Mercurial > hg > svgui
comparison layer/SpectrogramLayer.cpp @ 1146:74f2706995b7 3.0-integration
Merge work on unified spectrogram and colour 3d plot caching renderer
author | Chris Cannam |
---|---|
date | Fri, 05 Aug 2016 15:05:02 +0100 |
parents | 17f999cd0a22 |
children | 1badacff7ab2 |
comparison
equal
deleted
inserted
replaced
1056:b4fd6c67fce5 | 1146:74f2706995b7 |
---|---|
21 #include "base/Window.h" | 21 #include "base/Window.h" |
22 #include "base/Pitch.h" | 22 #include "base/Pitch.h" |
23 #include "base/Preferences.h" | 23 #include "base/Preferences.h" |
24 #include "base/RangeMapper.h" | 24 #include "base/RangeMapper.h" |
25 #include "base/LogRange.h" | 25 #include "base/LogRange.h" |
26 #include "base/ColumnOp.h" | |
26 #include "widgets/CommandHistory.h" | 27 #include "widgets/CommandHistory.h" |
28 #include "data/model/Dense3DModelPeakCache.h" | |
29 | |
27 #include "ColourMapper.h" | 30 #include "ColourMapper.h" |
28 #include "ImageRegionFinder.h" | |
29 #include "data/model/Dense3DModelPeakCache.h" | |
30 #include "PianoScale.h" | 31 #include "PianoScale.h" |
32 #include "PaintAssistant.h" | |
33 #include "Colour3DPlotRenderer.h" | |
31 | 34 |
32 #include <QPainter> | 35 #include <QPainter> |
33 #include <QImage> | 36 #include <QImage> |
34 #include <QPixmap> | 37 #include <QPixmap> |
35 #include <QRect> | 38 #include <QRect> |
46 | 49 |
47 #ifndef __GNUC__ | 50 #ifndef __GNUC__ |
48 #include <alloca.h> | 51 #include <alloca.h> |
49 #endif | 52 #endif |
50 | 53 |
51 #define DEBUG_SPECTROGRAM_REPAINT 1 | 54 //#define DEBUG_SPECTROGRAM 1 |
55 //#define DEBUG_SPECTROGRAM_REPAINT 1 | |
52 | 56 |
53 using namespace std; | 57 using namespace std; |
54 | 58 |
55 SpectrogramLayer::SpectrogramLayer(Configuration config) : | 59 SpectrogramLayer::SpectrogramLayer(Configuration config) : |
56 m_model(0), | 60 m_model(0), |
57 m_channel(0), | 61 m_channel(0), |
58 m_windowSize(1024), | 62 m_windowSize(1024), |
59 m_windowType(HanningWindow), | 63 m_windowType(HanningWindow), |
60 m_windowHopLevel(2), | 64 m_windowHopLevel(2), |
61 m_zeroPadLevel(0), | |
62 m_fftSize(1024), | |
63 m_gain(1.0), | 65 m_gain(1.0), |
64 m_initialGain(1.0), | 66 m_initialGain(1.0), |
65 m_threshold(0.0), | 67 m_threshold(1.0e-8f), |
66 m_initialThreshold(0.0), | 68 m_initialThreshold(1.0e-8f), |
67 m_colourRotation(0), | 69 m_colourRotation(0), |
68 m_initialRotation(0), | 70 m_initialRotation(0), |
69 m_minFrequency(10), | 71 m_minFrequency(10), |
70 m_maxFrequency(8000), | 72 m_maxFrequency(8000), |
71 m_initialMaxFrequency(8000), | 73 m_initialMaxFrequency(8000), |
72 m_colourScale(dBColourScale), | 74 m_colourScale(ColourScaleType::Log), |
75 m_colourScaleMultiple(1.0), | |
73 m_colourMap(0), | 76 m_colourMap(0), |
74 m_frequencyScale(LinearFrequencyScale), | 77 m_binScale(BinScale::Linear), |
75 m_binDisplay(AllBins), | 78 m_binDisplay(BinDisplay::AllBins), |
76 m_normalization(NoNormalization), | 79 m_normalization(ColumnNormalization::None), |
80 m_normalizeVisibleArea(false), | |
77 m_lastEmittedZoomStep(-1), | 81 m_lastEmittedZoomStep(-1), |
78 m_synchronous(false), | 82 m_synchronous(false), |
79 m_haveDetailedScale(false), | 83 m_haveDetailedScale(false), |
80 m_exiting(false), | 84 m_exiting(false), |
81 m_peakCacheDivisor(8), | 85 m_fftModel(0), |
82 m_sliceableModel(0) | 86 m_peakCache(0), |
87 m_peakCacheDivisor(8) | |
83 { | 88 { |
84 QString colourConfigName = "spectrogram-colour"; | 89 QString colourConfigName = "spectrogram-colour"; |
85 int colourConfigDefault = int(ColourMapper::Green); | 90 int colourConfigDefault = int(ColourMapper::Green); |
86 | 91 |
87 if (config == FullRangeDb) { | 92 if (config == FullRangeDb) { |
91 setWindowSize(8192); | 96 setWindowSize(8192); |
92 setWindowHopLevel(4); | 97 setWindowHopLevel(4); |
93 m_initialMaxFrequency = 1500; | 98 m_initialMaxFrequency = 1500; |
94 setMaxFrequency(1500); | 99 setMaxFrequency(1500); |
95 setMinFrequency(40); | 100 setMinFrequency(40); |
96 setColourScale(LinearColourScale); | 101 setColourScale(ColourScaleType::Linear); |
97 setColourMap(ColourMapper::Sunset); | 102 setColourMap(ColourMapper::Sunset); |
98 setFrequencyScale(LogFrequencyScale); | 103 setBinScale(BinScale::Log); |
99 colourConfigName = "spectrogram-melodic-colour"; | 104 colourConfigName = "spectrogram-melodic-colour"; |
100 colourConfigDefault = int(ColourMapper::Sunset); | 105 colourConfigDefault = int(ColourMapper::Sunset); |
101 // setGain(20); | 106 // setGain(20); |
102 } else if (config == MelodicPeaks) { | 107 } else if (config == MelodicPeaks) { |
103 setWindowSize(4096); | 108 setWindowSize(4096); |
104 setWindowHopLevel(5); | 109 setWindowHopLevel(5); |
105 m_initialMaxFrequency = 2000; | 110 m_initialMaxFrequency = 2000; |
106 setMaxFrequency(2000); | 111 setMaxFrequency(2000); |
107 setMinFrequency(40); | 112 setMinFrequency(40); |
108 setFrequencyScale(LogFrequencyScale); | 113 setBinScale(BinScale::Log); |
109 setColourScale(LinearColourScale); | 114 setColourScale(ColourScaleType::Linear); |
110 setBinDisplay(PeakFrequencies); | 115 setBinDisplay(BinDisplay::PeakFrequencies); |
111 setNormalization(NormalizeColumns); | 116 setNormalization(ColumnNormalization::Max1); |
112 colourConfigName = "spectrogram-melodic-colour"; | 117 colourConfigName = "spectrogram-melodic-colour"; |
113 colourConfigDefault = int(ColourMapper::Sunset); | 118 colourConfigDefault = int(ColourMapper::Sunset); |
114 } | 119 } |
115 | 120 |
116 QSettings settings; | 121 QSettings settings; |
120 | 125 |
121 Preferences *prefs = Preferences::getInstance(); | 126 Preferences *prefs = Preferences::getInstance(); |
122 connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), | 127 connect(prefs, SIGNAL(propertyChanged(PropertyContainer::PropertyName)), |
123 this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); | 128 this, SLOT(preferenceChanged(PropertyContainer::PropertyName))); |
124 setWindowType(prefs->getWindowType()); | 129 setWindowType(prefs->getWindowType()); |
125 | |
126 initialisePalette(); | |
127 } | 130 } |
128 | 131 |
129 SpectrogramLayer::~SpectrogramLayer() | 132 SpectrogramLayer::~SpectrogramLayer() |
130 { | 133 { |
131 invalidateFFTModels(); | 134 invalidateRenderers(); |
135 invalidateFFTModel(); | |
136 } | |
137 | |
138 pair<ColourScaleType, double> | |
139 SpectrogramLayer::convertToColourScale(int value) | |
140 { | |
141 switch (value) { | |
142 case 0: return { ColourScaleType::Linear, 1.0 }; | |
143 case 1: return { ColourScaleType::Meter, 1.0 }; | |
144 case 2: return { ColourScaleType::Log, 2.0 }; // dB^2 (i.e. log of power) | |
145 case 3: return { ColourScaleType::Log, 1.0 }; // dB (of magnitude) | |
146 case 4: return { ColourScaleType::Phase, 1.0 }; | |
147 default: return { ColourScaleType::Linear, 1.0 }; | |
148 } | |
149 } | |
150 | |
151 int | |
152 SpectrogramLayer::convertFromColourScale(ColourScaleType scale, double multiple) | |
153 { | |
154 switch (scale) { | |
155 case ColourScaleType::Linear: return 0; | |
156 case ColourScaleType::Meter: return 1; | |
157 case ColourScaleType::Log: return (multiple > 1.5 ? 2 : 3); | |
158 case ColourScaleType::Phase: return 4; | |
159 case ColourScaleType::PlusMinusOne: | |
160 case ColourScaleType::Absolute: | |
161 default: return 0; | |
162 } | |
163 } | |
164 | |
165 std::pair<ColumnNormalization, bool> | |
166 SpectrogramLayer::convertToColumnNorm(int value) | |
167 { | |
168 switch (value) { | |
169 default: | |
170 case 0: return { ColumnNormalization::None, false }; | |
171 case 1: return { ColumnNormalization::Max1, false }; | |
172 case 2: return { ColumnNormalization::None, true }; // visible area | |
173 case 3: return { ColumnNormalization::Hybrid, false }; | |
174 } | |
175 } | |
176 | |
177 int | |
178 SpectrogramLayer::convertFromColumnNorm(ColumnNormalization norm, bool visible) | |
179 { | |
180 if (visible) return 2; | |
181 switch (norm) { | |
182 case ColumnNormalization::None: return 0; | |
183 case ColumnNormalization::Max1: return 1; | |
184 case ColumnNormalization::Hybrid: return 3; | |
185 | |
186 case ColumnNormalization::Sum1: | |
187 default: return 0; | |
188 } | |
132 } | 189 } |
133 | 190 |
134 void | 191 void |
135 SpectrogramLayer::setModel(const DenseTimeValueModel *model) | 192 SpectrogramLayer::setModel(const DenseTimeValueModel *model) |
136 { | 193 { |
137 // cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << endl; | 194 // cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << endl; |
138 | 195 |
139 if (model == m_model) return; | 196 if (model == m_model) return; |
140 | 197 |
141 m_model = model; | 198 m_model = model; |
142 invalidateFFTModels(); | 199 invalidateFFTModel(); |
143 | 200 |
144 if (!m_model || !m_model->isOK()) return; | 201 if (!m_model || !m_model->isOK()) return; |
145 | 202 |
146 connectSignals(m_model); | 203 connectSignals(m_model); |
147 | 204 |
166 list.push_back("Gain"); | 223 list.push_back("Gain"); |
167 list.push_back("Colour Rotation"); | 224 list.push_back("Colour Rotation"); |
168 // list.push_back("Min Frequency"); | 225 // list.push_back("Min Frequency"); |
169 // list.push_back("Max Frequency"); | 226 // list.push_back("Max Frequency"); |
170 list.push_back("Frequency Scale"); | 227 list.push_back("Frequency Scale"); |
171 //// list.push_back("Zero Padding"); | |
172 return list; | 228 return list; |
173 } | 229 } |
174 | 230 |
175 QString | 231 QString |
176 SpectrogramLayer::getPropertyLabel(const PropertyName &name) const | 232 SpectrogramLayer::getPropertyLabel(const PropertyName &name) const |
185 if (name == "Gain") return tr("Gain"); | 241 if (name == "Gain") return tr("Gain"); |
186 if (name == "Colour Rotation") return tr("Colour Rotation"); | 242 if (name == "Colour Rotation") return tr("Colour Rotation"); |
187 if (name == "Min Frequency") return tr("Min Frequency"); | 243 if (name == "Min Frequency") return tr("Min Frequency"); |
188 if (name == "Max Frequency") return tr("Max Frequency"); | 244 if (name == "Max Frequency") return tr("Max Frequency"); |
189 if (name == "Frequency Scale") return tr("Frequency Scale"); | 245 if (name == "Frequency Scale") return tr("Frequency Scale"); |
190 if (name == "Zero Padding") return tr("Smoothing"); | |
191 return ""; | 246 return ""; |
192 } | 247 } |
193 | 248 |
194 QString | 249 QString |
195 SpectrogramLayer::getPropertyIconName(const PropertyName &) const | 250 SpectrogramLayer::getPropertyIconName(const PropertyName &) const |
201 SpectrogramLayer::getPropertyType(const PropertyName &name) const | 256 SpectrogramLayer::getPropertyType(const PropertyName &name) const |
202 { | 257 { |
203 if (name == "Gain") return RangeProperty; | 258 if (name == "Gain") return RangeProperty; |
204 if (name == "Colour Rotation") return RangeProperty; | 259 if (name == "Colour Rotation") return RangeProperty; |
205 if (name == "Threshold") return RangeProperty; | 260 if (name == "Threshold") return RangeProperty; |
206 if (name == "Zero Padding") return ToggleProperty; | |
207 return ValueProperty; | 261 return ValueProperty; |
208 } | 262 } |
209 | 263 |
210 QString | 264 QString |
211 SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const | 265 SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const |
212 { | 266 { |
213 if (name == "Bin Display" || | 267 if (name == "Bin Display" || |
214 name == "Frequency Scale") return tr("Bins"); | 268 name == "Frequency Scale") return tr("Bins"); |
215 if (name == "Window Size" || | 269 if (name == "Window Size" || |
216 name == "Window Increment" || | 270 name == "Window Increment") return tr("Window"); |
217 name == "Zero Padding") return tr("Window"); | |
218 if (name == "Colour" || | 271 if (name == "Colour" || |
219 name == "Threshold" || | 272 name == "Threshold" || |
220 name == "Colour Rotation") return tr("Colour"); | 273 name == "Colour Rotation") return tr("Colour"); |
221 if (name == "Normalization" || | 274 if (name == "Normalization" || |
222 name == "Gain" || | 275 name == "Gain" || |
248 if (val < *min) val = *min; | 301 if (val < *min) val = *min; |
249 if (val > *max) val = *max; | 302 if (val > *max) val = *max; |
250 | 303 |
251 } else if (name == "Threshold") { | 304 } else if (name == "Threshold") { |
252 | 305 |
253 *min = -50; | 306 *min = -81; |
254 *max = 0; | 307 *max = -1; |
255 | 308 |
256 *deflt = int(lrint(AudioLevel::multiplier_to_dB(m_initialThreshold))); | 309 *deflt = int(lrint(AudioLevel::multiplier_to_dB(m_initialThreshold))); |
257 if (*deflt < *min) *deflt = *min; | 310 if (*deflt < *min) *deflt = *min; |
258 if (*deflt > *max) *deflt = *max; | 311 if (*deflt > *max) *deflt = *max; |
259 | 312 |
269 | 322 |
270 val = m_colourRotation; | 323 val = m_colourRotation; |
271 | 324 |
272 } else if (name == "Colour Scale") { | 325 } else if (name == "Colour Scale") { |
273 | 326 |
327 // linear, meter, db^2, db, phase | |
274 *min = 0; | 328 *min = 0; |
275 *max = 4; | 329 *max = 4; |
276 *deflt = int(dBColourScale); | 330 *deflt = 2; |
277 | 331 |
278 val = (int)m_colourScale; | 332 val = convertFromColourScale(m_colourScale, m_colourScaleMultiple); |
279 | 333 |
280 } else if (name == "Colour") { | 334 } else if (name == "Colour") { |
281 | 335 |
282 *min = 0; | 336 *min = 0; |
283 *max = ColourMapper::getColourMapCount() - 1; | 337 *max = ColourMapper::getColourMapCount() - 1; |
