = int(getYForFrequency(v, f1)); |
2847 int y0 = int(getYForFrequency(v, f0)); | 1628 int y0 = int(getYForFrequency(v, f0)); |
2848 | 1629 |
2849 // cerr << "SpectrogramLayer: illuminate " | 1630 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2850 // << x0 << "," << y1 << " -> " << x1 << "," << y0 << endl; | 1631 cerr << "SpectrogramLayer: illuminate " |
1632 << x0 << "," << y1 << " -> " << x1 << "," << y0 << endl; | |
1633 #endif | |
2851 | 1634 |
2852 paint.setPen(v->getForeground()); | 1635 paint.setPen(v->getForeground()); |
2853 | 1636 |
2854 //!!! should we be using paintCrosshairs for this? | 1637 //!!! should we be using paintCrosshairs for this? |
2855 | 1638 |
2856 paint.drawRect(x0, y1, x1 - x0 + 1, y0 - y1 + 1); | 1639 paint.drawRect(x0, y1, x1 - x0 + 1, y0 - y1 + 1); |
2857 } | 1640 } |
2858 } | 1641 } |
2859 | 1642 |
2860 double | 1643 double |
2861 SpectrogramLayer::getYForFrequency(const View *v, double frequency) const | 1644 SpectrogramLayer::getYForFrequency(const LayerGeometryProvider *v, double frequency) const |
2862 { | 1645 { |
2863 return v->getYForFrequency(frequency, | 1646 return v->getYForFrequency(frequency, |
2864 getEffectiveMinFrequency(), | 1647 getEffectiveMinFrequency(), |
2865 getEffectiveMaxFrequency(), | 1648 getEffectiveMaxFrequency(), |
2866 m_frequencyScale == LogFrequencyScale); | 1649 m_binScale == BinScale::Log); |
2867 } | 1650 } |
2868 | 1651 |
2869 double | 1652 double |
2870 SpectrogramLayer::getFrequencyForY(const View *v, int y) const | 1653 SpectrogramLayer::getFrequencyForY(const LayerGeometryProvider *v, int y) const |
2871 { | 1654 { |
2872 return v->getFrequencyForY(y, | 1655 return v->getFrequencyForY(y, |
2873 getEffectiveMinFrequency(), | 1656 getEffectiveMinFrequency(), |
2874 getEffectiveMaxFrequency(), | 1657 getEffectiveMaxFrequency(), |
2875 m_frequencyScale == LogFrequencyScale); | 1658 m_binScale == BinScale::Log); |
2876 } | 1659 } |
2877 | 1660 |
2878 int | 1661 int |
2879 SpectrogramLayer::getCompletion(View *v) const | 1662 SpectrogramLayer::getCompletion(LayerGeometryProvider *) const |
2880 { | 1663 { |
2881 if (m_updateTimer == 0) return 100; | 1664 if (!m_fftModel) return 100; |
2882 if (m_fftModels.find(v) == m_fftModels.end()) return 100; | 1665 int completion = m_fftModel->getCompletion(); |
2883 | |
2884 int completion = m_fftModels[v].first->getCompletion(); | |
2885 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1666 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2886 SVDEBUG << "SpectrogramLayer::getCompletion: completion = " << completion << endl; | 1667 cerr << "SpectrogramLayer::getCompletion: completion = " << completion << endl; |
2887 #endif | 1668 #endif |
2888 return completion; | 1669 return completion; |
2889 } | 1670 } |
2890 | 1671 |
2891 QString | 1672 QString |
2892 SpectrogramLayer::getError(View *v) const | 1673 SpectrogramLayer::getError(LayerGeometryProvider *) const |
2893 { | 1674 { |
2894 if (m_fftModels.find(v) == m_fftModels.end()) return ""; | 1675 if (!m_fftModel) return ""; |
2895 return m_fftModels[v].first->getError(); | 1676 return m_fftModel->getError(); |
2896 } | 1677 } |
2897 | 1678 |
2898 bool | 1679 bool |
2899 SpectrogramLayer::getValueExtents(double &min, double &max, | 1680 SpectrogramLayer::getValueExtents(double &min, double &max, |
2900 bool &logarithmic, QString &unit) const | 1681 bool &logarithmic, QString &unit) const |
2901 { | 1682 { |
2902 if (!m_model) return false; | 1683 if (!m_model) return false; |
2903 | 1684 |
2904 sv_samplerate_t sr = m_model->getSampleRate(); | 1685 sv_samplerate_t sr = m_model->getSampleRate(); |
2905 min = double(sr) / m_fftSize; | 1686 min = double(sr) / getFFTSize(); |
2906 max = double(sr) / 2; | 1687 max = double(sr) / 2; |
2907 | 1688 |
2908 logarithmic = (m_frequencyScale == LogFrequencyScale); | 1689 logarithmic = (m_binScale == BinScale::Log); |
2909 unit = "Hz"; | 1690 unit = "Hz"; |
2910 return true; | 1691 return true; |
2911 } | 1692 } |
2912 | 1693 |
2913 bool | 1694 bool |
2933 int minf = int(lrint(min)); | 1714 int minf = int(lrint(min)); |
2934 int maxf = int(lrint(max)); | 1715 int maxf = int(lrint(max)); |
2935 | 1716 |
2936 if (m_minFrequency == minf && m_maxFrequency == maxf) return true; | 1717 if (m_minFrequency == minf && m_maxFrequency == maxf) return true; |
2937 | 1718 |
2938 invalidateImageCaches(); | 1719 invalidateRenderers(); |
2939 invalidateMagnitudes(); | 1720 invalidateMagnitudes(); |
2940 | 1721 |
2941 m_minFrequency = minf; | 1722 m_minFrequency = minf; |
2942 m_maxFrequency = maxf; | 1723 m_maxFrequency = maxf; |
2943 | 1724 |
2951 | 1732 |
2952 return true; | 1733 return true; |
2953 } | 1734 } |
2954 | 1735 |
2955 bool | 1736 bool |
2956 SpectrogramLayer::getYScaleValue(const View *v, int y, | 1737 SpectrogramLayer::getYScaleValue(const LayerGeometryProvider *v, int y, |
2957 double &value, QString &unit) const | 1738 double &value, QString &unit) const |
2958 { | 1739 { |
2959 value = getFrequencyForY(v, y); | 1740 value = getFrequencyForY(v, y); |
2960 unit = "Hz"; | 1741 unit = "Hz"; |
2961 return true; | 1742 return true; |
2962 } | 1743 } |
2963 | 1744 |
2964 bool | 1745 bool |
2965 SpectrogramLayer::snapToFeatureFrame(View *, | 1746 SpectrogramLayer::snapToFeatureFrame(LayerGeometryProvider *, |
2966 sv_frame_t &frame, | 1747 sv_frame_t &frame, |
2967 int &resolution, | 1748 int &resolution, |
2968 SnapType snap) const | 1749 SnapType snap) const |
2969 { | 1750 { |
2970 resolution = getWindowIncrement(); | 1751 resolution = getWindowIncrement(); |
2983 | 1764 |
2984 return true; | 1765 return true; |
2985 } | 1766 } |
2986 | 1767 |
2987 void | 1768 void |
2988 SpectrogramLayer::measureDoubleClick(View *v, QMouseEvent *e) | 1769 SpectrogramLayer::measureDoubleClick(LayerGeometryProvider *v, QMouseEvent *e) |
2989 { | 1770 { |
2990 ImageCache &cache = m_imageCaches[v]; | 1771 const Colour3DPlotRenderer *renderer = getRenderer(v); |
2991 | 1772 if (!renderer) return; |
2992 cerr << "cache width: " << cache.image.width() << ", height: " | 1773 |
2993 << cache.image.height() << endl; | 1774 QRect rect = renderer->findSimilarRegionExtents(e->pos()); |
2994 | |
2995 QImage image = cache.image; | |
2996 | |
2997 ImageRegionFinder finder; | |
2998 QRect rect = finder.findRegionExtents(&image, e->pos()); | |
2999 if (rect.isValid()) { | 1775 if (rect.isValid()) { |
3000 MeasureRect mr; | 1776 MeasureRect mr; |
3001 setMeasureRectFromPixrect(v, mr, rect); | 1777 setMeasureRectFromPixrect(v, mr, rect); |
3002 CommandHistory::getInstance()->addCommand | 1778 CommandHistory::getInstance()->addCommand |
3003 (new AddMeasurementRectCommand(this, mr)); | 1779 (new AddMeasurementRectCommand(this, mr)); |
3004 } | 1780 } |
3005 } | 1781 } |
3006 | 1782 |
3007 bool | 1783 bool |
3008 SpectrogramLayer::getCrosshairExtents(View *v, QPainter &paint, | 1784 SpectrogramLayer::getCrosshairExtents(LayerGeometryProvider *v, QPainter &paint, |
3009 QPoint cursorPos, | 1785 QPoint cursorPos, |
3010 std::vector<QRect> &extents) const | 1786 vector<QRect> &extents) const |
3011 { | 1787 { |
3012 QRect vertical(cursorPos.x() - 12, 0, 12, v->height()); | 1788 QRect vertical(cursorPos.x() - 12, 0, 12, v->getPaintHeight()); |
3013 extents.push_back(vertical); | 1789 extents.push_back(vertical); |
3014 | 1790 |
3015 QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); | 1791 QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1); |
3016 extents.push_back(horizontal); | 1792 extents.push_back(horizontal); |
3017 | 1793 |
3026 paint.fontMetrics().width("C#10+50c") + 2, | 1802 paint.fontMetrics().width("C#10+50c") + 2, |
3027 paint.fontMetrics().height()); | 1803 paint.fontMetrics().height()); |
3028 extents.push_back(pitch); | 1804 extents.push_back(pitch); |
3029 | 1805 |
3030 QRect rt(cursorPos.x(), | 1806 QRect rt(cursorPos.x(), |
3031 v->height() - paint.fontMetrics().height() - 2, | 1807 v->getPaintHeight() - paint.fontMetrics().height() - 2, |
3032 paint.fontMetrics().width("1234.567 s"), | 1808 paint.fontMetrics().width("1234.567 s"), |
3033 paint.fontMetrics().height()); | 1809 paint.fontMetrics().height()); |
3034 extents.push_back(rt); | 1810 extents.push_back(rt); |
3035 | 1811 |
3036 int w(paint.fontMetrics().width("1234567890") + 2); | 1812 int w(paint.fontMetrics().width("1234567890") + 2); |
3037 QRect frame(cursorPos.x() - w - 2, | 1813 QRect frame(cursorPos.x() - w - 2, |
3038 v->height() - paint.fontMetrics().height() - 2, | 1814 v->getPaintHeight() - paint.fontMetrics().height() - 2, |
3039 w, | 1815 w, |
3040 paint.fontMetrics().height()); | 1816 paint.fontMetrics().height()); |
3041 extents.push_back(frame); | 1817 extents.push_back(frame); |
3042 | 1818 |
3043 return true; | 1819 return true; |
3044 } | 1820 } |
3045 | 1821 |
3046 void | 1822 void |
3047 SpectrogramLayer::paintCrosshairs(View *v, QPainter &paint, | 1823 SpectrogramLayer::paintCrosshairs(LayerGeometryProvider *v, QPainter &paint, |
3048 QPoint cursorPos) const | 1824 QPoint cursorPos) const |
3049 { | 1825 { |
3050 paint.save(); | 1826 paint.save(); |
3051 | 1827 |
3052 int sw = getVerticalScaleWidth(v, m_haveDetailedScale, paint); | 1828 int sw = getVerticalScaleWidth(v, m_haveDetailedScale, paint); |
3057 paint.setFont(fn); | 1833 paint.setFont(fn); |
3058 } | 1834 } |
3059 paint.setPen(m_crosshairColour); | 1835 paint.setPen(m_crosshairColour); |
3060 | 1836 |
3061 paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); | 1837 paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); |
3062 paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->height()); | 1838 paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->getPaintHeight()); |
3063 | 1839 |
3064 double fundamental = getFrequencyForY(v, cursorPos.y()); | 1840 double fundamental = getFrequencyForY(v, cursorPos.y()); |
3065 | 1841 |
3066 v->drawVisibleText(paint, | 1842 PaintAssistant::drawVisibleText(v, paint, |