300 *min = 0; | 354 *min = 0; |
301 *max = 5; | 355 *max = 5; |
302 *deflt = 2; | 356 *deflt = 2; |
303 | 357 |
304 val = m_windowHopLevel; | 358 val = m_windowHopLevel; |
305 | |
306 } else if (name == "Zero Padding") { | |
307 | |
308 *min = 0; | |
309 *max = 1; | |
310 *deflt = 0; | |
311 | |
312 val = m_zeroPadLevel > 0 ? 1 : 0; | |
313 | 359 |
314 } else if (name == "Min Frequency") { | 360 } else if (name == "Min Frequency") { |
315 | 361 |
316 *min = 0; | 362 *min = 0; |
317 *max = 9; | 363 *max = 9; |
351 | 397 |
352 } else if (name == "Frequency Scale") { | 398 } else if (name == "Frequency Scale") { |
353 | 399 |
354 *min = 0; | 400 *min = 0; |
355 *max = 1; | 401 *max = 1; |
356 *deflt = int(LinearFrequencyScale); | 402 *deflt = int(BinScale::Linear); |
357 val = (int)m_frequencyScale; | 403 val = (int)m_binScale; |
358 | 404 |
359 } else if (name == "Bin Display") { | 405 } else if (name == "Bin Display") { |
360 | 406 |
361 *min = 0; | 407 *min = 0; |
362 *max = 2; | 408 *max = 2; |
363 *deflt = int(AllBins); | 409 *deflt = int(BinDisplay::AllBins); |
364 val = (int)m_binDisplay; | 410 val = (int)m_binDisplay; |
365 | 411 |
366 } else if (name == "Normalization") { | 412 } else if (name == "Normalization") { |
367 | 413 |
368 *min = 0; | 414 *min = 0; |
369 *max = 3; | 415 *max = 3; |
370 *deflt = int(NoNormalization); | 416 *deflt = 0; |
371 val = (int)m_normalization; | 417 |
418 val = convertFromColumnNorm(m_normalization, m_normalizeVisibleArea); | |
372 | 419 |
373 } else { | 420 } else { |
374 val = Layer::getPropertyRangeAndValue(name, min, max, deflt); | 421 val = Layer::getPropertyRangeAndValue(name, min, max, deflt); |
375 } | 422 } |
376 | 423 |
408 case 2: return tr("50 %"); | 455 case 2: return tr("50 %"); |
409 case 3: return tr("75 %"); | 456 case 3: return tr("75 %"); |
410 case 4: return tr("87.5 %"); | 457 case 4: return tr("87.5 %"); |
411 case 5: return tr("93.75 %"); | 458 case 5: return tr("93.75 %"); |
412 } | 459 } |
413 } | |
414 if (name == "Zero Padding") { | |
415 if (value == 0) return tr("None"); | |
416 return QString("%1x").arg(value + 1); | |
417 } | 460 } |
418 if (name == "Min Frequency") { | 461 if (name == "Min Frequency") { |
419 switch (value) { | 462 switch (value) { |
420 default: | 463 default: |
421 case 0: return tr("No min"); | 464 case 0: return tr("No min"); |
484 { | 527 { |
485 if (name == "Gain") { | 528 if (name == "Gain") { |
486 return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); | 529 return new LinearRangeMapper(-50, 50, -25, 25, tr("dB")); |
487 } | 530 } |
488 if (name == "Threshold") { | 531 if (name == "Threshold") { |
489 return new LinearRangeMapper(-50, 0, -50, 0, tr("dB")); | 532 return new LinearRangeMapper(-81, -1, -81, -1, tr("dB")); |
490 } | 533 } |
491 return 0; | 534 return 0; |
492 } | 535 } |
493 | 536 |
494 void | 537 void |
495 SpectrogramLayer::setProperty(const PropertyName &name, int value) | 538 SpectrogramLayer::setProperty(const PropertyName &name, int value) |
496 { | 539 { |
497 if (name == "Gain") { | 540 if (name == "Gain") { |
498 setGain(float(pow(10, float(value)/20.0))); | 541 setGain(float(pow(10, float(value)/20.0))); |
499 } else if (name == "Threshold") { | 542 } else if (name == "Threshold") { |
500 if (value == -50) setThreshold(0.0); | 543 if (value == -81) setThreshold(0.0); |
501 else setThreshold(float(AudioLevel::dB_to_multiplier(value))); | 544 else setThreshold(float(AudioLevel::dB_to_multiplier(value))); |
502 } else if (name == "Colour Rotation") { | 545 } else if (name == "Colour Rotation") { |
503 setColourRotation(value); | 546 setColourRotation(value); |
504 } else if (name == "Colour") { | 547 } else if (name == "Colour") { |
505 setColourMap(value); | 548 setColourMap(value); |
506 } else if (name == "Window Size") { | 549 } else if (name == "Window Size") { |
507 setWindowSize(32 << value); | 550 setWindowSize(32 << value); |
508 } else if (name == "Window Increment") { | 551 } else if (name == "Window Increment") { |
509 setWindowHopLevel(value); | 552 setWindowHopLevel(value); |
510 } else if (name == "Zero Padding") { | |
511 setZeroPadLevel(value > 0.1 ? 3 : 0); | |
512 } else if (name == "Min Frequency") { | 553 } else if (name == "Min Frequency") { |
513 switch (value) { | 554 switch (value) { |
514 default: | 555 default: |
515 case 0: setMinFrequency(0); break; | 556 case 0: setMinFrequency(0); break; |
516 case 1: setMinFrequency(10); break; | 557 case 1: setMinFrequency(10); break; |
546 if (vs != m_lastEmittedZoomStep) { | 587 if (vs != m_lastEmittedZoomStep) { |
547 emit verticalZoomChanged(); | 588 emit verticalZoomChanged(); |
548 m_lastEmittedZoomStep = vs; | 589 m_lastEmittedZoomStep = vs; |
549 } | 590 } |
550 } else if (name == "Colour Scale") { | 591 } else if (name == "Colour Scale") { |
592 setColourScaleMultiple(1.0); | |
551 switch (value) { | 593 switch (value) { |
552 default: | 594 default: |
553 case 0: setColourScale(LinearColourScale); break; | 595 case 0: setColourScale(ColourScaleType::Linear); break; |
554 case 1: setColourScale(MeterColourScale); break; | 596 case 1: setColourScale(ColourScaleType::Meter); break; |
555 case 2: setColourScale(dBSquaredColourScale); break; | 597 case 2: |
556 case 3: setColourScale(dBColourScale); break; | 598 setColourScale(ColourScaleType::Log); |
557 case 4: setColourScale(PhaseColourScale); break; | 599 setColourScaleMultiple(2.0); |
600 break; | |
601 case 3: setColourScale(ColourScaleType::Log); break; | |
602 case 4: setColourScale(ColourScaleType::Phase); break; | |
558 } | 603 } |
559 } else if (name == "Frequency Scale") { | 604 } else if (name == "Frequency Scale") { |
560 switch (value) { | 605 switch (value) { |
561 default: | 606 default: |
562 case 0: setFrequencyScale(LinearFrequencyScale); break; | 607 case 0: setBinScale(BinScale::Linear); break; |
563 case 1: setFrequencyScale(LogFrequencyScale); break; | 608 case 1: setBinScale(BinScale::Log); break; |
564 } | 609 } |
565 } else if (name == "Bin Display") { | 610 } else if (name == "Bin Display") { |
566 switch (value) { | 611 switch (value) { |
567 default: | 612 default: |
568 case 0: setBinDisplay(AllBins); break; | 613 case 0: setBinDisplay(BinDisplay::AllBins); break; |
569 case 1: setBinDisplay(PeakBins); break; | 614 case 1: setBinDisplay(BinDisplay::PeakBins); break; |
570 case 2: setBinDisplay(PeakFrequencies); break; | 615 case 2: setBinDisplay(BinDisplay::PeakFrequencies); break; |
571 } | 616 } |
572 } else if (name == "Normalization") { | 617 } else if (name == "Normalization") { |
573 switch (value) { | 618 auto n = convertToColumnNorm(value); |
574 default: | 619 setNormalization(n.first); |
575 case 0: setNormalization(NoNormalization); break; | 620 setNormalizeVisibleArea(n.second); |
576 case 1: setNormalization(NormalizeColumns); break; | 621 } |
577 case 2: setNormalization(NormalizeVisibleArea); break; | 622 } |
578 case 3: setNormalization(NormalizeHybrid); break; | 623 |
579 } | 624 void |
580 } | 625 SpectrogramLayer::invalidateRenderers() |
581 } | |
582 | |
583 void | |
584 SpectrogramLayer::invalidateImageCaches() | |
585 { | 626 { |
586 #ifdef DEBUG_SPECTROGRAM | 627 #ifdef DEBUG_SPECTROGRAM |
587 cerr << "SpectrogramLayer::invalidateImageCaches called" << endl; | 628 cerr << "SpectrogramLayer::invalidateRenderers called" << endl; |
588 #endif | 629 #endif |
589 for (ViewImageCache::iterator i = m_imageCaches.begin(); | 630 |
590 i != m_imageCaches.end(); ++i) { | 631 for (ViewRendererMap::iterator i = m_renderers.begin(); |
591 i->second.invalidate(); | 632 i != m_renderers.end(); ++i) { |
592 } | 633 delete i->second; |
634 } | |
635 m_renderers.clear(); | |
593 } | 636 } |
594 | 637 |
595 void | 638 void |
596 SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) | 639 SpectrogramLayer::preferenceChanged(PropertyContainer::PropertyName name) |
597 { | 640 { |
600 if (name == "Window Type") { | 643 if (name == "Window Type") { |
601 setWindowType(Preferences::getInstance()->getWindowType()); | 644 setWindowType(Preferences::getInstance()->getWindowType()); |
602 return; | 645 return; |
603 } | 646 } |
604 if (name == "Spectrogram Y Smoothing") { | 647 if (name == "Spectrogram Y Smoothing") { |
605 invalidateImageCaches(); | 648 setWindowSize(m_windowSize); |
649 invalidateRenderers(); | |
606 invalidateMagnitudes(); | 650 invalidateMagnitudes(); |
607 emit layerParametersChanged(); | 651 emit layerParametersChanged(); |
608 } | 652 } |
609 if (name == "Spectrogram X Smoothing") { | 653 if (name == "Spectrogram X Smoothing") { |
610 invalidateImageCaches(); | 654 invalidateRenderers(); |
611 invalidateMagnitudes(); | 655 invalidateMagnitudes(); |
612 emit layerParametersChanged(); | 656 emit layerParametersChanged(); |
613 } | 657 } |
614 if (name == "Tuning Frequency") { | 658 if (name == "Tuning Frequency") { |
615 emit layerParametersChanged(); | 659 emit layerParametersChanged(); |
619 void | 663 void |
620 SpectrogramLayer::setChannel(int ch) | 664 SpectrogramLayer::setChannel(int ch) |
621 { | 665 { |
622 if (m_channel == ch) return; | 666 if (m_channel == ch) return; |
623 | 667 |
624 invalidateImageCaches(); | 668 invalidateRenderers(); |
625 m_channel = ch; | 669 m_channel = ch; |
626 invalidateFFTModels(); | 670 invalidateFFTModel(); |
627 | 671 |
628 emit layerParametersChanged(); | 672 emit layerParametersChanged(); |
629 } | 673 } |
630 | 674 |
631 int | 675 int |
632 SpectrogramLayer::getChannel() const | 676 SpectrogramLayer::getChannel() const |
633 { | 677 { |
634 return m_channel; | 678 return m_channel; |
635 } | 679 } |
636 | 680 |
681 int | |
682 SpectrogramLayer::getFFTOversampling() const | |
683 { | |
684 if (m_binDisplay != BinDisplay::AllBins) { | |
685 return 1; | |
686 } | |
687 | |
688 Preferences::SpectrogramSmoothing smoothing = | |
689 Preferences::getInstance()->getSpectrogramSmoothing(); | |
690 | |
691 if (smoothing == Preferences::NoSpectrogramSmoothing || | |
692 smoothing == Preferences::SpectrogramInterpolated) { | |
693 return 1; | |
694 } | |
695 | |
696 return 4; | |
697 } | |
698 | |
699 int | |
700 SpectrogramLayer::getFFTSize() const | |
701 { | |
702 return m_windowSize * getFFTOversampling(); | |
703 } | |
704 | |
637 void | 705 void |
638 SpectrogramLayer::setWindowSize(int ws) | 706 SpectrogramLayer::setWindowSize(int ws) |
639 { | 707 { |
640 if (m_windowSize == ws) return; | 708 if (m_windowSize == ws) return; |
641 | 709 |
642 invalidateImageCaches(); | 710 invalidateRenderers(); |
643 | 711 |
644 m_windowSize = ws; | 712 m_windowSize = ws; |
645 m_fftSize = ws * (m_zeroPadLevel + 1); | 713 |
646 | 714 invalidateFFTModel(); |
647 invalidateFFTModels(); | |
648 | 715 |
649 emit layerParametersChanged(); | 716 emit layerParametersChanged(); |
650 } | 717 } |
651 | 718 |
652 int | 719 int |
658 void | 725 void |
659 SpectrogramLayer::setWindowHopLevel(int v) | 726 SpectrogramLayer::setWindowHopLevel(int v) |
660 { | 727 { |
661 if (m_windowHopLevel == v) return; | 728 if (m_windowHopLevel == v) return; |
662 | 729 |
663 invalidateImageCaches(); | 730 invalidateRenderers(); |
664 | 731 |
665 m_windowHopLevel = v; | 732 m_windowHopLevel = v; |
666 | 733 |
667 invalidateFFTModels(); | 734 invalidateFFTModel(); |
668 | 735 |
669 emit layerParametersChanged(); | 736 emit layerParametersChanged(); |
670 | 737 |
671 // fillCache(); | 738 // fillCache(); |
672 } | 739 } |
676 { | 743 { |
677 return m_windowHopLevel; | 744 return m_windowHopLevel; |
678 } | 745 } |
679 | 746 |
680 void | 747 void |
681 SpectrogramLayer::setZeroPadLevel(int v) | |
682 { | |
683 if (m_zeroPadLevel == v) return; | |
684 | |
685 invalidateImageCaches(); | |
686 | |
687 m_zeroPadLevel = v; | |
688 m_fftSize = m_windowSize * (v + 1); | |
689 | |
690 invalidateFFTModels(); | |
691 | |
692 emit layerParametersChanged(); | |
693 } | |
694 | |
695 int | |
696 SpectrogramLayer::getZeroPadLevel() const | |
697 { | |
698 return m_zeroPadLevel; | |
699 } | |
700 | |
701 void | |
702 SpectrogramLayer::setWindowType(WindowType w) | 748 SpectrogramLayer::setWindowType(WindowType w) |
703 { | 749 { |
704 if (m_windowType == w) return; | 750 if (m_windowType == w) return; |
705 | 751 |
706 invalidateImageCaches(); | 752 invalidateRenderers(); |
707 | 753 |
708 m_windowType = w; | 754 m_windowType = w; |
709 | 755 |
710 invalidateFFTModels(); | 756 invalidateFFTModel(); |
711 | 757 |
712 emit layerParametersChanged(); | 758 emit layerParametersChanged(); |
713 } | 759 } |
714 | 760 |
715 WindowType | 761 WindowType |
724 // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " | 770 // SVDEBUG << "SpectrogramLayer::setGain(" << gain << ") (my gain is now " |
725 // << m_gain << ")" << endl; | 771 // << m_gain << ")" << endl; |
726 | 772 |
727 if (m_gain == gain) return; | 773 if (m_gain == gain) return; |
728 | 774 |
729 invalidateImageCaches(); | 775 invalidateRenderers(); |
730 | 776 |
731 m_gain = gain; | 777 m_gain = gain; |
732 | 778 |
733 emit layerParametersChanged(); | 779 emit layerParametersChanged(); |
734 } | 780 } |
742 void | 788 void |
743 SpectrogramLayer::setThreshold(float threshold) | 789 SpectrogramLayer::setThreshold(float threshold) |
744 { | 790 { |
745 if (m_threshold == threshold) return; | 791 if (m_threshold == threshold) return; |
746 | 792 |