3067 sw + 2, | 1843 sw + 2, |
3068 cursorPos.y() - 2, | 1844 cursorPos.y() - 2, |
3069 QString("%1 Hz").arg(fundamental), | 1845 QString("%1 Hz").arg(fundamental), |
3070 View::OutlinedText); | 1846 PaintAssistant::OutlinedText); |
3071 | 1847 |
3072 if (Pitch::isFrequencyInMidiRange(fundamental)) { | 1848 if (Pitch::isFrequencyInMidiRange(fundamental)) { |
3073 QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); | 1849 QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); |
3074 v->drawVisibleText(paint, | 1850 PaintAssistant::drawVisibleText(v, paint, |
3075 sw + 2, | 1851 sw + 2, |
3076 cursorPos.y() + paint.fontMetrics().ascent() + 2, | 1852 cursorPos.y() + paint.fontMetrics().ascent() + 2, |
3077 pitchLabel, | 1853 pitchLabel, |
3078 View::OutlinedText); | 1854 PaintAssistant::OutlinedText); |
3079 } | 1855 } |
3080 | 1856 |
3081 sv_frame_t frame = v->getFrameForX(cursorPos.x()); | 1857 sv_frame_t frame = v->getFrameForX(cursorPos.x()); |
3082 RealTime rt = RealTime::frame2RealTime(frame, m_model->getSampleRate()); | 1858 RealTime rt = RealTime::frame2RealTime(frame, m_model->getSampleRate()); |
3083 QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); | 1859 QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); |
3084 QString frameLabel = QString("%1").arg(frame); | 1860 QString frameLabel = QString("%1").arg(frame); |
3085 v->drawVisibleText(paint, | 1861 PaintAssistant::drawVisibleText(v, paint, |
3086 cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, | 1862 cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, |
3087 v->height() - 2, | 1863 v->getPaintHeight() - 2, |
3088 frameLabel, | 1864 frameLabel, |
3089 View::OutlinedText); | 1865 PaintAssistant::OutlinedText); |
3090 v->drawVisibleText(paint, | 1866 PaintAssistant::drawVisibleText(v, paint, |
3091 cursorPos.x() + 2, | 1867 cursorPos.x() + 2, |
3092 v->height() - 2, | 1868 v->getPaintHeight() - 2, |
3093 rtLabel, | 1869 rtLabel, |
3094 View::OutlinedText); | 1870 PaintAssistant::OutlinedText); |
3095 | 1871 |
3096 int harmonic = 2; | 1872 int harmonic = 2; |
3097 | 1873 |
3098 while (harmonic < 100) { | 1874 while (harmonic < 100) { |
3099 | 1875 |
3100 int hy = int(lrint(getYForFrequency(v, fundamental * harmonic))); | 1876 int hy = int(lrint(getYForFrequency(v, fundamental * harmonic))); |
3101 if (hy < 0 || hy > v->height()) break; | 1877 if (hy < 0 || hy > v->getPaintHeight()) break; |
3102 | 1878 |
3103 int len = 7; | 1879 int len = 7; |
3104 | 1880 |
3105 if (harmonic % 2 == 0) { | 1881 if (harmonic % 2 == 0) { |
3106 if (harmonic % 4 == 0) { | 1882 if (harmonic % 4 == 0) { |
3120 | 1896 |
3121 paint.restore(); | 1897 paint.restore(); |
3122 } | 1898 } |
3123 | 1899 |
3124 QString | 1900 QString |
3125 SpectrogramLayer::getFeatureDescription(View *v, QPoint &pos) const | 1901 SpectrogramLayer::getFeatureDescription(LayerGeometryProvider *v, QPoint &pos) const |
3126 { | 1902 { |
3127 int x = pos.x(); | 1903 int x = pos.x(); |
3128 int y = pos.y(); | 1904 int y = pos.y(); |
3129 | 1905 |
3130 if (!m_model || !m_model->isOK()) return ""; | 1906 if (!m_model || !m_model->isOK()) return ""; |
3145 haveValues = true; | 1921 haveValues = true; |
3146 } | 1922 } |
3147 | 1923 |
3148 QString adjFreqText = "", adjPitchText = ""; | 1924 QString adjFreqText = "", adjPitchText = ""; |
3149 | 1925 |
3150 if (m_binDisplay == PeakFrequencies) { | 1926 if (m_binDisplay == BinDisplay::PeakFrequencies) { |
3151 | 1927 |
3152 if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, | 1928 if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, |
3153 adjFreqMin, adjFreqMax)) { | 1929 adjFreqMin, adjFreqMax)) { |
3154 return ""; | 1930 return ""; |
3155 } | 1931 } |
3207 double dbMin = AudioLevel::multiplier_to_dB(magMin); | 1983 double dbMin = AudioLevel::multiplier_to_dB(magMin); |
3208 double dbMax = AudioLevel::multiplier_to_dB(magMax); | 1984 double dbMax = AudioLevel::multiplier_to_dB(magMax); |
3209 QString dbMinString; | 1985 QString dbMinString; |
3210 QString dbMaxString; | 1986 QString dbMaxString; |
3211 if (dbMin == AudioLevel::DB_FLOOR) { | 1987 if (dbMin == AudioLevel::DB_FLOOR) { |
3212 dbMinString = tr("-Inf"); | 1988 dbMinString = Strings::minus_infinity; |
3213 } else { | 1989 } else { |
3214 dbMinString = QString("%1").arg(lrint(dbMin)); | 1990 dbMinString = QString("%1").arg(lrint(dbMin)); |
3215 } | 1991 } |
3216 if (dbMax == AudioLevel::DB_FLOOR) { | 1992 if (dbMax == AudioLevel::DB_FLOOR) { |
3217 dbMaxString = tr("-Inf"); | 1993 dbMaxString = Strings::minus_infinity; |
3218 } else { | 1994 } else { |
3219 dbMaxString = QString("%1").arg(lrint(dbMax)); | 1995 dbMaxString = QString("%1").arg(lrint(dbMax)); |
3220 } | 1996 } |
3221 if (lrint(dbMin) != lrint(dbMax)) { | 1997 if (lrint(dbMin) != lrint(dbMax)) { |
3222 text += tr("dB:\t%1 - %2").arg(dbMinString).arg(dbMaxString); | 1998 text += tr("dB:\t%1 - %2").arg(dbMinString).arg(dbMaxString); |
3242 | 2018 |
3243 return cw; | 2019 return cw; |
3244 } | 2020 } |
3245 | 2021 |
3246 int | 2022 int |
3247 SpectrogramLayer::getVerticalScaleWidth(View *, bool detailed, QPainter &paint) const | 2023 SpectrogramLayer::getVerticalScaleWidth(LayerGeometryProvider *, bool detailed, QPainter &paint) const |
3248 { | 2024 { |
3249 if (!m_model || !m_model->isOK()) return 0; | 2025 if (!m_model || !m_model->isOK()) return 0; |
3250 | 2026 |
3251 int cw = 0; | 2027 int cw = 0; |
3252 if (detailed) cw = getColourScaleWidth(paint); | 2028 if (detailed) cw = getColourScaleWidth(paint); |
3257 m_model->getSampleRate() / 2)); | 2033 m_model->getSampleRate() / 2)); |
3258 | 2034 |
3259 int fw = paint.fontMetrics().width(tr("43Hz")); | 2035 int fw = paint.fontMetrics().width(tr("43Hz")); |
3260 if (tw < fw) tw = fw; | 2036 if (tw < fw) tw = fw; |
3261 | 2037 |
3262 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); | 2038 int tickw = (m_binScale == BinScale::Log ? 10 : 4); |
3263 | 2039 |
3264 return cw + tickw + tw + 13; | 2040 return cw + tickw + tw + 13; |
3265 } | 2041 } |
3266 | 2042 |
3267 void | 2043 void |
3268 SpectrogramLayer::paintVerticalScale(View *v, bool detailed, QPainter &paint, QRect rect) const | 2044 SpectrogramLayer::paintVerticalScale(LayerGeometryProvider *v, bool detailed, |
2045 QPainter &paint, QRect rect) const | |
3269 { | 2046 { |
3270 if (!m_model || !m_model->isOK()) { | 2047 if (!m_model || !m_model->isOK()) { |
3271 return; | 2048 return; |
3272 } | 2049 } |
3273 | 2050 |
3274 Profiler profiler("SpectrogramLayer::paintVerticalScale"); | 2051 Profiler profiler("SpectrogramLayer::paintVerticalScale"); |
3275 | 2052 |
3276 //!!! cache this? | 2053 //!!! cache this? |
3277 | 2054 |
3278 int h = rect.height(), w = rect.width(); | 2055 int h = rect.height(), w = rect.width(); |
3279 | 2056 int textHeight = paint.fontMetrics().height(); |
3280 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); | 2057 |
3281 int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); | 2058 if (detailed && (h > textHeight * 3 + 10)) { |
3282 | 2059 paintDetailedScale(v, paint, rect); |
3283 int bins = m_fftSize / 2; | 2060 } |
2061 m_haveDetailedScale = detailed; | |
2062 | |
2063 int tickw = (m_binScale == BinScale::Log ? 10 : 4); | |
2064 int pkw = (m_binScale == BinScale::Log ? 10 : 0); | |
2065 | |
2066 int bins = getFFTSize() / 2; | |
3284 sv_samplerate_t sr = m_model->getSampleRate(); | 2067 sv_samplerate_t sr = m_model->getSampleRate(); |
3285 | 2068 |
3286 if (m_maxFrequency > 0) { | 2069 if (m_maxFrequency > 0) { |
3287 bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | 2070 bins = int((double(m_maxFrequency) * getFFTSize()) / sr + 0.1); |
3288 if (bins > m_fftSize / 2) bins = m_fftSize / 2; | 2071 if (bins > getFFTSize() / 2) bins = getFFTSize() / 2; |
3289 } | 2072 } |
3290 | 2073 |
3291 int cw = 0; | 2074 int cw = 0; |
3292 | |
3293 if (detailed) cw = getColourScaleWidth(paint); | 2075 if (detailed) cw = getColourScaleWidth(paint); |
3294 int cbw = paint.fontMetrics().width("dB"); | |
3295 | 2076 |
3296 int py = -1; | 2077 int py = -1; |
3297 int textHeight = paint.fontMetrics().height(); | |
3298 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | 2078 int toff = -textHeight + paint.fontMetrics().ascent() + 2; |
3299 | 2079 |
3300 if (detailed && (h > textHeight * 3 + 10)) { | |
3301 | |
3302 int topLines = 2; | |
3303 if (m_colourScale == PhaseColourScale) topLines = 1; | |
3304 | |
3305 int ch = h - textHeight * (topLines + 1) - 8; | |
3306 // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); | |
3307 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
3308 | |
3309 QString top, bottom; | |
3310 double min = m_viewMags[v].getMin(); | |
3311 double max = m_viewMags[v].getMax(); | |
3312 | |
3313 double dBmin = AudioLevel::multiplier_to_dB(min); | |
3314 double dBmax = AudioLevel::multiplier_to_dB(max); | |
3315 | |
3316 if (dBmax < -60.f) dBmax = -60.f; | |
3317 else top = QString("%1").arg(lrint(dBmax)); | |
3318 | |
3319 if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; | |
3320 bottom = QString("%1").arg(lrint(dBmin)); | |
3321 | |
3322 //!!! & phase etc | |
3323 | |
3324 if (m_colourScale != PhaseColourScale) { | |
3325 paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, | |
3326 2 + textHeight + toff, "dBFS"); | |
3327 } | |
3328 | |
3329 // paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2, | |
3330 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
3331 2 + textHeight * topLines + toff + textHeight/2, top); | |
3332 | |
3333 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
3334 h + toff - 3 - textHeight/2, bottom); | |
3335 | |
3336 paint.save(); | |
3337 paint.setBrush(Qt::NoBrush); | |
3338 | |
3339 int lasty = 0; | |
3340 int lastdb = 0; | |
3341 | |
3342 for (int i = 0; i < ch; ++i) { | |
3343 | |
3344 double dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); | |