747 invalidateImageCaches(); | 793 invalidateRenderers(); |
748 | 794 |
749 m_threshold = threshold; | 795 m_threshold = threshold; |
750 | 796 |
751 emit layerParametersChanged(); | 797 emit layerParametersChanged(); |
752 } | 798 } |
762 { | 808 { |
763 if (m_minFrequency == mf) return; | 809 if (m_minFrequency == mf) return; |
764 | 810 |
765 // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; | 811 // SVDEBUG << "SpectrogramLayer::setMinFrequency: " << mf << endl; |
766 | 812 |
767 invalidateImageCaches(); | 813 invalidateRenderers(); |
768 invalidateMagnitudes(); | 814 invalidateMagnitudes(); |
769 | 815 |
770 m_minFrequency = mf; | 816 m_minFrequency = mf; |
771 | 817 |
772 emit layerParametersChanged(); | 818 emit layerParametersChanged(); |
783 { | 829 { |
784 if (m_maxFrequency == mf) return; | 830 if (m_maxFrequency == mf) return; |
785 | 831 |
786 // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; | 832 // SVDEBUG << "SpectrogramLayer::setMaxFrequency: " << mf << endl; |
787 | 833 |
788 invalidateImageCaches(); | 834 invalidateRenderers(); |
789 invalidateMagnitudes(); | 835 invalidateMagnitudes(); |
790 | 836 |
791 m_maxFrequency = mf; | 837 m_maxFrequency = mf; |
792 | 838 |
793 emit layerParametersChanged(); | 839 emit layerParametersChanged(); |
800 } | 846 } |
801 | 847 |
802 void | 848 void |
803 SpectrogramLayer::setColourRotation(int r) | 849 SpectrogramLayer::setColourRotation(int r) |
804 { | 850 { |
805 invalidateImageCaches(); | |
806 | |
807 if (r < 0) r = 0; | 851 if (r < 0) r = 0; |
808 if (r > 256) r = 256; | 852 if (r > 256) r = 256; |
809 int distance = r - m_colourRotation; | 853 int distance = r - m_colourRotation; |
810 | 854 |
811 if (distance != 0) { | 855 if (distance != 0) { |
812 rotatePalette(-distance); | |
813 m_colourRotation = r; | 856 m_colourRotation = r; |
814 } | 857 } |
858 | |
859 // Initially the idea with colour rotation was that we would just | |
860 // rotate the palette of an already-generated cache. That's not | |
861 // really practical now that cacheing is handled in a separate | |
862 // class in which the main cache no longer has a palette. | |
863 invalidateRenderers(); | |
815 | 864 |
816 emit layerParametersChanged(); | 865 emit layerParametersChanged(); |
817 } | 866 } |
818 | 867 |
819 void | 868 void |
820 SpectrogramLayer::setColourScale(ColourScale colourScale) | 869 SpectrogramLayer::setColourScale(ColourScaleType colourScale) |
821 { | 870 { |
822 if (m_colourScale == colourScale) return; | 871 if (m_colourScale == colourScale) return; |
823 | 872 |
824 invalidateImageCaches(); | 873 invalidateRenderers(); |
825 | 874 |
826 m_colourScale = colourScale; | 875 m_colourScale = colourScale; |
827 | 876 |
828 emit layerParametersChanged(); | 877 emit layerParametersChanged(); |
829 } | 878 } |
830 | 879 |
831 SpectrogramLayer::ColourScale | 880 ColourScaleType |
832 SpectrogramLayer::getColourScale() const | 881 SpectrogramLayer::getColourScale() const |
833 { | 882 { |
834 return m_colourScale; | 883 return m_colourScale; |
835 } | 884 } |
836 | 885 |
837 void | 886 void |
887 SpectrogramLayer::setColourScaleMultiple(double multiple) | |
888 { | |
889 if (m_colourScaleMultiple == multiple) return; | |
890 | |
891 invalidateRenderers(); | |
892 | |
893 m_colourScaleMultiple = multiple; | |
894 | |
895 emit layerParametersChanged(); | |
896 } | |
897 | |
898 double | |
899 SpectrogramLayer::getColourScaleMultiple() const | |
900 { | |
901 return m_colourScaleMultiple; | |
902 } | |
903 | |
904 void | |
838 SpectrogramLayer::setColourMap(int map) | 905 SpectrogramLayer::setColourMap(int map) |
839 { | 906 { |
840 if (m_colourMap == map) return; | 907 if (m_colourMap == map) return; |
841 | 908 |
842 invalidateImageCaches(); | 909 invalidateRenderers(); |
843 | 910 |
844 m_colourMap = map; | 911 m_colourMap = map; |
845 initialisePalette(); | |
846 | 912 |
847 emit layerParametersChanged(); | 913 emit layerParametersChanged(); |
848 } | 914 } |
849 | 915 |
850 int | 916 int |
852 { | 918 { |
853 return m_colourMap; | 919 return m_colourMap; |
854 } | 920 } |
855 | 921 |
856 void | 922 void |
857 SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale) | 923 SpectrogramLayer::setBinScale(BinScale binScale) |
858 { | 924 { |
859 if (m_frequencyScale == frequencyScale) return; | 925 if (m_binScale == binScale) return; |
860 | 926 |
861 invalidateImageCaches(); | 927 invalidateRenderers(); |
862 m_frequencyScale = frequencyScale; | 928 m_binScale = binScale; |
863 | 929 |
864 emit layerParametersChanged(); | 930 emit layerParametersChanged(); |
865 } | 931 } |
866 | 932 |
867 SpectrogramLayer::FrequencyScale | 933 BinScale |
868 SpectrogramLayer::getFrequencyScale() const | 934 SpectrogramLayer::getBinScale() const |
869 { | 935 { |
870 return m_frequencyScale; | 936 return m_binScale; |
871 } | 937 } |
872 | 938 |
873 void | 939 void |
874 SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) | 940 SpectrogramLayer::setBinDisplay(BinDisplay binDisplay) |
875 { | 941 { |
876 if (m_binDisplay == binDisplay) return; | 942 if (m_binDisplay == binDisplay) return; |
877 | 943 |
878 invalidateImageCaches(); | 944 invalidateRenderers(); |
879 m_binDisplay = binDisplay; | 945 m_binDisplay = binDisplay; |
880 | 946 |
881 emit layerParametersChanged(); | 947 emit layerParametersChanged(); |
882 } | 948 } |
883 | 949 |
884 SpectrogramLayer::BinDisplay | 950 BinDisplay |
885 SpectrogramLayer::getBinDisplay() const | 951 SpectrogramLayer::getBinDisplay() const |
886 { | 952 { |
887 return m_binDisplay; | 953 return m_binDisplay; |
888 } | 954 } |
889 | 955 |
890 void | 956 void |
891 SpectrogramLayer::setNormalization(Normalization n) | 957 SpectrogramLayer::setNormalization(ColumnNormalization n) |
892 { | 958 { |
893 if (m_normalization == n) return; | 959 if (m_normalization == n) return; |
894 | 960 |
895 invalidateImageCaches(); | 961 invalidateRenderers(); |
896 invalidateMagnitudes(); | 962 invalidateMagnitudes(); |
897 m_normalization = n; | 963 m_normalization = n; |
898 | 964 |
899 emit layerParametersChanged(); | 965 emit layerParametersChanged(); |
900 } | 966 } |
901 | 967 |
902 SpectrogramLayer::Normalization | 968 ColumnNormalization |
903 SpectrogramLayer::getNormalization() const | 969 SpectrogramLayer::getNormalization() const |
904 { | 970 { |
905 return m_normalization; | 971 return m_normalization; |
972 } | |
973 | |
974 void | |
975 SpectrogramLayer::setNormalizeVisibleArea(bool n) | |
976 { | |
977 if (m_normalizeVisibleArea == n) return; | |
978 | |
979 invalidateRenderers(); | |
980 invalidateMagnitudes(); | |
981 m_normalizeVisibleArea = n; | |
982 | |
983 emit layerParametersChanged(); | |
984 } | |
985 | |
986 bool | |
987 SpectrogramLayer::getNormalizeVisibleArea() const | |
988 { | |
989 return m_normalizeVisibleArea; | |
906 } | 990 } |
907 | 991 |
908 void | 992 void |
909 SpectrogramLayer::setLayerDormant(const LayerGeometryProvider *v, bool dormant) | 993 SpectrogramLayer::setLayerDormant(const LayerGeometryProvider *v, bool dormant) |
910 { | 994 { |
919 return; | 1003 return; |
920 } | 1004 } |
921 | 1005 |
922 Layer::setLayerDormant(v, true); | 1006 Layer::setLayerDormant(v, true); |
923 | 1007 |
924 const View *view = v->getView(); | 1008 invalidateRenderers(); |
925 | |
926 invalidateImageCaches(); | |
927 | |
928 m_imageCaches.erase(view->getId()); | |
929 | |
930 if (m_fftModels.find(view->getId()) != m_fftModels.end()) { | |
931 | |
932 if (m_sliceableModel == m_fftModels[view->getId()]) { | |
933 bool replaced = false; | |
934 for (ViewFFTMap::iterator i = m_fftModels.begin(); | |
935 i != m_fftModels.end(); ++i) { | |
936 if (i->second != m_sliceableModel) { | |
937 emit sliceableModelReplaced(m_sliceableModel, i->second); | |
938 replaced = true; | |
939 break; | |
940 } | |
941 } | |
942 if (!replaced) emit sliceableModelReplaced(m_sliceableModel, 0); | |
943 } | |
944 | |
945 delete m_fftModels[view->getId()]; | |
946 m_fftModels.erase(view->getId()); | |
947 | |
948 delete m_peakCaches[view->getId()]; | |
949 m_peakCaches.erase(view->getId()); | |
950 } | |
951 | 1009 |
952 } else { | 1010 } else { |
953 | 1011 |
954 Layer::setLayerDormant(v, false); | 1012 Layer::setLayerDormant(v, false); |
955 } | 1013 } |
960 { | 1018 { |
961 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1019 #ifdef DEBUG_SPECTROGRAM_REPAINT |
962 cerr << "SpectrogramLayer::cacheInvalid()" << endl; | 1020 cerr << "SpectrogramLayer::cacheInvalid()" << endl; |
963 #endif | 1021 #endif |
964 | 1022 |
965 invalidateImageCaches(); | 1023 invalidateRenderers(); |
966 invalidateMagnitudes(); | 1024 invalidateMagnitudes(); |
967 } | 1025 } |
968 | 1026 |
969 void | 1027 void |
970 SpectrogramLayer::cacheInvalid( | 1028 SpectrogramLayer::cacheInvalid( |
983 // only those caches whose views contained some of the (from, to) | 1041 // only those caches whose views contained some of the (from, to) |
984 // range. That's the right thing to do; it has been lost in | 1042 // range. That's the right thing to do; it has been lost in |
985 // pulling out the image cache code, but it might not matter very | 1043 // pulling out the image cache code, but it might not matter very |
986 // much, since the underlying models for spectrogram layers don't | 1044 // much, since the underlying models for spectrogram layers don't |
987 // change very often. Let's see. | 1045 // change very often. Let's see. |
988 invalidateImageCaches(); | 1046 invalidateRenderers(); |
989 invalidateMagnitudes(); | 1047 invalidateMagnitudes(); |
990 } | 1048 } |
991 | 1049 |
992 bool | 1050 bool |
993 SpectrogramLayer::hasLightBackground() const | 1051 SpectrogramLayer::hasLightBackground() const |
994 { | 1052 { |
995 return ColourMapper(m_colourMap, 1.f, 255.f).hasLightBackground(); | 1053 return ColourMapper(m_colourMap, 1.f, 255.f).hasLightBackground(); |
996 } | 1054 } |
997 | 1055 |
998 void | |
999 SpectrogramLayer::initialisePalette() | |
1000 { | |
1001 int formerRotation = m_colourRotation; | |
1002 | |
1003 if (m_colourMap == (int)ColourMapper::BlackOnWhite) { | |
1004 m_palette.setColour(NO_VALUE, Qt::white); | |
1005 } else { | |
1006 m_palette.setColour(NO_VALUE, Qt::black); | |
1007 } | |
1008 | |
1009 ColourMapper mapper(m_colourMap, 1.f, 255.f); | |
1010 | |
1011 for (int pixel = 1; pixel < 256; ++pixel) { | |
1012 m_palette.setColour((unsigned char)pixel, mapper.map(pixel)); | |
1013 } | |
1014 | |
1015 m_crosshairColour = mapper.getContrastingColour(); | |
1016 | |
1017 m_colourRotation = 0; | |
1018 rotatePalette(m_colourRotation - formerRotation); | |
1019 m_colourRotation = formerRotation; | |
1020 | |
1021 m_drawBuffer = QImage(); | |
1022 } | |
1023 | |
1024 void | |
1025 SpectrogramLayer::rotatePalette(int distance) | |
1026 { | |
1027 QColor newPixels[256]; | |
1028 | |
1029 newPixels[NO_VALUE] = m_palette.getColour(NO_VALUE); | |
1030 | |
1031 for (int pixel = 1; pixel < 256; ++pixel) { | |
1032 int target = pixel + distance; | |
1033 while (target < 1) target += 255; | |
1034 while (target > 255) target -= 255; | |
1035 newPixels[target] = m_palette.getColour((unsigned char)pixel); | |
1036 } | |
1037 | |
1038 for (int pixel = 0; pixel < 256; ++pixel) { | |
1039 m_palette.setColour((unsigned char)pixel, newPixels[pixel]); | |
1040 } | |
1041 | |
1042 m_drawBuffer = QImage(); | |
1043 } | |
1044 | |
1045 unsigned char | |
1046 SpectrogramLayer::getDisplayValue(LayerGeometryProvider *v, double input) const | |
1047 { | |
1048 int value; | |
1049 | |
1050 double min = 0.0; | |
1051 double max = 1.0; | |
1052 | |
1053 if (m_normalization == NormalizeVisibleArea) { | |
1054 min = m_viewMags[v->getId()].getMin(); | |
1055 max = m_viewMags[v->getId()].getMax(); | |
1056 } else if (m_normalization != NormalizeColumns) { | |
1057 if (m_colourScale == LinearColourScale //|| | |
1058 // m_colourScale == MeterColourScale) { | |
1059 ) { | |
1060 max = 0.1; | |
1061 } | |
1062 } | |
1063 | |
1064 double thresh = -80.0; | |
1065 | |
1066 if (max == 0.0) max = 1.0; | |
1067 if (max == min) min = max - 0.0001; | |
1068 | |
1069 switch (m_colourScale) { | |
1070 | |
1071 default: | |
1072 case LinearColourScale: | |
1073 value = int(((input - min) / (max - min)) * 255.0) + 1; | |
1074 break; | |
1075 | |
1076 case MeterColourScale: | |
1077 value = AudioLevel::multiplier_to_preview | |
1078 ((input - min) / (max - min), 254) + 1; | |
1079 break; | |
1080 | |
1081 case dBSquaredColourScale: | |
1082 input = ((input - min) * (input - min)) / ((max - min) * (max - min)); | |
1083 if (input > 0.0) { | |
1084 input = 10.0 * log10(input); | |
1085 } else { | |
1086 input = thresh; | |
1087 } | |
1088 if (min > 0.0) { | |
1089 thresh = 10.0 * log10(min * min); | |
1090 if (thresh < -80.0) thresh = -80.0; | |
1091 } | |
1092 input = (input - thresh) / (-thresh); | |
1093 if (input < 0.0) input = 0.0; | |
1094 if (input > 1.0) input = 1.0; | |
1095 value = int(input * 255.0) + 1; | |
1096 break; | |
1097 | |
1098 case dBColourScale: | |
1099 //!!! experiment with normalizing the visible area this way. | |
1100 //In any case, we need to have some indication of what the dB | |
1101 //scale is relative to. | |
1102 input = (input - min) / (max - min); | |
1103 if (input > 0.0) { | |
1104 input = 10.0 * log10(input); | |
1105 } else { | |
1106 input = thresh; | |
1107 } | |
1108 if (min > 0.0) { | |
1109 thresh = 10.0 * log10(min); | |
1110 if (thresh < -80.0) thresh = -80.0; | |
1111 } | |
1112 input = (input - thresh) / (-thresh); | |
1113 if (input < 0.0) input = 0.0; | |
1114 if (input > 1.0) input = 1.0; | |
1115 value = int(input * 255.0) + 1; | |
1116 break; | |
1117 | |
1118 case PhaseColourScale: | |
1119 value = int((input * 127.0 / M_PI) + 128); | |
1120 break; | |
1121 } | |
1122 | |
1123 if (value > UCHAR_MAX) value = UCHAR_MAX; | |
1124 if (value < 0) value = 0; | |
1125 return (unsigned char)value; | |
1126 } | |
1127 | |
1128 double | 1056 double |
1129 SpectrogramLayer::getEffectiveMinFrequency() const | 1057 SpectrogramLayer::getEffectiveMinFrequency() const |
1130 { | 1058 { |
1131 sv_samplerate_t sr = m_model->getSampleRate(); | 1059 sv_samplerate_t sr = m_model->getSampleRate(); |
1132 double minf = double(sr) / m_fftSize; | 1060 double minf = double(sr) / getFFTSize(); |
1133 | 1061 |
1134 if (m_minFrequency > 0.0) { | 1062 if (m_minFrequency > 0.0) { |
1135 int minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.01); | 1063 int minbin = int((double(m_minFrequency) * getFFTSize()) / sr + 0.01); |
1136 if (minbin < 1) minbin = 1; | 1064 if (minbin < 1) minbin = 1; |
1137 minf = minbin * sr / m_fftSize; | 1065 minf = minbin * sr / getFFTSize(); |
1138 } | 1066 } |
1139 | 1067 |
1140 return minf; | 1068 return minf; |
1141 } | 1069 } |
1142 | 1070 |
1145 { | 1073 { |
1146 sv_samplerate_t sr = m_model->getSampleRate(); | 1074 sv_samplerate_t sr = m_model->getSampleRate(); |
1147 double maxf = double(sr) / 2; | 1075 double maxf = double(sr) / 2; |
1148 | 1076 |
1149 if (m_maxFrequency > 0.0) { | 1077 if (m_maxFrequency > 0.0) { |
1150 int maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | 1078 int maxbin = int((double(m_maxFrequency) * getFFTSize()) / sr + 0.1); |
1151 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | 1079 if (maxbin > getFFTSize() / 2) maxbin = getFFTSize() / 2; |
1152 maxf = maxbin * sr / m_fftSize; | 1080 maxf = maxbin * sr / getFFTSize(); |
1153 } | 1081 } |
1154 | 1082 |
1155 return maxf; | 1083 return maxf; |
1156 } | 1084 } |
1157 | 1085 |
1158 bool | 1086 bool |
1159 SpectrogramLayer::getYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const | 1087 SpectrogramLayer::getYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const |
1160 { | 1088 { |
1161 Profiler profiler("SpectrogramLayer::getYBinRange"); | 1089 Profiler profiler("SpectrogramLayer::getYBinRange"); |
1162 | |
1163 int h = v->getPaintHeight(); | 1090 int h = v->getPaintHeight(); |
1164 if (y < 0 || y >= h) return false; | 1091 if (y < 0 || y >= h) return false; |
1165 | 1092 q0 = getBinForY(v, y); |
1093 q1 = getBinForY(v, y-1); | |
1094 return true; | |
1095 } | |
1096 | |
1097 double | |
1098 SpectrogramLayer::getYForBin(const LayerGeometryProvider *v, double bin) const | |
1099 { | |
1100 double minf = getEffectiveMinFrequency(); | |
1101 double maxf = getEffectiveMaxFrequency(); | |
1102 bool logarithmic = (m_binScale == BinScale::Log); | |
1103 sv_samplerate_t sr = m_model->getSampleRate(); | |
1104 | |
1105 double freq = (bin * sr) / getFFTSize(); | |
1106 | |
1107 double y = v->getYForFrequency(freq, minf, maxf, logarithmic); | |
1108 | |
1109 return y; | |
1110 } | |
1111 | |
1112 double | |
1113 SpectrogramLayer::getBinForY(const LayerGeometryProvider *v, double y) const | |
1114 { | |
1166 sv_samplerate_t sr = m_model->getSampleRate(); | 1115 sv_samplerate_t sr = m_model->getSampleRate(); |
1167 double minf = getEffectiveMinFrequency(); | 1116 double minf = getEffectiveMinFrequency(); |
1168 double maxf = getEffectiveMaxFrequency(); | 1117 double maxf = getEffectiveMaxFrequency(); |
1169 | 1118 |
1170 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | 1119 bool logarithmic = (m_binScale == BinScale::Log); |
1171 | 1120 |
1172 q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); | 1121 double freq = v->getFrequencyForY(y, minf, maxf, logarithmic); |
1173 q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); | 1122 |
1174 | 1123 // Now map on to ("proportion of") actual bins |
1175 // Now map these on to ("proportions of") actual bins, using raw | 1124 double bin = (freq * getFFTSize()) / sr; |
1176 // FFT size (unsmoothed) | 1125 |
1177 | 1126 return bin; |
1178 q0 = (q0 * m_fftSize) / sr; | 1127 } |
1179 q1 = (q1 * m_fftSize) / sr; | 1128 |
1180 | |
1181 return true; | |
1182 } | |
1183 | |
1184 bool | |
1185 SpectrogramLayer::getSmoothedYBinRange(LayerGeometryProvider *v, int y, double &q0, double &q1) const | |
1186 { | |
1187 Profiler profiler("SpectrogramLayer::getSmoothedYBinRange"); | |
1188 | |
1189 int h = v->getPaintHeight(); | |
1190 if (y < 0 || y >= h) return false; | |
1191 | |
1192 sv_samplerate_t sr = m_model->getSampleRate(); | |
1193 double minf = getEffectiveMinFrequency(); | |
1194 double maxf = getEffectiveMaxFrequency(); | |
1195 | |
1196 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | |
1197 | |
1198 q0 = v->getFrequencyForY(y, minf, maxf, logarithmic); | |
1199 q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic); | |
1200 | |
1201 // Now map these on to ("proportions of") actual bins, using raw | |
1202 // FFT size (unsmoothed) | |
1203 | |
1204 q0 = (q0 * getFFTSize(v)) / sr; | |
1205 q1 = (q1 * getFFTSize(v)) / sr; | |
1206 | |
1207 return true; | |
1208 } | |
1209 | |
1210 bool | 1129 bool |
1211 SpectrogramLayer::getXBinRange(LayerGeometryProvider *v, int x, double &s0, double &s1) const | 1130 SpectrogramLayer::getXBinRange(LayerGeometryProvider *v, int x, double &s0, double &s1) const |
1212 { | 1131 { |
1213 sv_frame_t modelStart = m_model->getStartFrame(); | 1132 sv_frame_t modelStart = m_model->getStartFrame(); |
1214 sv_frame_t modelEnd = m_model->getEndFrame(); | 1133 sv_frame_t modelEnd = m_model->getEndFrame(); |
1261 int q1i = int(q1); | 1180 int q1i = int(q1); |
1262 | 1181 |
1263 sv_samplerate_t sr = m_model->getSampleRate(); | 1182 sv_samplerate_t sr = m_model->getSampleRate(); |
1264 | 1183 |
1265 for (int q = q0i; q <= q1i; ++q) { | 1184 for (int q = q0i; q <= q1i; ++q) { |
1266 if (q == q0i) freqMin = (sr * q) / m_fftSize; | 1185 if (q == q0i) freqMin = (sr * q) / getFFTSize(); |
1267 if (q == q1i) freqMax = (sr * (q+1)) / m_fftSize; | 1186 if (q == q1i) freqMax = (sr * (q+1)) / getFFTSize(); |
1268 } | 1187 } |
1269 return true; | 1188 return true; |
1270 } | 1189 } |
1271 | 1190 |
1272 bool | 1191 bool |
1277 { | 1196 { |
1278 if (!m_model || !m_model->isOK() || !m_model->isReady()) { | 1197 if (!m_model || !m_model->isOK() || !m_model->isReady()) { |
1279 return false; | 1198 return false; |
1280 } | 1199 } |
1281 | 1200 |
1282 FFTModel *fft = getFFTModel(v); | 1201 FFTModel *fft = getFFTModel(); |
1283 if (!fft) return false; | 1202 if (!fft) return false; |
1284 | 1203 |
1285 double s0 = 0, s1 = 0; | 1204 double s0 = 0, s1 = 0; |
1286 if (!getXBinRange(v, x, s0, s1)) return false; | 1205 if (!getXBinRange(v, x, s0, s1)) return false; |
1287 | 1206 |
1296 | 1215 |
1297 sv_samplerate_t sr = m_model->getSampleRate(); | 1216 sv_samplerate_t sr = m_model->getSampleRate(); |
1298 | 1217 |
1299 bool haveAdj = false; | 1218 bool haveAdj = false; |
1300 | 1219 |
1301 bool peaksOnly = (m_binDisplay == PeakBins || | 1220 bool peaksOnly = (m_binDisplay == BinDisplay::PeakBins || |
1302 m_binDisplay == PeakFrequencies); | 1221 m_binDisplay == BinDisplay::PeakFrequencies); |
1303 | 1222 |
1304 for (int q = q0i; q <= q1i; ++q) { | 1223 for (int q = q0i; q <= q1i; ++q) { |
1305 | 1224 |
1306 for (int s = s0i; s <= s1i; ++s) { | 1225 for (int s = s0i; s <= s1i; ++s) { |
1307 | 1226 |
1309 if (q == q0i) freqMin = binfreq; | 1228 if (q == q0i) freqMin = binfreq; |
1310 if (q == q1i) freqMax = binfreq; | 1229 if (q == q1i) freqMax = binfreq; |
1311 | 1230 |
1312 if (peaksOnly && !fft->isLocalPeak(s, q)) continue; | 1231 if (peaksOnly && !fft->isLocalPeak(s, q)) continue; |
1313 | 1232 |
1314 if (!fft->isOverThreshold(s, q, float(m_threshold * double(m_fftSize)/2.0))) continue; | 1233 if (!fft->isOverThreshold |
1234 (s, q, float(m_threshold * double(getFFTSize())/2.0))) { | |
1235 continue; | |
1236 } | |
1315 | 1237 |
1316 double freq = binfreq; | 1238 double freq = binfreq; |
1317 | 1239 |
1318 if (s < int(fft->getWidth()) - 1) { | 1240 if (s < int(fft->getWidth()) - 1) { |
1319 | 1241 |
1355 int s0i = int(s0 + 0.001); | 1277 int s0i = int(s0 + 0.001); |
1356 int s1i = int(s1); | 1278 int s1i = int(s1); |
1357 | 1279 |
1358 bool rv = false; | 1280 bool rv = false; |
1359 | 1281 |
1360 int zp = getZeroPadLevel(v); | 1282 FFTModel *fft = getFFTModel(); |
1361 q0i *= zp + 1; | |
1362 q1i *= zp + 1; | |
1363 | |
1364 FFTModel *fft = getFFTModel(v); | |
1365 | 1283 |
1366 if (fft) { | 1284 if (fft) { |
1367 | 1285 |
1368 int cw = fft->getWidth(); | 1286 int cw = fft->getWidth(); |
1369 int ch = fft->getHeight(); | 1287 int ch = fft->getHeight(); |
1382 | 1300 |
1383 value = fft->getPhaseAt(s, q); | 1301 value = fft->getPhaseAt(s, q); |
1384 if (!have || value < phaseMin) { phaseMin = value; } | 1302 if (!have || value < phaseMin) { phaseMin = value; } |
1385 if (!have || value > phaseMax) { phaseMax = value; } | 1303 if (!have || value > phaseMax) { phaseMax = value; } |
1386 | 1304 |
1387 value = fft->getMagnitudeAt(s, q) / (m_fftSize/2.0); | 1305 value = fft->getMagnitudeAt(s, q) / (getFFTSize()/2.0); |
1388 if (!have || value < min) { min = value; } | 1306 if (!have || value < min) { min = value; } |
1389 if (!have || value > max) { max = value; } | 1307 if (!have || value > max) { max = value; } |
1390 | 1308 |
1391 have = true; | 1309 have = true; |
1392 } | 1310 } |
1398 } | 1316 } |
1399 } | 1317 } |
1400 | 1318 |
1401 return rv; | 1319 return rv; |
1402 } | 1320 } |
1403 | |
1404 int | |
1405 SpectrogramLayer::getZeroPadLevel(const LayerGeometryProvider *v) const | |
1406 { | |
1407 //!!! tidy all this stuff | |
1408 | |
1409 if (m_binDisplay != AllBins) return 0; | |
1410 | |
1411 Preferences::SpectrogramSmoothing smoothing = | |
1412 Preferences::getInstance()->getSpectrogramSmoothing(); | |
1413 | |
1414 if (smoothing == Preferences::NoSpectrogramSmoothing || | |
1415 smoothing == Preferences::SpectrogramInterpolated) return 0; | |
1416 | |
1417 if (m_frequencyScale == LogFrequencyScale) return 3; | |
1418 | |
1419 sv_samplerate_t sr = m_model->getSampleRate(); | |
1420 | |
1421 int maxbin = m_fftSize / 2; | |
1422 if (m_maxFrequency > 0) { | |
1423 maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | |
1424 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | |
1425 } | |
1426 | |
1427 int minbin = 1; | |
1428 if (m_minFrequency > 0) { | |
1429 minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.1); | |
1430 if (minbin < 1) minbin = 1; | |
1431 if (minbin >= maxbin) minbin = maxbin - 1; | |
1432 } | |
1433 | |
1434 double perPixel = | |
1435 double(v->getPaintHeight()) / | |
1436 double((maxbin - minbin) / (m_zeroPadLevel + 1)); | |
1437 | |
1438 if (perPixel > 2.8) { | |
1439 return 3; // 4x oversampling | |
1440 } else if (perPixel > 1.5) { | |
1441 return 1; // 2x | |
1442 } else { | |
1443 return 0; // 1x | |
1444 } | |
1445 } | |
1446 | |
1447 int | |
1448 SpectrogramLayer::getFFTSize(const LayerGeometryProvider *v) const | |
1449 { | |
1450 return m_fftSize * (getZeroPadLevel(v) + 1); | |
1451 } | |
1452 | 1321 |
1453 FFTModel * | 1322 FFTModel * |
1454 SpectrogramLayer::getFFTModel(const LayerGeometryProvider *v) const | 1323 SpectrogramLayer::getFFTModel() const |
1455 { | 1324 { |
1456 if (!m_model) return 0; | 1325 if (!m_model) return 0; |
1457 | 1326 |
1458 int fftSize = getFFTSize(v); | 1327 int fftSize = getFFTSize(); |
1459 | 1328 |
1460 const View *view = v->getView(); | 1329 //!!! it is now surely slower to do this on every getFFTModel() |
1461 | 1330 //!!! request than it would be to recreate the model immediately |
1462 if (m_fftModels.find(view->getId()) != m_fftModels.end()) { | 1331 //!!! when something changes instead of just invalidating it |
1463 if (m_fftModels[view->getId()] == 0) { | 1332 |
1464 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1333 if (m_fftModel && |
1465 cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found null model" << endl; | 1334 m_fftModel->getHeight() == fftSize / 2 + 1 && |
1466 #endif | 1335 m_fftModel->getWindowIncrement() == getWindowIncrement()) { |
1467 return 0; | 1336 return m_fftModel; |
1468 } | 1337 } |
1469 if (m_fftModels[view->getId()]->getHeight() != fftSize / 2 + 1) { | 1338 |
1470 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1339 delete m_peakCache; |
1471 cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found a model with the wrong height (" << m_fftModels[view->getId()]->getHeight() << ", wanted " << (fftSize / 2 + 1) << ")" << endl; | 1340 m_peakCache = 0; |
1472 #endif | 1341 |
1473 delete m_fftModels[view->getId()]; | 1342 delete m_fftModel; |
1474 m_fftModels.erase(view->getId()); | 1343 m_fftModel = new FFTModel(m_model, |
1475 delete m_peakCaches[view->getId()]; | 1344 m_channel, |
1476 m_peakCaches.erase(view->getId()); | 1345 m_windowType, |
1477 } else { | 1346 m_windowSize, |
1478 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1347 getWindowIncrement(), |