3345 int idb = int(dBval); | |
3346 | |
3347 double value = AudioLevel::dB_to_multiplier(dBval); | |
3348 int colour = getDisplayValue(v, value * m_gain); | |
3349 | |
3350 paint.setPen(m_palette.getColour((unsigned char)colour)); | |
3351 | |
3352 int y = textHeight * topLines + 4 + ch - i; | |
3353 | |
3354 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
3355 | |
3356 if (i == 0) { | |
3357 lasty = y; | |
3358 lastdb = idb; | |
3359 } else if (i < ch - paint.fontMetrics().ascent() && | |
3360 idb != lastdb && | |
3361 ((abs(y - lasty) > textHeight && | |
3362 idb % 10 == 0) || | |
3363 (abs(y - lasty) > paint.fontMetrics().ascent() && | |
3364 idb % 5 == 0))) { | |
3365 paint.setPen(v->getBackground()); | |
3366 QString text = QString("%1").arg(idb); | |
3367 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), | |
3368 y + toff + textHeight/2, text); | |
3369 paint.setPen(v->getForeground()); | |
3370 paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); | |
3371 lasty = y; | |
3372 lastdb = idb; | |
3373 } | |
3374 } | |
3375 paint.restore(); | |
3376 } | |
3377 | |
3378 paint.drawLine(cw + 7, 0, cw + 7, h); | 2080 paint.drawLine(cw + 7, 0, cw + 7, h); |
3379 | 2081 |
3380 int bin = -1; | 2082 int bin = -1; |
3381 | 2083 |
3382 for (int y = 0; y < v->height(); ++y) { | 2084 for (int y = 0; y < v->getPaintHeight(); ++y) { |
3383 | 2085 |
3384 double q0, q1; | 2086 double q0, q1; |
3385 if (!getYBinRange(v, v->height() - y, q0, q1)) continue; | 2087 if (!getYBinRange(v, v->getPaintHeight() - y, q0, q1)) continue; |
3386 | 2088 |
3387 int vy; | 2089 int vy; |
3388 | 2090 |
3389 if (int(q0) > bin) { | 2091 if (int(q0) > bin) { |
3390 vy = y; | 2092 vy = y; |
3391 bin = int(q0); | 2093 bin = int(q0); |
3392 } else { | 2094 } else { |
3393 continue; | 2095 continue; |
3394 } | 2096 } |
3395 | 2097 |
3396 int freq = int((sr * bin) / m_fftSize); | 2098 int freq = int((sr * bin) / getFFTSize()); |
3397 | 2099 |
3398 if (py >= 0 && (vy - py) < textHeight - 1) { | 2100 if (py >= 0 && (vy - py) < textHeight - 1) { |
3399 if (m_frequencyScale == LinearFrequencyScale) { | 2101 if (m_binScale == BinScale::Linear) { |
3400 paint.drawLine(w - tickw, h - vy, w, h - vy); | 2102 paint.drawLine(w - tickw, h - vy, w, h - vy); |
3401 } | 2103 } |
3402 continue; | 2104 continue; |
3403 } | 2105 } |
3404 | 2106 |
3405 QString text = QString("%1").arg(freq); | 2107 QString text = QString("%1").arg(freq); |
3406 if (bin == 1) text = tr("%1Hz").arg(freq); // bin 0 is DC | 2108 if (bin == 1) text = tr("%1Hz").arg(freq); // bin 0 is DC |
3407 paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); | 2109 paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy); |
3408 | 2110 |
3409 if (h - vy - textHeight >= -2) { | 2111 if (h - vy - textHeight >= -2) { |
3410 int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw); | 2112 int tx = w - 3 - paint.fontMetrics().width(text) - max(tickw, pkw); |
3411 paint.drawText(tx, h - vy + toff, text); | 2113 paint.drawText(tx, h - vy + toff, text); |
3412 } | 2114 } |
3413 | 2115 |
3414 py = vy; | 2116 py = vy; |
3415 } | 2117 } |
3416 | 2118 |
3417 if (m_frequencyScale == LogFrequencyScale) { | 2119 if (m_binScale == BinScale::Log) { |
3418 | 2120 |
3419 // piano keyboard | 2121 // piano keyboard |
3420 | 2122 |
3421 PianoScale().paintPianoVertical | 2123 PianoScale().paintPianoVertical |
3422 (v, paint, QRect(w - pkw - 1, 0, pkw, h), | 2124 (v, paint, QRect(w - pkw - 1, 0, pkw, h), |
3423 getEffectiveMinFrequency(), getEffectiveMaxFrequency()); | 2125 getEffectiveMinFrequency(), getEffectiveMaxFrequency()); |
3424 } | 2126 } |
3425 | 2127 |
3426 m_haveDetailedScale = detailed; | 2128 m_haveDetailedScale = detailed; |
2129 } | |
2130 | |
2131 void | |
2132 SpectrogramLayer::paintDetailedScale(LayerGeometryProvider *v, | |
2133 QPainter &paint, QRect rect) const | |
2134 { | |
2135 // The colour scale | |
2136 | |
2137 if (m_colourScale == ColourScaleType::Phase) { | |
2138 paintDetailedScalePhase(v, paint, rect); | |
2139 return; | |
2140 } | |
2141 | |
2142 int h = rect.height(); | |
2143 int textHeight = paint.fontMetrics().height(); | |
2144 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | |
2145 | |
2146 int cw = getColourScaleWidth(paint); | |
2147 int cbw = paint.fontMetrics().width("dB"); | |
2148 | |
2149 int topLines = 2; | |
2150 | |
2151 int ch = h - textHeight * (topLines + 1) - 8; | |
2152 // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); | |
2153 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
2154 | |
2155 QString top, bottom; | |
2156 double min = m_viewMags[v->getId()].getMin(); | |
2157 double max = m_viewMags[v->getId()].getMax(); | |
2158 | |
2159 if (min < m_threshold) min = m_threshold; | |
2160 if (max <= min) max = min + 0.1; | |
2161 | |
2162 double dBmin = AudioLevel::multiplier_to_dB(min); | |
2163 double dBmax = AudioLevel::multiplier_to_dB(max); | |
2164 | |