1479 cerr << "SpectrogramLayer::getFFTModel(" << v << "): Found a good model of height " << m_fftModels[view->getId()]->getHeight() << endl; | 1348 fftSize); |
1480 #endif | 1349 |
1481 return m_fftModels[view->getId()]; | 1350 if (!m_fftModel->isOK()) { |
1482 } | 1351 QMessageBox::critical |
1483 } | 1352 (0, tr("FFT cache failed"), |
1484 | 1353 tr("Failed to create the FFT model for this spectrogram.\n" |
1485 if (m_fftModels.find(view->getId()) == m_fftModels.end()) { | 1354 "There may be insufficient memory or disc space to continue.")); |
1486 | 1355 delete m_fftModel; |
1487 FFTModel *model = new FFTModel(m_model, | 1356 m_fftModel = 0; |
1488 m_channel, | 1357 return 0; |
1489 m_windowType, | 1358 } |
1490 m_windowSize, | 1359 |
1491 getWindowIncrement(), | 1360 ((SpectrogramLayer *)this)->sliceableModelReplaced(0, m_fftModel); |
1492 fftSize); | 1361 |
1493 | 1362 return m_fftModel; |
1494 if (!model->isOK()) { | |
1495 QMessageBox::critical | |
1496 (0, tr("FFT cache failed"), | |
1497 tr("Failed to create the FFT model for this spectrogram.\n" | |
1498 "There may be insufficient memory or disc space to continue.")); | |
1499 delete model; | |
1500 m_fftModels[view->getId()] = 0; | |
1501 return 0; | |
1502 } | |
1503 | |
1504 if (!m_sliceableModel) { | |
1505 #ifdef DEBUG_SPECTROGRAM | |
1506 cerr << "SpectrogramLayer: emitting sliceableModelReplaced(0, " << model << ")" << endl; | |
1507 #endif | |
1508 ((SpectrogramLayer *)this)->sliceableModelReplaced(0, model); | |
1509 m_sliceableModel = model; | |
1510 } | |
1511 | |
1512 m_fftModels[view->getId()] = model; | |
1513 } | |
1514 | |
1515 return m_fftModels[view->getId()]; | |
1516 } | 1363 } |
1517 | 1364 |
1518 Dense3DModelPeakCache * | 1365 Dense3DModelPeakCache * |
1519 SpectrogramLayer::getPeakCache(const LayerGeometryProvider *v) const | 1366 SpectrogramLayer::getPeakCache() const |
1520 { | 1367 { |
1521 const View *view = v->getView(); | 1368 //!!! see comment in getFFTModel |
1522 if (!m_peakCaches[view->getId()]) { | 1369 |
1523 FFTModel *f = getFFTModel(v); | 1370 if (!m_peakCache) { |
1371 FFTModel *f = getFFTModel(); | |
1524 if (!f) return 0; | 1372 if (!f) return 0; |
1525 m_peakCaches[view->getId()] = | 1373 m_peakCache = new Dense3DModelPeakCache(f, m_peakCacheDivisor); |
1526 new Dense3DModelPeakCache(f, m_peakCacheDivisor); | 1374 } |
1527 } | 1375 return m_peakCache; |
1528 return m_peakCaches[view->getId()]; | |
1529 } | 1376 } |
1530 | 1377 |
1531 const Model * | 1378 const Model * |
1532 SpectrogramLayer::getSliceableModel() const | 1379 SpectrogramLayer::getSliceableModel() const |
1533 { | 1380 { |
1534 if (m_sliceableModel) return m_sliceableModel; | 1381 return m_fftModel; |
1535 if (m_fftModels.empty()) return 0; | 1382 } |
1536 m_sliceableModel = m_fftModels.begin()->second; | 1383 |
1537 return m_sliceableModel; | 1384 void |
1538 } | 1385 SpectrogramLayer::invalidateFFTModel() |
1539 | |
1540 void | |
1541 SpectrogramLayer::invalidateFFTModels() | |
1542 { | 1386 { |
1543 #ifdef DEBUG_SPECTROGRAM | 1387 #ifdef DEBUG_SPECTROGRAM |
1544 cerr << "SpectrogramLayer::invalidateFFTModels called" << endl; | 1388 cerr << "SpectrogramLayer::invalidateFFTModel called" << endl; |
1545 #endif | 1389 #endif |
1546 for (ViewFFTMap::iterator i = m_fftModels.begin(); | 1390 |
1547 i != m_fftModels.end(); ++i) { | 1391 emit sliceableModelReplaced(m_fftModel, 0); |
1548 delete i->second; | 1392 |
1549 } | 1393 delete m_fftModel; |
1550 for (PeakCacheMap::iterator i = m_peakCaches.begin(); | 1394 delete m_peakCache; |
1551 i != m_peakCaches.end(); ++i) { | 1395 |
1552 delete i->second; | 1396 m_fftModel = 0; |
1553 } | 1397 m_peakCache = 0; |
1554 | |
1555 m_fftModels.clear(); | |
1556 m_peakCaches.clear(); | |
1557 | |
1558 if (m_sliceableModel) { | |
1559 cerr << "SpectrogramLayer: emitting sliceableModelReplaced(" << m_sliceableModel << ", 0)" << endl; | |
1560 emit sliceableModelReplaced(m_sliceableModel, 0); | |
1561 m_sliceableModel = 0; | |
1562 } | |
1563 } | 1398 } |
1564 | 1399 |
1565 void | 1400 void |
1566 SpectrogramLayer::invalidateMagnitudes() | 1401 SpectrogramLayer::invalidateMagnitudes() |
1567 { | 1402 { |
1568 #ifdef DEBUG_SPECTROGRAM | 1403 #ifdef DEBUG_SPECTROGRAM |
1569 cerr << "SpectrogramLayer::invalidateMagnitudes called" << endl; | 1404 cerr << "SpectrogramLayer::invalidateMagnitudes called" << endl; |
1570 #endif | 1405 #endif |
1571 m_viewMags.clear(); | 1406 m_viewMags.clear(); |
1572 for (vector<MagnitudeRange>::iterator i = m_columnMags.begin(); | 1407 } |
1573 i != m_columnMags.end(); ++i) { | 1408 |
1574 *i = MagnitudeRange(); | 1409 void |
1575 } | 1410 SpectrogramLayer::setSynchronousPainting(bool synchronous) |
1576 } | 1411 { |
1577 | 1412 m_synchronous = synchronous; |
1578 bool | 1413 } |
1579 SpectrogramLayer::updateViewMagnitudes(LayerGeometryProvider *v) const | 1414 |
1580 { | 1415 Colour3DPlotRenderer * |
1581 MagnitudeRange mag; | 1416 SpectrogramLayer::getRenderer(LayerGeometryProvider *v) const |
1582 | 1417 { |
1583 int x0 = 0, x1 = v->getPaintWidth(); | 1418 int viewId = v->getId(); |
1584 double s00 = 0, s01 = 0, s10 = 0, s11 = 0; | 1419 |
1585 | 1420 if (m_renderers.find(viewId) == m_renderers.end()) { |
1586 if (!getXBinRange(v, x0, s00, s01)) { | 1421 |
1587 s00 = s01 = double(m_model->getStartFrame()) / getWindowIncrement(); | 1422 Colour3DPlotRenderer::Sources sources; |
1588 } | 1423 sources.verticalBinLayer = this; |
1589 | 1424 sources.fft = getFFTModel(); |
1590 if (!getXBinRange(v, x1, s10, s11)) { | 1425 sources.source = sources.fft; |
1591 s10 = s11 = double(m_model->getEndFrame()) / getWindowIncrement(); | 1426 sources.peaks = getPeakCache(); |
1592 } | 1427 |
1593 | 1428 ColourScale::Parameters cparams; |
1594 int s0 = int(min(s00, s10) + 0.0001); | 1429 cparams.colourMap = m_colourMap; |
1595 int s1 = int(max(s01, s11) + 0.0001); | 1430 cparams.scaleType = m_colourScale; |
1596 | 1431 cparams.multiple = m_colourScaleMultiple; |
1597 // SVDEBUG << "SpectrogramLayer::updateViewMagnitudes: x0 = " << x0 << ", x1 = " << x1 << ", s00 = " << s00 << ", s11 = " << s11 << " s0 = " << s0 << ", s1 = " << s1 << endl; | 1432 |
1598 | 1433 if (m_colourScale != ColourScaleType::Phase) { |
1599 if (int(m_columnMags.size()) <= s1) { | 1434 cparams.gain = m_gain; |
1600 m_columnMags.resize(s1 + 1); | 1435 cparams.threshold = m_threshold; |
1601 } | |
1602 | |
1603 for (int s = s0; s <= s1; ++s) { | |
1604 if (m_columnMags[s].isSet()) { | |
1605 mag.sample(m_columnMags[s]); | |
1606 } | 1436 } |
1607 } | 1437 |
1438 float minValue = 0.0f; | |
1439 float maxValue = 1.0f; | |
1440 | |
1441 if (m_normalizeVisibleArea && m_viewMags[viewId].isSet()) { | |
1442 minValue = m_viewMags[viewId].getMin(); | |
1443 maxValue = m_viewMags[viewId].getMax(); | |
1444 } else if (m_colourScale == ColourScaleType::Linear && | |
1445 m_normalization == ColumnNormalization::None) { | |
1446 maxValue = 0.1f; | |
1447 } | |
1448 | |
1449 if (maxValue <= minValue) { | |
1450 maxValue = minValue + 0.1f; | |
1451 } | |
1452 if (maxValue <= m_threshold) { | |
1453 maxValue = m_threshold + 0.1f; | |
1454 } | |
1455 | |
1456 cparams.minValue = minValue; | |
1457 cparams.maxValue = maxValue; | |
1458 | |
1459 m_lastRenderedMags[viewId] = MagnitudeRange(minValue, maxValue); | |
1460 | |
1461 Colour3DPlotRenderer::Parameters params; | |
1462 params.colourScale = ColourScale(cparams); | |
1463 params.normalization = m_normalization; | |
1464 params.binDisplay = m_binDisplay; | |
1465 params.binScale = m_binScale; | |
1466 params.alwaysOpaque = true; | |
1467 params.invertVertical = false; | |
1468 params.scaleFactor = 1.0; | |
1469 params.colourRotation = m_colourRotation; | |
1470 | |
1471 if (m_colourScale != ColourScaleType::Phase && | |
1472 m_normalization != ColumnNormalization::Hybrid) { | |
1473 params.scaleFactor *= 2.f / float(getFFTSize()); | |
1474 } | |
1475 | |
1476 Preferences::SpectrogramSmoothing smoothing = | |
1477 Preferences::getInstance()->getSpectrogramSmoothing(); | |
1478 params.interpolate = | |
1479 (smoothing == Preferences::SpectrogramInterpolated || | |
1480 smoothing == Preferences::SpectrogramZeroPaddedAndInterpolated); | |
1481 | |
1482 m_renderers[v->getId()] = new Colour3DPlotRenderer(sources, params); | |
1483 } | |
1484 | |
1485 return m_renderers[v->getId()]; | |
1486 } | |
1487 | |
1488 void | |
1489 SpectrogramLayer::paintWithRenderer(LayerGeometryProvider *v, QPainter &paint, QRect rect) const | |
1490 { | |
1491 Colour3DPlotRenderer *renderer = getRenderer(v); | |
1492 | |
1493 Colour3DPlotRenderer::RenderResult result; | |
1494 MagnitudeRange magRange; | |
1495 int viewId = v->getId(); | |
1496 | |
1497 bool continuingPaint = !renderer->geometryChanged(v); | |
1498 | |
1499 if (continuingPaint) { | |
1500 magRange = m_viewMags[viewId]; | |
1501 } | |
1502 | |
1503 if (m_synchronous) { | |
1504 | |
1505 result = renderer->render(v, paint, rect); | |
1506 | |
1507 } else { | |
1508 | |
1509 result = renderer->renderTimeConstrained(v, paint, rect); | |
1608 | 1510 |
1609 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1511 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1610 cerr << "SpectrogramLayer::updateViewMagnitudes returning from cols " | 1512 cerr << "rect width from this paint: " << result.rendered.width() |
1611 << s0 << " -> " << s1 << " inclusive" << endl; | 1513 << ", mag range in this paint: " << result.range.getMin() << " -> " |
1612 cerr << "SpectrogramLayer::updateViewMagnitudes: for view id " << v->getId() | 1514 << result.range.getMax() << endl; |
1613 << ": min is " << mag.getMin() << ", max is " << mag.getMax() << endl; | |
1614 #endif | 1515 #endif |
1615 | 1516 |
1616 if (!mag.isSet()) return false; | 1517 QRect uncached = renderer->getLargestUncachedRect(v); |
1617 if (mag == m_viewMags[v->getId()]) return false; | 1518 if (uncached.width() > 0) { |
1618 m_viewMags[v->getId()] = mag; | 1519 v->updatePaintRect(uncached); |
1619 return true; | 1520 } |
1620 } | 1521 } |
1621 | 1522 |
1622 void | 1523 magRange.sample(result.range); |
1623 SpectrogramLayer::setSynchronousPainting(bool synchronous) | 1524 |
1624 { | 1525 if (magRange.isSet()) { |
1625 m_synchronous = synchronous; | 1526 if (m_viewMags[viewId] != magRange) { |
1626 } | 1527 m_viewMags[viewId] = magRange; |
1627 | 1528 #ifdef DEBUG_SPECTROGRAM_REPAINT |
1628 ScrollableImageCache & | 1529 cerr << "mag range in this view has changed: " |
1629 SpectrogramLayer::getImageCacheReference(const LayerGeometryProvider *view) const | 1530 << magRange.getMin() << " -> " << magRange.getMax() << endl; |
1630 { | 1531 #endif |
1631 if (m_imageCaches.find(view->getId()) == m_imageCaches.end()) { | 1532 } |
1632 m_imageCaches[view->getId()] = ScrollableImageCache(view); | 1533 } |
1633 } | 1534 |
1634 return m_imageCaches.at(view->getId()); | 1535 if (!continuingPaint && m_normalizeVisibleArea && |
1536 m_viewMags[viewId] != m_lastRenderedMags[viewId]) { | |
1537 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1538 cerr << "mag range has changed from last rendered range: re-rendering" | |
1539 << endl; | |
1540 #endif | |
1541 delete m_renderers[viewId]; | |
1542 m_renderers.erase(viewId); | |
1543 v->updatePaintRect(v->getPaintRect()); | |
1544 } | |
1635 } | 1545 } |
1636 | 1546 |
1637 void | 1547 void |
1638 SpectrogramLayer::paint(LayerGeometryProvider *v, QPainter &paint, QRect rect) const | 1548 SpectrogramLayer::paint(LayerGeometryProvider *v, QPainter &paint, QRect rect) const |
1639 { | 1549 { |
1643 cerr << "SpectrogramLayer::paint() entering: m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << endl; | 1553 cerr << "SpectrogramLayer::paint() entering: m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << endl; |
1644 | 1554 |
1645 cerr << "SpectrogramLayer::paint(): rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << endl; | 1555 cerr << "SpectrogramLayer::paint(): rect is " << rect.x() << "," << rect.y() << " " << rect.width() << "x" << rect.height() << endl; |
1646 #endif | 1556 #endif |
1647 | 1557 |
1648 sv_frame_t startFrame = v->getStartFrame(); | |
1649 | |
1650 if (!m_model || !m_model->isOK() || !m_model->isReady()) { | 1558 if (!m_model || !m_model->isOK() || !m_model->isReady()) { |
1651 return; | 1559 return; |
1652 } | 1560 } |
1653 | 1561 |
1654 if (isLayerDormant(v)) { | 1562 if (isLayerDormant(v)) { |
1655 SVDEBUG << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << endl; | 1563 SVDEBUG << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << endl; |
1656 } | 1564 } |
1657 | 1565 |
1658 // Need to do this even if !isLayerDormant, as that could mean v | 1566 paintWithRenderer(v, paint, rect); |
1659 // is not in the dormancy map at all -- we need it to be present | |
1660 // and accountable for when determining whether we need the cache | |
1661 // in the cache-fill thread above. | |
1662 //!!! no inter use cache-fill thread | |
1663 const_cast<SpectrogramLayer *>(this)->Layer::setLayerDormant(v, false); | |
1664 | |
1665 int fftSize = getFFTSize(v); | |
1666 | |
1667 const View *view = v->getView(); | |
1668 ScrollableImageCache &cache = getImageCacheReference(view); | |
1669 | |
1670 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1671 cerr << "SpectrogramLayer::paint(): image cache valid area from " << cache.getValidLeft() << " width " << cache.getValidWidth() << ", height " << cache.getSize().height() << endl; | |