2165 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2166 cerr << "paintVerticalScale: for view id " << v->getId() | |
2167 << ": min = " << min << ", max = " << max | |
2168 << ", dBmin = " << dBmin << ", dBmax = " << dBmax << endl; | |
2169 #endif | |
2170 | |
2171 if (dBmax < -60.f) dBmax = -60.f; | |
2172 else top = QString("%1").arg(lrint(dBmax)); | |
2173 | |
2174 if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; | |
2175 bottom = QString("%1").arg(lrint(dBmin)); | |
2176 | |
2177 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2178 cerr << "adjusted dB range to min = " << dBmin << ", max = " << dBmax | |
2179 << endl; | |
2180 #endif | |
2181 | |
2182 paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, | |
2183 2 + textHeight + toff, "dBFS"); | |
2184 | |
2185 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
2186 2 + textHeight * topLines + toff + textHeight/2, top); | |
2187 | |
2188 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
2189 h + toff - 3 - textHeight/2, bottom); | |
2190 | |
2191 paint.save(); | |
2192 paint.setBrush(Qt::NoBrush); | |
2193 | |
2194 int lasty = 0; | |
2195 int lastdb = 0; | |
2196 | |
2197 for (int i = 0; i < ch; ++i) { | |
2198 | |
2199 double dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); | |
2200 int idb = int(dBval); | |
2201 | |
2202 double value = AudioLevel::dB_to_multiplier(dBval); | |
2203 paint.setPen(getRenderer(v)->getColour(value)); | |
2204 | |
2205 int y = textHeight * topLines + 4 + ch - i; | |
2206 | |
2207 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
2208 | |
2209 if (i == 0) { | |
2210 lasty = y; | |
2211 lastdb = idb; | |
2212 } else if (i < ch - paint.fontMetrics().ascent() && | |
2213 idb != lastdb && | |
2214 ((abs(y - lasty) > textHeight && | |
2215 idb % 10 == 0) || | |
2216 (abs(y - lasty) > paint.fontMetrics().ascent() && | |
2217 idb % 5 == 0))) { | |
2218 paint.setPen(v->getForeground()); | |
2219 QString text = QString("%1").arg(idb); | |
2220 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), | |
2221 y + toff + textHeight/2, text); | |
2222 paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); | |
2223 lasty = y; | |
2224 lastdb = idb; | |
2225 } | |
2226 } | |
2227 paint.restore(); | |
2228 } | |
2229 | |
2230 void | |
2231 SpectrogramLayer::paintDetailedScalePhase(LayerGeometryProvider *v, | |
2232 QPainter &paint, QRect rect) const | |
2233 { | |
2234 // The colour scale in phase mode | |
2235 | |
2236 int h = rect.height(); | |
2237 int textHeight = paint.fontMetrics().height(); | |
2238 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | |
2239 | |
2240 int cw = getColourScaleWidth(paint); | |
2241 | |
2242 // Phase is not measured in dB of course, but this places the | |
2243 // scale at the same position as in the magnitude spectrogram | |
2244 int cbw = paint.fontMetrics().width("dB"); | |
2245 | |
2246 int topLines = 1; | |
2247 | |
2248 int ch = h - textHeight * (topLines + 1) - 8; | |
2249 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
2250 | |
2251 QString top = Strings::pi, bottom = Strings::minus_pi, middle = "0"; | |
2252 | |
2253 double min = -M_PI; | |
2254 double max = M_PI; | |
2255 | |
2256 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
2257 2 + textHeight * topLines + toff + textHeight/2, top); | |
2258 | |
2259 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(middle), | |
2260 2 + textHeight * topLines + ch/2 + toff + textHeight/2, middle); | |
2261 | |
2262 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
2263 h + toff - 3 - textHeight/2, bottom); | |
2264 | |
2265 paint.save(); | |
2266 paint.setBrush(Qt::NoBrush); | |
2267 | |
2268 for (int i = 0; i < ch; ++i) { | |
2269 double val = min + (((max - min) * i) / (ch - 1)); | |
2270 paint.setPen(getRenderer(v)->getColour(val)); | |
2271 int y = textHeight * topLines + 4 + ch - i; | |
2272 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
2273 } | |
2274 paint.restore(); | |
3427 } | 2275 } |
3428 | 2276 |
3429 class SpectrogramRangeMapper : public RangeMapper | 2277 class SpectrogramRangeMapper : public RangeMapper |
3430 { | 2278 { |
3431 public: | 2279 public: |
3488 { | 2336 { |
3489 if (!m_model) return 0; | 2337 if (!m_model) return 0; |
3490 | 2338 |
3491 sv_samplerate_t sr = m_model->getSampleRate(); | 2339 sv_samplerate_t sr = m_model->getSampleRate(); |
3492 | 2340 |
3493 SpectrogramRangeMapper mapper(sr, m_fftSize); | 2341 SpectrogramRangeMapper mapper(sr, getFFTSize()); |
3494 | 2342 |
3495 // int maxStep = mapper.getPositionForValue((double(sr) / m_fftSize) + 0.001); | 2343 // int maxStep = mapper.getPositionForValue((double(sr) / getFFTSize()) + 0.001); |
3496 int maxStep = mapper.getPositionForValue(0); | 2344 int maxStep = mapper.getPositionForValue(0); |
3497 int minStep = mapper.getPositionForValue(double(sr) / 2); | 2345 int minStep = mapper.getPositionForValue(double(sr) / 2); |
3498 | 2346 |
3499 int initialMax = m_initialMaxFrequency; | 2347 int initialMax = m_initialMaxFrequency; |
3500 if (initialMax == 0) initialMax = int(sr / 2); | 2348 if (initialMax == 0) initialMax = int(sr / 2); |
3512 if (!m_model) return 0; | 2360 if (!m_model) return 0; |
3513 | 2361 |
3514 double dmin, dmax; | 2362 double dmin, dmax; |
3515 getDisplayExtents(dmin, dmax); | 2363 getDisplayExtents(dmin, dmax); |
3516 | 2364 |
3517 SpectrogramRangeMapper mapper(m_model->getSampleRate(), m_fftSize); | 2365 SpectrogramRangeMapper mapper(m_model->getSampleRate(), getFFTSize()); |
3518 int n = mapper.getPositionForValue(dmax - dmin); | 2366 int n = mapper.getPositionForValue(dmax - dmin); |
3519 // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; | 2367 // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; |
3520 return n; | 2368 return n; |
3521 } | 2369 } |
3522 | 2370 |
3529 // getDisplayExtents(dmin, dmax); | 2377 // getDisplayExtents(dmin, dmax); |
3530 | 2378 |
3531 // cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << endl; | 2379 // cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << endl; |
3532 | 2380 |
3533 sv_samplerate_t sr = m_model->getSampleRate(); | 2381 sv_samplerate_t sr = m_model->getSampleRate(); |
3534 SpectrogramRangeMapper mapper(sr, m_fftSize); | 2382 SpectrogramRangeMapper mapper(sr, getFFTSize()); |
3535 double newdist = mapper.getValueForPosition(step); | 2383 double newdist = mapper.getValueForPosition(step); |
3536 | 2384 |
3537 double newmin, newmax; | 2385 double newmin, newmax; |
3538 | 2386 |
3539 if (m_frequencyScale == LogFrequencyScale) { | 2387 if (m_binScale == BinScale::Log) { |
3540 | 2388 |
3541 // need to pick newmin and newmax such that | 2389 // need to pick newmin and newmax such that |
3542 // | 2390 // |
3543 // (log(newmin) + log(newmax)) / 2 == logmid | 2391 // (log(newmin) + log(newmax)) / 2 == logmid |
3544 // and | 2392 // and |
3590 | 2438 |
3591 RangeMapper * | 2439 RangeMapper * |
3592 SpectrogramLayer::getNewVerticalZoomRangeMapper() const | 2440 SpectrogramLayer::getNewVerticalZoomRangeMapper() const |
3593 { | 2441 { |
3594 if (!m_model) return 0; | 2442 if (!m_model) return 0; |
3595 return new SpectrogramRangeMapper(m_model->getSampleRate(), m_fftSize); | 2443 return new SpectrogramRangeMapper(m_model->getSampleRate(), getFFTSize()); |
3596 } | 2444 } |
3597 | 2445 |
3598 void | 2446 void |
3599 SpectrogramLayer::updateMeasureRectYCoords(View *v, const MeasureRect &r) const | 2447 SpectrogramLayer::updateMeasureRectYCoords(LayerGeometryProvider *v, const MeasureRect &r) const |
3600 { | 2448 { |
3601 int y0 = 0; | 2449 int y0 = 0; |
3602 if (r.startY > 0.0) y0 = int(getYForFrequency(v, r.startY)); | 2450 if (r.startY > 0.0) y0 = int(getYForFrequency(v, r.startY)); |
3603 | 2451 |
3604 int y1 = y0; | 2452 int y1 = y0; |
3608 | 2456 |
3609 r.pixrect = QRect(r.pixrect.x(), y0, r.pixrect.width(), y1 - y0); | 2457 r.pixrect = QRect(r.pixrect.x(), y0, r.pixrect.width(), y1 - y0); |
3610 } | 2458 } |
3611 | 2459 |
3612 void | 2460 void |
3613 SpectrogramLayer::setMeasureRectYCoord(View *v, MeasureRect &r, bool start, int y) const | 2461 SpectrogramLayer::setMeasureRectYCoord(LayerGeometryProvider *v, MeasureRect &r, bool start, int y) const |
3614 { | 2462 { |
3615 if (start) { | 2463 if (start) { |
3616 r.startY = getFrequencyForY(v, y); | 2464 r.startY = getFrequencyForY(v, y); |
3617 r.endY = r.startY; | 2465 r.endY = r.startY; |
3618 } else { | 2466 } else { |
3646 "colourRotation=\"%5\" " | 2494 "colourRotation=\"%5\" " |
3647 "frequencyScale=\"%6\" " | 2495 "frequencyScale=\"%6\" " |
3648 "binDisplay=\"%7\" ") | 2496 "binDisplay=\"%7\" ") |
3649 .arg(m_minFrequency) | 2497 .arg(m_minFrequency) |
3650 .arg(m_maxFrequency) | 2498 .arg(m_maxFrequency) |
3651 .arg(m_colourScale) | 2499 .arg(convertFromColourScale(m_colourScale, m_colourScaleMultiple)) |
3652 .arg(m_colourMap) | 2500 .arg(m_colourMap) |
3653 .arg(m_colourRotation) | 2501 .arg(m_colourRotation) |
3654 .arg(m_frequencyScale) | 2502 .arg(int(m_binScale)) |
3655 .arg(m_binDisplay); | 2503 .arg(int(m_binDisplay)); |
3656 | 2504 |
3657 s += QString("normalizeColumns=\"%1\" " | 2505 // New-style normalization attributes, allowing for more types of |
3658 "normalizeVisibleArea=\"%2\" " | 2506 // normalization in future: write out the column normalization |
3659 "normalizeHybrid=\"%3\" ") | 2507 // type separately, and then whether we are normalizing visible |
3660 .arg(m_normalizeColumns ? "true" : "false") | 2508 // area as well afterwards |
3661 .arg(m_normalizeVisibleArea ? "true" : "false") | 2509 |
3662 .arg(m_normalizeHybrid ? "true" : "false"); | 2510 s += QString("columnNormalization=\"%1\" ") |
3663 | 2511 .arg(m_normalization == ColumnNormalization::Max1 ? "peak" : |
2512 m_normalization == ColumnNormalization::Hybrid ? "hybrid" : "none"); | |
2513 | |
2514 // Old-style normalization attribute. We *don't* write out | |
2515 // normalizeHybrid here because the only release that would accept | |