1672 if (rect.x() + rect.width() + 1 < cache.getValidLeft() || | |
1673 rect.x() > cache.getValidRight()) { | |
1674 cerr << "SpectrogramLayer: NOTE: requested rect is not contiguous with cache valid area" << endl; | |
1675 } | |
1676 #endif | |
1677 | |
1678 int zoomLevel = v->getZoomLevel(); | |
1679 | |
1680 int x0 = v->getXForViewX(rect.x()); | |
1681 int x1 = v->getXForViewX(rect.x() + rect.width()); | |
1682 if (x0 < 0) x0 = 0; | |
1683 if (x1 > v->getPaintWidth()) x1 = v->getPaintWidth(); | |
1684 | |
1685 if (updateViewMagnitudes(v)) { | |
1686 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1687 cerr << "SpectrogramLayer: magnitude range changed to [" << m_viewMags[v->getId()].getMin() << "->" << m_viewMags[v->getId()].getMax() << "]" << endl; | |
1688 #endif | |
1689 if (m_normalization == NormalizeVisibleArea) { | |
1690 cache.invalidate(); | |
1691 } | |
1692 } | |
1693 | |
1694 if (cache.getZoomLevel() != zoomLevel || | |
1695 cache.getSize() != v->getPaintSize()) { | |
1696 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1697 cerr << "SpectrogramLayer: resizing image cache from " | |
1698 << cache.getSize().width() << "x" << cache.getSize().height() | |
1699 << " to " | |
1700 << v->getPaintSize().width() << "x" << v->getPaintSize().height() | |
1701 << " and updating zoom level from " << cache.getZoomLevel() | |
1702 << " to " << zoomLevel | |
1703 << endl; | |
1704 #endif | |
1705 cache.resize(v->getPaintSize()); | |
1706 cache.setZoomLevel(zoomLevel); | |
1707 cache.setStartFrame(startFrame); | |
1708 } | |
1709 | |
1710 if (cache.isValid()) { | |
1711 | |
1712 if (v->getXForFrame(cache.getStartFrame()) == | |
1713 v->getXForFrame(startFrame) && | |
1714 cache.getValidLeft() <= x0 && | |
1715 cache.getValidRight() >= x1) { | |
1716 | |
1717 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1718 cerr << "SpectrogramLayer: image cache hit!" << endl; | |
1719 #endif | |
1720 | |
1721 paint.drawImage(rect, cache.getImage(), rect); | |
1722 | |
1723 illuminateLocalFeatures(v, paint); | |
1724 return; | |
1725 | |
1726 } else { | |
1727 | |
1728 // cache doesn't begin at the right frame or doesn't | |
1729 // contain the complete view, but might be scrollable or | |
1730 // partially usable | |
1731 | |
1732 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1733 cerr << "SpectrogramLayer: scrolling the image cache if applicable" << endl; | |
1734 #endif | |
1735 | |
1736 cache.scrollTo(startFrame); | |
1737 | |
1738 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1739 cerr << "SpectrogramLayer: after scrolling, cache valid from " | |
1740 << cache.getValidLeft() << " width " << cache.getValidWidth() | |
1741 << endl; | |
1742 #endif | |
1743 } | |
1744 } | |
1745 | |
1746 bool rightToLeft = false; | |
1747 | |
1748 if (!cache.isValid()) { | |
1749 if (!m_synchronous) { | |
1750 // When rendering the whole thing, start from somewhere near | |
1751 // the middle so that the region of interest appears first | |
1752 | |
1753 //!!! (perhaps we should have some cunning test to avoid | |
1754 //!!! doing this if past repaints have appeared fast | |
1755 //!!! enough to do the whole width in one shot) | |
1756 if (x0 == 0 && x1 == v->getPaintWidth()) { | |
1757 x0 = int(x1 * 0.3); | |
1758 } | |
1759 } | |
1760 } else { | |
1761 // When rendering only a part of the cache, we need to make | |
1762 // sure that the part we're rendering is adjacent to (or | |
1763 // overlapping) a valid area of cache, if we have one. The | |
1764 // alternative is to ditch the valid area of cache and render | |
1765 // only the requested area, but that's risky because this can | |
1766 // happen when just waving the pointer over a small part of | |
1767 // the view -- if we lose the partly-built cache every time | |
1768 // the user does that, we'll never finish building it. | |
1769 int left = x0; | |
1770 int width = x1 - x0; | |
1771 bool isLeftOfValidArea = false; | |
1772 cache.adjustToTouchValidArea(left, width, isLeftOfValidArea); | |
1773 x0 = left; | |
1774 x1 = x0 + width; | |
1775 | |
1776 // That call also told us whether we should be painting | |
1777 // sub-regions of our target region in right-to-left order in | |
1778 // order to ensure contiguity | |
1779 rightToLeft = isLeftOfValidArea; | |
1780 } | |
1781 | |
1782 // We always paint the full height when refreshing the cache. | |
1783 // Smaller heights can be used when painting direct from cache | |
1784 // (further up in this function), but we want to ensure the cache | |
1785 // is coherent without having to worry about vertical matching of | |
1786 // required and valid areas as well as horizontal. | |
1787 int h = v->getPaintHeight(); | |
1788 | |
1789 int repaintWidth = x1 - x0; | |
1790 | |
1791 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1792 cerr << "SpectrogramLayer: x0 " << x0 << ", x1 " << x1 | |
1793 << ", repaintWidth " << repaintWidth << ", h " << h | |
1794 << ", rightToLeft " << rightToLeft << endl; | |
1795 #endif | |
1796 | |
1797 sv_samplerate_t sr = m_model->getSampleRate(); | |
1798 | |
1799 // Set minFreq and maxFreq to the frequency extents of the possibly | |
1800 // zero-padded visible bin range, and displayMinFreq and displayMaxFreq | |
1801 // to the actual scale frequency extents (presumably not zero padded). | |
1802 | |
1803 // If we are zero padding, we want to use the zero-padded | |
1804 // equivalents of the bins that we would be using if not zero | |
1805 // padded, to avoid spaces at the top and bottom of the display. | |
1806 | |
1807 // Note fftSize is the actual zero-padded fft size, m_fftSize the | |
1808 // nominal fft size. | |
1809 | |
1810 int maxbin = m_fftSize / 2; | |
1811 if (m_maxFrequency > 0) { | |
1812 maxbin = int((double(m_maxFrequency) * m_fftSize) / sr + 0.001); | |
1813 if (maxbin > m_fftSize / 2) maxbin = m_fftSize / 2; | |
1814 } | |
1815 | |
1816 int minbin = 1; | |
1817 if (m_minFrequency > 0) { | |
1818 minbin = int((double(m_minFrequency) * m_fftSize) / sr + 0.001); | |
1819 // cerr << "m_minFrequency = " << m_minFrequency << " -> minbin = " << minbin << endl; | |
1820 if (minbin < 1) minbin = 1; | |
1821 if (minbin >= maxbin) minbin = maxbin - 1; | |
1822 } | |
1823 | |
1824 int zpl = getZeroPadLevel(v) + 1; | |
1825 minbin = minbin * zpl; | |
1826 maxbin = (maxbin + 1) * zpl - 1; | |
1827 | |
1828 double minFreq = (double(minbin) * sr) / fftSize; | |
1829 double maxFreq = (double(maxbin) * sr) / fftSize; | |
1830 | |
1831 double displayMinFreq = minFreq; | |
1832 double displayMaxFreq = maxFreq; | |
1833 | |
1834 if (fftSize != m_fftSize) { | |
1835 displayMinFreq = getEffectiveMinFrequency(); | |
1836 displayMaxFreq = getEffectiveMaxFrequency(); | |
1837 } | |
1838 | |
1839 // cerr << "(giving actual minFreq " << minFreq << " and display minFreq " << displayMinFreq << ")" << endl; | |
1840 | |
1841 int increment = getWindowIncrement(); | |
1842 | |
1843 bool logarithmic = (m_frequencyScale == LogFrequencyScale); | |
1844 | |
1845 MagnitudeRange overallMag = m_viewMags[v->getId()]; | |
1846 bool overallMagChanged = false; | |
1847 | |
1848 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1849 cerr << "SpectrogramLayer: " << ((double(v->getFrameForX(1) - v->getFrameForX(0))) / increment) << " bin(s) per pixel" << endl; | |
1850 #endif | |
1851 | |
1852 if (repaintWidth == 0) { | |
1853 SVDEBUG << "*** NOTE: repaintWidth == 0" << endl; | |
1854 } | |
1855 | |
1856 Profiler outerprof("SpectrogramLayer::paint: all cols"); | |
1857 | |
1858 // The draw buffer contains a fragment at either our pixel | |
1859 // resolution (if there is more than one time-bin per pixel) or | |
1860 // time-bin resolution (if a time-bin spans more than one pixel). | |
1861 // We need to ensure that it starts and ends at points where a | |
1862 // time-bin boundary occurs at an exact pixel boundary, and with a | |
1863 // certain amount of overlap across existing pixels so that we can | |
1864 // scale and draw from it without smoothing errors at the edges. | |
1865 | |
1866 // If (getFrameForX(x) / increment) * increment == | |
1867 // getFrameForX(x), then x is a time-bin boundary. We want two | |
1868 // such boundaries at either side of the draw buffer -- one which | |
1869 // we draw up to, and one which we subsequently crop at. | |
1870 | |
1871 bool bufferIsBinResolution = false; | |
1872 if (increment > zoomLevel) bufferIsBinResolution = true; | |
1873 | |
1874 sv_frame_t leftBoundaryFrame = -1, leftCropFrame = -1; | |
1875 sv_frame_t rightBoundaryFrame = -1, rightCropFrame = -1; | |
1876 | |
1877 int bufwid; | |
1878 | |
1879 if (bufferIsBinResolution) { | |
1880 | |
1881 for (int x = x0; ; --x) { | |
1882 sv_frame_t f = v->getFrameForX(x); | |
1883 if ((f / increment) * increment == f) { | |
1884 if (leftCropFrame == -1) leftCropFrame = f; | |
1885 else if (x < x0 - 2) { | |
1886 leftBoundaryFrame = f; | |
1887 break; | |
1888 } | |
1889 } | |
1890 } | |
1891 for (int x = x0 + repaintWidth; ; ++x) { | |
1892 sv_frame_t f = v->getFrameForX(x); | |
1893 if ((f / increment) * increment == f) { | |
1894 if (rightCropFrame == -1) rightCropFrame = f; | |
1895 else if (x > x0 + repaintWidth + 2) { | |
1896 rightBoundaryFrame = f; | |
1897 break; | |
1898 } | |
1899 } | |
1900 } | |
1901 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
1902 cerr << "Left: crop: " << leftCropFrame << " (bin " << leftCropFrame/increment << "); boundary: " << leftBoundaryFrame << " (bin " << leftBoundaryFrame/increment << ")" << endl; | |
1903 cerr << "Right: crop: " << rightCropFrame << " (bin " << rightCropFrame/increment << "); boundary: " << rightBoundaryFrame << " (bin " << rightBoundaryFrame/increment << ")" << endl; | |
1904 #endif | |
1905 | |
1906 bufwid = int((rightBoundaryFrame - leftBoundaryFrame) / increment); | |
1907 | |
1908 } else { | |
1909 | |
1910 bufwid = repaintWidth; | |
1911 } | |
1912 | |
1913 vector<int> binforx(bufwid); | |
1914 vector<double> binfory(h); | |
1915 | |
1916 bool usePeaksCache = false; | |
1917 | |
1918 if (bufferIsBinResolution) { | |
1919 for (int x = 0; x < bufwid; ++x) { | |
1920 binforx[x] = int(leftBoundaryFrame / increment) + x; | |
1921 } | |
1922 m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); | |
1923 } else { | |
1924 for (int x = 0; x < bufwid; ++x) { | |
1925 double s0 = 0, s1 = 0; | |
1926 if (getXBinRange(v, x + x0, s0, s1)) { | |
1927 binforx[x] = int(s0 + 0.0001); | |
1928 } else { | |
1929 binforx[x] = -1; //??? | |
1930 } | |
1931 } | |
1932 if (m_drawBuffer.width() < bufwid || m_drawBuffer.height() != h) { | |
1933 m_drawBuffer = QImage(bufwid, h, QImage::Format_Indexed8); | |
1934 } | |
1935 usePeaksCache = (increment * m_peakCacheDivisor) < zoomLevel; | |
1936 if (m_colourScale == PhaseColourScale) usePeaksCache = false; | |
1937 } | |
1938 | |
1939 for (int pixel = 0; pixel < 256; ++pixel) { | |
1940 m_drawBuffer.setColor((unsigned char)pixel, | |
1941 m_palette.getColour((unsigned char)pixel).rgb()); | |
1942 } | |
1943 | |
1944 m_drawBuffer.fill(0); | |
1945 int attainedBufwid = bufwid; | |
1946 | |
1947 double softTimeLimit; | |
1948 | |
1949 if (m_synchronous) { | |
1950 | |
1951 // must paint the whole thing for synchronous mode, so give | |
1952 // "no timeout" | |
1953 softTimeLimit = 0.0; | |
1954 | |
1955 } else if (bufferIsBinResolution) { | |
1956 | |
1957 // calculating boundaries later will be too fiddly for partial | |
1958 // paints, and painting should be fast anyway when this is the | |
1959 // case because it means we're well zoomed in | |
1960 softTimeLimit = 0.0; | |
1961 | |
1962 } else { | |
1963 | |
1964 // neither limitation applies, so use a short soft limit | |
1965 | |
1966 if (m_binDisplay == PeakFrequencies) { | |
1967 softTimeLimit = 0.15; | |
1968 } else { | |
1969 softTimeLimit = 0.1; | |
1970 } | |
1971 } | |
1972 | |
1973 if (m_binDisplay != PeakFrequencies) { | |
1974 | |
1975 for (int y = 0; y < h; ++y) { | |
1976 double q0 = 0, q1 = 0; | |
1977 if (!getSmoothedYBinRange(v, h-y-1, q0, q1)) { | |
1978 binfory[y] = -1; | |
1979 } else { | |
1980 binfory[y] = q0; | |
1981 } | |
1982 } | |
1983 | |
1984 attainedBufwid = | |
1985 paintDrawBuffer(v, bufwid, h, binforx, binfory, | |
1986 usePeaksCache, | |
1987 overallMag, overallMagChanged, | |
1988 rightToLeft, | |
1989 softTimeLimit); | |
1990 | |
1991 } else { | |
1992 | |
1993 attainedBufwid = | |
1994 paintDrawBufferPeakFrequencies(v, bufwid, h, binforx, | |
1995 minbin, maxbin, | |
1996 displayMinFreq, displayMaxFreq, | |
1997 logarithmic, | |
1998 overallMag, overallMagChanged, | |
1999 rightToLeft, | |
2000 softTimeLimit); | |
2001 } | |
2002 | |
2003 int failedToRepaint = bufwid - attainedBufwid; | |
2004 | |
2005 int paintedLeft = x0; | |
2006 int paintedWidth = x1 - x0; | |
2007 | |
2008 if (failedToRepaint > 0) { | |
2009 | |
2010 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2011 cerr << "SpectrogramLayer::paint(): Failed to repaint " << failedToRepaint << " of " << bufwid | |
2012 << " columns in time (so managed to repaint " << bufwid - failedToRepaint << ")" << endl; | |
2013 #endif | |
2014 | |
2015 if (rightToLeft) { | |
2016 paintedLeft += failedToRepaint; | |
2017 } | |
2018 | |
2019 paintedWidth -= failedToRepaint; | |
2020 | |
2021 if (paintedWidth < 0) { | |
2022 paintedWidth = 0; | |
2023 } | |
2024 | |
2025 } else if (failedToRepaint < 0) { | |
2026 cerr << "WARNING: failedToRepaint < 0 (= " << failedToRepaint << ")" | |
2027 << endl; | |
2028 failedToRepaint = 0; | |
2029 } | |
2030 | |
2031 if (overallMagChanged) { | |
2032 m_viewMags[v->getId()] = overallMag; | |
2033 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2034 cerr << "SpectrogramLayer: Overall mag is now [" << m_viewMags[v->getId()].getMin() << "->" << m_viewMags[v->getId()].getMax() << "] - will be updating" << endl; | |
2035 #endif | |
2036 } | |
2037 | |
2038 outerprof.end(); | |
2039 | |
2040 Profiler profiler2("SpectrogramLayer::paint: draw image"); | |
2041 | |
2042 if (paintedWidth > 0) { | |
2043 | |
2044 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2045 cerr << "SpectrogramLayer: Copying " << paintedWidth << "x" << h | |
2046 << " from draw buffer at " << paintedLeft - x0 << "," << 0 | |
2047 << " to " << paintedWidth << "x" << h << " on cache at " | |
2048 << x0 << "," << 0 << endl; | |
2049 #endif | |
2050 | |
2051 if (bufferIsBinResolution) { | |
2052 | |
2053 int scaledLeft = v->getXForFrame(leftBoundaryFrame); | |
2054 int scaledRight = v->getXForFrame(rightBoundaryFrame); | |
2055 | |
2056 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2057 cerr << "SpectrogramLayer: Rescaling image from " << bufwid | |
2058 << "x" << h << " to " | |
2059 << scaledRight-scaledLeft << "x" << h << endl; | |
2060 #endif | |
2061 | |
2062 Preferences::SpectrogramXSmoothing xsmoothing = | |
2063 Preferences::getInstance()->getSpectrogramXSmoothing(); | |
2064 | |
2065 QImage scaled = m_drawBuffer.scaled | |
2066 (scaledRight - scaledLeft, h, | |
2067 Qt::IgnoreAspectRatio, | |
2068 ((xsmoothing == Preferences::SpectrogramXInterpolated) ? | |
2069 Qt::SmoothTransformation : Qt::FastTransformation)); | |
2070 | |
2071 int scaledLeftCrop = v->getXForFrame(leftCropFrame); | |
2072 int scaledRightCrop = v->getXForFrame(rightCropFrame); | |
2073 | |
2074 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2075 cerr << "SpectrogramLayer: Drawing image region of width " << scaledRightCrop - scaledLeftCrop << " to " | |
2076 << scaledLeftCrop << " from " << scaledLeftCrop - scaledLeft << endl; | |
2077 #endif | |
2078 | |
2079 int targetLeft = scaledLeftCrop; | |
2080 if (targetLeft < 0) { | |
2081 targetLeft = 0; | |
2082 } | |
2083 | |
2084 int targetWidth = scaledRightCrop - targetLeft; | |
2085 if (targetLeft + targetWidth > cache.getSize().width()) { | |
2086 targetWidth = cache.getSize().width() - targetLeft; | |
2087 } | |
2088 | |
2089 int sourceLeft = targetLeft - scaledLeft; | |
2090 if (sourceLeft < 0) { | |
2091 sourceLeft = 0; | |
2092 } | |
2093 | |
2094 int sourceWidth = targetWidth; | |
2095 | |
2096 if (targetWidth > 0) { | |
2097 cache.drawImage | |
2098 (targetLeft, | |
2099 targetWidth, | |
2100 scaled, | |
2101 sourceLeft, | |
2102 sourceWidth); | |
2103 } | |
2104 | |
2105 } else { | |
2106 | |
2107 cache.drawImage(paintedLeft, paintedWidth, | |
2108 m_drawBuffer, | |
2109 paintedLeft - x0, paintedWidth); | |
2110 } | |
2111 } | |
2112 | |
2113 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2114 cerr << "SpectrogramLayer: Cache valid area now from " << cache.getValidLeft() | |
2115 << " width " << cache.getValidWidth() << ", height " | |
2116 << cache.getSize().height() << endl; | |
2117 #endif | |
2118 | |
2119 QRect pr = rect & cache.getValidArea(); | |
2120 | |
2121 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2122 cerr << "SpectrogramLayer: Copying " << pr.width() << "x" << pr.height() | |
2123 << " from cache at " << pr.x() << "," << pr.y() | |
2124 << " to window" << endl; | |
2125 #endif | |
2126 | |
2127 paint.drawImage(pr.x(), pr.y(), cache.getImage(), | |
2128 pr.x(), pr.y(), pr.width(), pr.height()); | |
2129 | |
2130 if (!m_synchronous) { | |
2131 | |
2132 if ((m_normalization != NormalizeVisibleArea) || !overallMagChanged) { | |
2133 | |
2134 QRect areaLeft(0, 0, cache.getValidLeft(), h); | |
2135 QRect areaRight(cache.getValidRight(), 0, | |
2136 cache.getSize().width() - cache.getValidRight(), h); | |
2137 | |
2138 bool haveSpaceLeft = (areaLeft.width() > 0); | |
2139 bool haveSpaceRight = (areaRight.width() > 0); | |
2140 | |
2141 bool updateLeft = haveSpaceLeft; | |
2142 bool updateRight = haveSpaceRight; | |
2143 | |
2144 if (updateLeft && updateRight) { | |
2145 if (rightToLeft) { | |
2146 // we just did something adjoining the cache on | |
2147 // its left side, so now do something on its right | |
2148 updateLeft = false; | |
2149 } else { | |
2150 updateRight = false; | |
2151 } | |
2152 } | |
2153 | |
2154 if (updateLeft) { | |
2155 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2156 cerr << "SpectrogramLayer::paint() updating left (" | |
2157 << areaLeft.x() << ", " | |
2158 << areaLeft.width() << ")" << endl; | |
2159 #endif | |
2160 v->updatePaintRect(areaLeft); | |
2161 } | |
2162 | |
2163 if (updateRight) { | |
2164 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2165 cerr << "SpectrogramLayer::paint() updating right (" | |
2166 << areaRight.x() << ", " | |
2167 << areaRight.width() << ")" << endl; | |
2168 #endif | |
2169 v->updatePaintRect(areaRight); | |
2170 } | |
2171 | |
2172 } else { | |
2173 // overallMagChanged | |
2174 cerr << "\noverallMagChanged - updating all\n" << endl; | |
2175 cache.invalidate(); | |
2176 v->updatePaintRect(v->getPaintRect()); | |
2177 } | |
2178 } | |
2179 | 1567 |
2180 illuminateLocalFeatures(v, paint); | 1568 illuminateLocalFeatures(v, paint); |
2181 | |
2182 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2183 cerr << "SpectrogramLayer::paint() returning" << endl; | |
2184 #endif | |
2185 } | |
2186 | |
2187 int | |
2188 SpectrogramLayer::paintDrawBufferPeakFrequencies(LayerGeometryProvider *v, | |
2189 int w, | |
2190 int h, | |
2191 const vector<int> &binforx, | |
2192 int minbin, | |
2193 int maxbin, | |
2194 double displayMinFreq, | |
2195 double displayMaxFreq, | |
2196 bool logarithmic, | |
2197 MagnitudeRange &overallMag, | |
2198 bool &overallMagChanged, | |
2199 bool rightToLeft, | |
2200 double softTimeLimit) const | |
2201 { | |
2202 Profiler profiler("SpectrogramLayer::paintDrawBufferPeakFrequencies"); | |
2203 | |
2204 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2205 cerr << "SpectrogramLayer::paintDrawBufferPeakFrequencies: minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; | |
2206 #endif | |
2207 if (minbin < 0) minbin = 0; | |
2208 if (maxbin < 0) maxbin = minbin+1; | |
2209 | |
2210 FFTModel *fft = getFFTModel(v); | |
2211 if (!fft) return 0; | |
2212 | |
2213 FFTModel::PeakSet peakfreqs; | |
2214 | |
2215 int psx = -1; | |
2216 | |
2217 #ifdef __GNUC__ | |
2218 float values[maxbin - minbin + 1]; | |
2219 #else | |
2220 float *values = (float *)alloca((maxbin - minbin + 1) * sizeof(float)); | |
2221 #endif | |
2222 | |
2223 int minColumns = 4; | |
2224 bool haveTimeLimits = (softTimeLimit > 0.0); | |
2225 double hardTimeLimit = softTimeLimit * 2.0; | |
2226 bool overridingSoftLimit = false; | |
2227 auto startTime = chrono::steady_clock::now(); | |
2228 | |
2229 int start = 0; | |
2230 int finish = w; | |
2231 int step = 1; | |
2232 | |
2233 if (rightToLeft) { | |
2234 start = w-1; | |
2235 finish = -1; | |
2236 step = -1; | |
2237 } | |
2238 | |
2239 int columnCount = 0; | |
2240 | |
2241 for (int x = start; x != finish; x += step) { | |
2242 | |
2243 ++columnCount; | |
2244 | |
2245 if (binforx[x] < 0) continue; | |
2246 | |
2247 int sx0 = binforx[x]; | |
2248 int sx1 = sx0; | |
2249 if (x+1 < w) sx1 = binforx[x+1]; | |
2250 if (sx0 < 0) sx0 = sx1 - 1; | |
2251 if (sx0 < 0) continue; | |
2252 if (sx1 <= sx0) sx1 = sx0 + 1; | |
2253 | |
2254 for (int sx = sx0; sx < sx1; ++sx) { | |
2255 | |
2256 if (sx < 0 || sx >= int(fft->getWidth())) continue; | |
2257 | |
2258 MagnitudeRange mag; | |
2259 | |
2260 if (sx != psx) { | |
2261 peakfreqs = fft->getPeakFrequencies(FFTModel::AllPeaks, sx, | |
2262 minbin, maxbin - 1); | |
2263 if (m_colourScale == PhaseColourScale) { | |
2264 fft->getPhasesAt(sx, values, minbin, maxbin - minbin + 1); | |
2265 } else if (m_normalization == NormalizeColumns) { | |
2266 fft->getNormalizedMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); | |
2267 } else if (m_normalization == NormalizeHybrid) { | |
2268 float max = fft->getNormalizedMagnitudesAt | |
2269 (sx, values, minbin, maxbin - minbin + 1); | |
2270 float scale = log10f(max + 1.f); | |
2271 for (int i = minbin; i <= maxbin; ++i) { | |
2272 values[i - minbin] *= scale; | |
2273 } | |
2274 } else { | |
2275 fft->getMagnitudesAt(sx, values, minbin, maxbin - minbin + 1); | |
2276 } | |
2277 psx = sx; | |
2278 } | |
2279 | |
2280 for (FFTModel::PeakSet::const_iterator pi = peakfreqs.begin(); | |
2281 pi != peakfreqs.end(); ++pi) { | |
2282 | |
2283 int bin = pi->first; | |
2284 double freq = pi->second; | |
2285 | |
2286 if (bin < minbin) continue; | |
2287 if (bin > maxbin) break; | |
2288 | |
2289 double value = values[bin - minbin]; | |
2290 | |
2291 if (m_colourScale != PhaseColourScale) { | |
2292 if (m_normalization != NormalizeColumns) { | |
2293 value /= (m_fftSize/2.0); | |
2294 } | |
2295 mag.sample(float(value)); | |
2296 value *= m_gain; | |
2297 } | |
2298 | |
2299 double y = v->getYForFrequency | |
2300 (freq, displayMinFreq, displayMaxFreq, logarithmic); | |
2301 | |
2302 int iy = int(y + 0.5); | |
2303 if (iy < 0 || iy >= h) continue; | |
2304 | |
2305 m_drawBuffer.setPixel(x, iy, getDisplayValue(v, value)); | |
2306 } | |
2307 | |
2308 if (mag.isSet()) { | |
2309 if (sx >= int(m_columnMags.size())) { | |
2310 #ifdef DEBUG_SPECTROGRAM | |
2311 cerr << "INTERNAL ERROR: " << sx << " >= " | |
2312 << m_columnMags.size() | |
2313 << " at SpectrogramLayer.cpp::paintDrawBuffer" | |
2314 << endl; | |
2315 #endif | |
2316 } else { | |
2317 m_columnMags[sx].sample(mag); | |
2318 if (overallMag.sample(mag)) overallMagChanged = true; | |
2319 } | |
2320 } | |
2321 } | |
2322 | |
2323 if (haveTimeLimits) { | |
2324 if (columnCount >= minColumns) { | |
2325 auto t = chrono::steady_clock::now(); | |
2326 double diff = chrono::duration<double>(t - startTime).count(); | |
2327 if (diff > hardTimeLimit) { | |
2328 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2329 cerr << "SpectrogramLayer::paintDrawBufferPeakFrequencies: hard limit " << hardTimeLimit << " sec exceeded after " | |
2330 << columnCount << " columns with time " << diff << endl; | |
2331 #endif | |
2332 return columnCount; | |
2333 } else if (diff > softTimeLimit && !overridingSoftLimit) { | |
2334 // If we're more than half way through by the time | |
2335 // we reach the soft limit, ignore it (though | |
2336 // still respect the hard limit, above). Otherwise | |
2337 // respect the soft limit and return now. | |
2338 if (columnCount > w/2) { | |
2339 overridingSoftLimit = true; | |
2340 } else { | |
2341 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2342 cerr << "SpectrogramLayer::paintDrawBufferPeakFrequencies: soft limit " << softTimeLimit << " sec exceeded after " | |
2343 << columnCount << " columns with time " << diff << endl; | |
2344 #endif | |
2345 return columnCount; | |
2346 } | |
2347 } | |
2348 } | |
2349 } | |
2350 } | |
2351 | |
2352 return columnCount; | |
2353 } | |
2354 | |
2355 int | |
2356 SpectrogramLayer::paintDrawBuffer(LayerGeometryProvider *v, | |
2357 int w, | |
2358 int h, | |
2359 const vector<int> &binforx, | |
2360 const vector<double> &binfory, | |
2361 bool usePeaksCache, | |
2362 MagnitudeRange &overallMag, | |
2363 bool &overallMagChanged, | |
2364 bool rightToLeft, | |
2365 double softTimeLimit) const | |
2366 { | |
2367 Profiler profiler("SpectrogramLayer::paintDrawBuffer"); | |
2368 | |
2369 int minbin = int(binfory[0] + 0.0001); | |
2370 int maxbin = int(binfory[h-1]); | |
2371 | |
2372 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2373 cerr << "SpectrogramLayer::paintDrawBuffer: minbin " << minbin << ", maxbin " << maxbin << "; w " << w << ", h " << h << endl; | |
2374 #endif | |
2375 if (minbin < 0) minbin = 0; | |
2376 if (maxbin < 0) maxbin = minbin+1; | |
2377 | |
2378 DenseThreeDimensionalModel *sourceModel = 0; | |
2379 FFTModel *fft = 0; | |
2380 int divisor = 1; | |
2381 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2382 cerr << "SpectrogramLayer::paintDrawBuffer: Note: bin display = " << m_binDisplay << ", w = " << w << ", binforx[" << w-1 << "] = " << binforx[w-1] << ", binforx[0] = " << binforx[0] << endl; | |
2383 #endif | |
2384 if (usePeaksCache) { | |
2385 sourceModel = getPeakCache(v); | |
2386 divisor = m_peakCacheDivisor; | |
2387 minbin = 0; | |
2388 maxbin = sourceModel->getHeight(); | |
2389 } else { | |
2390 sourceModel = fft = getFFTModel(v); | |
2391 } | |
2392 | |
2393 if (!sourceModel) return 0; | |
2394 | |
2395 bool interpolate = false; | |
2396 Preferences::SpectrogramSmoothing smoothing = | |
2397 Preferences::getInstance()->getSpectrogramSmoothing(); | |
2398 if (smoothing == Preferences::SpectrogramInterpolated || | |
2399 smoothing == Preferences::SpectrogramZeroPaddedAndInterpolated) { | |
2400 if (m_binDisplay != PeakBins && | |
2401 m_binDisplay != PeakFrequencies) { | |
2402 interpolate = true; | |
2403 } | |
2404 } | |
2405 | |
2406 int psx = -1; | |