2516 // it (Tony v1.0) has a totally different scale factor for | |
2517 // it. We'll just have to accept that session files from Tony | |
2518 // v2.0+ will look odd in Tony v1.0 | |
2519 | |
2520 s += QString("normalizeColumns=\"%1\" ") | |
2521 .arg(m_normalization == ColumnNormalization::Max1 ? "true" : "false"); | |
2522 | |
2523 // And this applies to both old- and new-style attributes | |
2524 | |
2525 s += QString("normalizeVisibleArea=\"%1\" ") | |
2526 .arg(m_normalizeVisibleArea ? "true" : "false"); | |
2527 | |
3664 Layer::toXml(stream, indent, extraAttributes + " " + s); | 2528 Layer::toXml(stream, indent, extraAttributes + " " + s); |
3665 } | 2529 } |
3666 | 2530 |
3667 void | 2531 void |
3668 SpectrogramLayer::setProperties(const QXmlAttributes &attributes) | 2532 SpectrogramLayer::setProperties(const QXmlAttributes &attributes) |
3705 if (ok) { | 2569 if (ok) { |
3706 SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; | 2570 SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; |
3707 setMaxFrequency(maxFrequency); | 2571 setMaxFrequency(maxFrequency); |
3708 } | 2572 } |
3709 | 2573 |
3710 ColourScale colourScale = (ColourScale) | 2574 auto colourScale = convertToColourScale |
3711 attributes.value("colourScale").toInt(&ok); | 2575 (attributes.value("colourScale").toInt(&ok)); |
3712 if (ok) setColourScale(colourScale); | 2576 if (ok) { |
2577 setColourScale(colourScale.first); | |
2578 setColourScaleMultiple(colourScale.second); | |
2579 } | |
3713 | 2580 |
3714 int colourMap = attributes.value("colourScheme").toInt(&ok); | 2581 int colourMap = attributes.value("colourScheme").toInt(&ok); |
3715 if (ok) setColourMap(colourMap); | 2582 if (ok) setColourMap(colourMap); |
3716 | 2583 |
3717 int colourRotation = attributes.value("colourRotation").toInt(&ok); | 2584 int colourRotation = attributes.value("colourRotation").toInt(&ok); |
3718 if (ok) setColourRotation(colourRotation); | 2585 if (ok) setColourRotation(colourRotation); |
3719 | 2586 |
3720 FrequencyScale frequencyScale = (FrequencyScale) | 2587 BinScale binScale = (BinScale) |
3721 attributes.value("frequencyScale").toInt(&ok); | 2588 attributes.value("frequencyScale").toInt(&ok); |
3722 if (ok) setFrequencyScale(frequencyScale); | 2589 if (ok) setBinScale(binScale); |
3723 | 2590 |
3724 BinDisplay binDisplay = (BinDisplay) | 2591 BinDisplay binDisplay = (BinDisplay) |
3725 attributes.value("binDisplay").toInt(&ok); | 2592 attributes.value("binDisplay").toInt(&ok); |
3726 if (ok) setBinDisplay(binDisplay); | 2593 if (ok) setBinDisplay(binDisplay); |
3727 | 2594 |
3728 bool normalizeColumns = | 2595 bool haveNewStyleNormalization = false; |
3729 (attributes.value("normalizeColumns").trimmed() == "true"); | 2596 |
3730 setNormalizeColumns(normalizeColumns); | 2597 QString columnNormalization = attributes.value("columnNormalization"); |
2598 | |
2599 if (columnNormalization != "") { | |
2600 | |
2601 haveNewStyleNormalization = true; | |
2602 | |
2603 if (columnNormalization == "peak") { | |
2604 setNormalization(ColumnNormalization::Max1); | |
2605 } else if (columnNormalization == "hybrid") { | |
2606 setNormalization(ColumnNormalization::Hybrid); | |
2607 } else if (columnNormalization == "none") { | |
2608 setNormalization(ColumnNormalization::None); | |
2609 } else { | |
2610 cerr << "NOTE: Unknown or unsupported columnNormalization attribute \"" | |
2611 << columnNormalization << "\"" << endl; | |
2612 } | |
2613 } | |
2614 | |
2615 if (!haveNewStyleNormalization) { | |
2616 | |
2617 bool normalizeColumns = | |
2618 (attributes.value("normalizeColumns").trimmed() == "true"); | |
2619 if (normalizeColumns) { | |
2620 setNormalization(ColumnNormalization::Max1); | |
2621 } | |
2622 | |
2623 bool normalizeHybrid = | |
2624 (attributes.value("normalizeHybrid").trimmed() == "true"); | |
2625 if (normalizeHybrid) { | |
2626 setNormalization(ColumnNormalization::Hybrid); | |
2627 } | |
2628 } | |
3731 | 2629 |
3732 bool normalizeVisibleArea = | 2630 bool normalizeVisibleArea = |
3733 (attributes.value("normalizeVisibleArea").trimmed() == "true"); | 2631 (attributes.value("normalizeVisibleArea").trimmed() == "true"); |
3734 setNormalizeVisibleArea(normalizeVisibleArea); | 2632 setNormalizeVisibleArea(normalizeVisibleArea); |
3735 | 2633 |
3736 bool normalizeHybrid = | 2634 if (!haveNewStyleNormalization && m_normalization == ColumnNormalization::Hybrid) { |
3737 (attributes.value("normalizeHybrid").trimmed() == "true"); | 2635 // Tony v1.0 is (and hopefully will remain!) the only released |
3738 setNormalizeHybrid(normalizeHybrid); | 2636 // SV-a-like to use old-style attributes when saving sessions |
3739 } | 2637 // that ask for hybrid normalization. It saves them with the |
3740 | 2638 // wrong gain factor, so hack in a fix for that here -- this |
2639 // gives us backward but not forward compatibility. | |
2640 setGain(m_gain / float(getFFTSize() / 2)); | |
2641 } | |
2642 } | |
2643 |