2407 | |
2408 #ifdef __GNUC__ | |
2409 float autoarray[maxbin - minbin + 1]; | |
2410 float peaks[h]; | |
2411 #else | |
2412 float *autoarray = (float *)alloca((maxbin - minbin + 1) * sizeof(float)); | |
2413 float *peaks = (float *)alloca(h * sizeof(float)); | |
2414 #endif | |
2415 | |
2416 const float *values = autoarray; | |
2417 DenseThreeDimensionalModel::Column c; | |
2418 | |
2419 int minColumns = 4; | |
2420 bool haveTimeLimits = (softTimeLimit > 0.0); | |
2421 double hardTimeLimit = softTimeLimit * 2.0; | |
2422 bool overridingSoftLimit = false; | |
2423 auto startTime = chrono::steady_clock::now(); | |
2424 | |
2425 int start = 0; | |
2426 int finish = w; | |
2427 int step = 1; | |
2428 | |
2429 if (rightToLeft) { | |
2430 start = w-1; | |
2431 finish = -1; | |
2432 step = -1; | |
2433 } | |
2434 | |
2435 int columnCount = 0; | |
2436 | |
2437 for (int x = start; x != finish; x += step) { | |
2438 | |
2439 // x is the on-canvas pixel coord; sx (later) will be the | |
2440 // source column index | |
2441 | |
2442 ++columnCount; | |
2443 | |
2444 if (binforx[x] < 0) continue; | |
2445 | |
2446 float columnMax = 0.f; | |
2447 | |
2448 int sx0 = binforx[x] / divisor; | |
2449 int sx1 = sx0; | |
2450 if (x+1 < w) sx1 = binforx[x+1] / divisor; | |
2451 if (sx0 < 0) sx0 = sx1 - 1; | |
2452 if (sx0 < 0) continue; | |
2453 if (sx1 <= sx0) sx1 = sx0 + 1; | |
2454 | |
2455 for (int y = 0; y < h; ++y) peaks[y] = 0.f; | |
2456 | |
2457 for (int sx = sx0; sx < sx1; ++sx) { | |
2458 | |
2459 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2460 // cerr << "sx = " << sx << endl; | |
2461 #endif | |
2462 | |
2463 if (sx < 0 || sx >= int(sourceModel->getWidth())) continue; | |
2464 | |
2465 MagnitudeRange mag; | |
2466 | |
2467 if (sx != psx) { | |
2468 if (fft) { | |
2469 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2470 // cerr << "Retrieving column " << sx << " from fft directly" << endl; | |
2471 #endif | |
2472 if (m_colourScale == PhaseColourScale) { | |
2473 fft->getPhasesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2474 } else if (m_normalization == NormalizeColumns) { | |
2475 fft->getNormalizedMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2476 } else if (m_normalization == NormalizeHybrid) { | |
2477 float max = fft->getNormalizedMagnitudesAt | |
2478 (sx, autoarray, minbin, maxbin - minbin + 1); | |
2479 float scale = log10f(max + 1.f); | |
2480 for (int i = minbin; i <= maxbin; ++i) { | |
2481 autoarray[i - minbin] *= scale; | |
2482 } | |
2483 } else { | |
2484 fft->getMagnitudesAt(sx, autoarray, minbin, maxbin - minbin + 1); | |
2485 } | |
2486 } else { | |
2487 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2488 // cerr << "Retrieving column " << sx << " from peaks cache" << endl; | |
2489 #endif | |
2490 c = sourceModel->getColumn(sx); | |
2491 if (m_normalization == NormalizeColumns || | |
2492 m_normalization == NormalizeHybrid) { | |
2493 for (int y = 0; y < h; ++y) { | |
2494 if (c[y] > columnMax) columnMax = c[y]; | |
2495 } | |
2496 } | |
2497 values = c.data() + minbin; | |
2498 } | |
2499 psx = sx; | |
2500 } | |
2501 | |
2502 for (int y = 0; y < h; ++y) { | |
2503 | |
2504 double sy0 = binfory[y]; | |
2505 double sy1 = sy0 + 1; | |
2506 if (y+1 < h) sy1 = binfory[y+1]; | |
2507 | |
2508 double value = 0.0; | |
2509 | |
2510 if (interpolate && fabs(sy1 - sy0) < 1.0) { | |
2511 | |
2512 double centre = (sy0 + sy1) / 2; | |
2513 double dist = (centre - 0.5) - rint(centre - 0.5); | |
2514 int bin = int(centre); | |
2515 int other = (dist < 0 ? (bin-1) : (bin+1)); | |
2516 if (bin < minbin) bin = minbin; | |
2517 if (bin > maxbin) bin = maxbin; | |
2518 if (other < minbin || other > maxbin) other = bin; | |
2519 double prop = 1.0 - fabs(dist); | |
2520 | |
2521 double v0 = values[bin - minbin]; | |
2522 double v1 = values[other - minbin]; | |
2523 if (m_binDisplay == PeakBins) { | |
2524 if (bin == minbin || bin == maxbin || | |
2525 v0 < values[bin-minbin-1] || | |
2526 v0 < values[bin-minbin+1]) v0 = 0.0; | |
2527 if (other == minbin || other == maxbin || | |
2528 v1 < values[other-minbin-1] || | |
2529 v1 < values[other-minbin+1]) v1 = 0.0; | |
2530 } | |
2531 if (v0 == 0.0 && v1 == 0.0) continue; | |
2532 value = prop * v0 + (1.0 - prop) * v1; | |
2533 | |
2534 if (m_colourScale != PhaseColourScale) { | |
2535 if (m_normalization != NormalizeColumns && | |
2536 m_normalization != NormalizeHybrid) { | |
2537 value /= (m_fftSize/2.0); | |
2538 } | |
2539 mag.sample(float(value)); | |
2540 value *= m_gain; | |
2541 } | |
2542 | |
2543 peaks[y] = float(value); | |
2544 | |
2545 } else { | |
2546 | |
2547 int by0 = int(sy0 + 0.0001); | |
2548 int by1 = int(sy1 + 0.0001); | |
2549 if (by1 < by0 + 1) by1 = by0 + 1; | |
2550 | |
2551 for (int bin = by0; bin < by1; ++bin) { | |
2552 | |
2553 value = values[bin - minbin]; | |
2554 if (m_binDisplay == PeakBins) { | |
2555 if (bin == minbin || bin == maxbin || | |
2556 value < values[bin-minbin-1] || | |
2557 value < values[bin-minbin+1]) continue; | |
2558 } | |
2559 | |
2560 if (m_colourScale != PhaseColourScale) { | |
2561 if (m_normalization != NormalizeColumns && | |
2562 m_normalization != NormalizeHybrid) { | |
2563 value /= (m_fftSize/2.0); | |
2564 } | |
2565 mag.sample(float(value)); | |
2566 value *= m_gain; | |
2567 } | |
2568 | |
2569 if (value > peaks[y]) { | |
2570 peaks[y] = float(value); //!!! not right for phase! | |
2571 } | |
2572 } | |
2573 } | |
2574 } | |
2575 | |
2576 if (mag.isSet()) { | |
2577 if (sx >= int(m_columnMags.size())) { | |
2578 #ifdef DEBUG_SPECTROGRAM | |
2579 cerr << "INTERNAL ERROR: " << sx << " >= " | |
2580 << m_columnMags.size() | |
2581 << " at SpectrogramLayer.cpp::paintDrawBuffer" | |
2582 << endl; | |
2583 #endif | |
2584 } else { | |
2585 m_columnMags[sx].sample(mag); | |
2586 if (overallMag.sample(mag)) overallMagChanged = true; | |
2587 } | |
2588 } | |
2589 } | |
2590 | |
2591 // at this point we have updated m_columnMags and overallMag | |
2592 // -- used elsewhere for calculating the overall view range | |
2593 // for NormalizeVisibleArea mode -- and calculated "peaks" | |
2594 // (the possibly scaled and interpolated value array from | |
2595 // which we actually draw the column) and "columnMax" (maximum | |
2596 // value used for normalisation) | |
2597 | |
2598 for (int y = 0; y < h; ++y) { | |
2599 | |
2600 double peak = peaks[y]; | |
2601 | |
2602 if (m_colourScale != PhaseColourScale && | |
2603 (m_normalization == NormalizeColumns || | |
2604 m_normalization == NormalizeHybrid) && | |
2605 columnMax > 0.f) { | |
2606 peak /= columnMax; | |
2607 if (m_normalization == NormalizeHybrid) { | |
2608 peak *= log10(columnMax + 1.f); | |
2609 } | |
2610 } | |
2611 | |
2612 unsigned char peakpix = getDisplayValue(v, peak); | |
2613 | |
2614 m_drawBuffer.setPixel(x, h-y-1, peakpix); | |
2615 } | |
2616 | |
2617 if (haveTimeLimits) { | |
2618 if (columnCount >= minColumns) { | |
2619 auto t = chrono::steady_clock::now(); | |
2620 double diff = chrono::duration<double>(t - startTime).count(); | |
2621 if (diff > hardTimeLimit) { | |
2622 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2623 cerr << "SpectrogramLayer::paintDrawBuffer: hard limit " << hardTimeLimit << " sec exceeded after " | |
2624 << columnCount << " columns with time " << diff << endl; | |
2625 #endif | |
2626 return columnCount; | |
2627 } else if (diff > softTimeLimit && !overridingSoftLimit) { | |
2628 // If we're more than half way through by the time | |
2629 // we reach the soft limit, ignore it (though | |
2630 // still respect the hard limit, above). Otherwise | |
2631 // respect the soft limit and return now. | |
2632 if (columnCount > w/2) { | |
2633 overridingSoftLimit = true; | |
2634 } else { | |
2635 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2636 cerr << "SpectrogramLayer::paintDrawBuffer: soft limit " << softTimeLimit << " sec exceeded after " | |
2637 << columnCount << " columns with time " << diff << endl; | |
2638 #endif | |
2639 return columnCount; | |
2640 } | |
2641 } | |
2642 } | |
2643 } | |
2644 } | |
2645 | |
2646 return columnCount; | |
2647 } | 1569 } |
2648 | 1570 |
2649 void | 1571 void |
2650 SpectrogramLayer::illuminateLocalFeatures(LayerGeometryProvider *v, QPainter &paint) const | 1572 SpectrogramLayer::illuminateLocalFeatures(LayerGeometryProvider *v, QPainter &paint) const |
2651 { | 1573 { |
2654 QPoint localPos; | 1576 QPoint localPos; |
2655 if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { | 1577 if (!v->shouldIlluminateLocalFeatures(this, localPos) || !m_model) { |
2656 return; | 1578 return; |
2657 } | 1579 } |
2658 | 1580 |
2659 // cerr << "SpectrogramLayer: illuminateLocalFeatures(" | 1581 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2660 // << localPos.x() << "," << localPos.y() << ")" << endl; | 1582 cerr << "SpectrogramLayer: illuminateLocalFeatures(" |
1583 << localPos.x() << "," << localPos.y() << ")" << endl; | |
1584 #endif | |
2661 | 1585 |
2662 double s0, s1; | 1586 double s0, s1; |
2663 double f0, f1; | 1587 double f0, f1; |
2664 | 1588 |
2665 if (getXBinRange(v, localPos.x(), s0, s1) && | 1589 if (getXBinRange(v, localPos.x(), s0, s1) && |
2672 int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); | 1596 int x1 = v->getXForFrame((s1i + 1) * getWindowIncrement()); |
2673 | 1597 |
2674 int y1 = int(getYForFrequency(v, f1)); | 1598 int y1 = int(getYForFrequency(v, f1)); |
2675 int y0 = int(getYForFrequency(v, f0)); | 1599 int y0 = int(getYForFrequency(v, f0)); |
2676 | 1600 |
2677 // cerr << "SpectrogramLayer: illuminate " | 1601 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2678 // << x0 << "," << y1 << " -> " << x1 << "," << y0 << endl; | 1602 cerr << "SpectrogramLayer: illuminate " |
1603 << x0 << "," << y1 << " -> " << x1 << "," << y0 << endl; | |
1604 #endif | |
2679 | 1605 |
2680 paint.setPen(v->getForeground()); | 1606 paint.setPen(v->getForeground()); |
2681 | 1607 |
2682 //!!! should we be using paintCrosshairs for this? | 1608 //!!! should we be using paintCrosshairs for this? |
2683 | 1609 |
2689 SpectrogramLayer::getYForFrequency(const LayerGeometryProvider *v, double frequency) const | 1615 SpectrogramLayer::getYForFrequency(const LayerGeometryProvider *v, double frequency) const |
2690 { | 1616 { |
2691 return v->getYForFrequency(frequency, | 1617 return v->getYForFrequency(frequency, |
2692 getEffectiveMinFrequency(), | 1618 getEffectiveMinFrequency(), |
2693 getEffectiveMaxFrequency(), | 1619 getEffectiveMaxFrequency(), |
2694 m_frequencyScale == LogFrequencyScale); | 1620 m_binScale == BinScale::Log); |
2695 } | 1621 } |
2696 | 1622 |
2697 double | 1623 double |
2698 SpectrogramLayer::getFrequencyForY(const LayerGeometryProvider *v, int y) const | 1624 SpectrogramLayer::getFrequencyForY(const LayerGeometryProvider *v, int y) const |
2699 { | 1625 { |
2700 return v->getFrequencyForY(y, | 1626 return v->getFrequencyForY(y, |
2701 getEffectiveMinFrequency(), | 1627 getEffectiveMinFrequency(), |
2702 getEffectiveMaxFrequency(), | 1628 getEffectiveMaxFrequency(), |
2703 m_frequencyScale == LogFrequencyScale); | 1629 m_binScale == BinScale::Log); |
2704 } | 1630 } |
2705 | 1631 |
2706 int | 1632 int |
2707 SpectrogramLayer::getCompletion(LayerGeometryProvider *v) const | 1633 SpectrogramLayer::getCompletion(LayerGeometryProvider *) const |
2708 { | 1634 { |
2709 const View *view = v->getView(); | 1635 if (!m_fftModel) return 100; |
2710 | 1636 int completion = m_fftModel->getCompletion(); |
2711 if (m_fftModels.find(view->getId()) == m_fftModels.end()) return 100; | |
2712 | |
2713 int completion = m_fftModels[view->getId()]->getCompletion(); | |
2714 #ifdef DEBUG_SPECTROGRAM_REPAINT | 1637 #ifdef DEBUG_SPECTROGRAM_REPAINT |
2715 cerr << "SpectrogramLayer::getCompletion: completion = " << completion << endl; | 1638 cerr << "SpectrogramLayer::getCompletion: completion = " << completion << endl; |
2716 #endif | 1639 #endif |
2717 return completion; | 1640 return completion; |
2718 } | 1641 } |
2719 | 1642 |
2720 QString | 1643 QString |
2721 SpectrogramLayer::getError(LayerGeometryProvider *v) const | 1644 SpectrogramLayer::getError(LayerGeometryProvider *) const |
2722 { | 1645 { |
2723 const View *view = v->getView(); | 1646 if (!m_fftModel) return ""; |
2724 if (m_fftModels.find(view->getId()) == m_fftModels.end()) return ""; | 1647 return m_fftModel->getError(); |
2725 return m_fftModels[view->getId()]->getError(); | |
2726 } | 1648 } |
2727 | 1649 |
2728 bool | 1650 bool |
2729 SpectrogramLayer::getValueExtents(double &min, double &max, | 1651 SpectrogramLayer::getValueExtents(double &min, double &max, |
2730 bool &logarithmic, QString &unit) const | 1652 bool &logarithmic, QString &unit) const |
2731 { | 1653 { |
2732 if (!m_model) return false; | 1654 if (!m_model) return false; |
2733 | 1655 |
2734 sv_samplerate_t sr = m_model->getSampleRate(); | 1656 sv_samplerate_t sr = m_model->getSampleRate(); |
2735 min = double(sr) / m_fftSize; | 1657 min = double(sr) / getFFTSize(); |
2736 max = double(sr) / 2; | 1658 max = double(sr) / 2; |
2737 | 1659 |
2738 logarithmic = (m_frequencyScale == LogFrequencyScale); | 1660 logarithmic = (m_binScale == BinScale::Log); |
2739 unit = "Hz"; | 1661 unit = "Hz"; |
2740 return true; | 1662 return true; |
2741 } | 1663 } |
2742 | 1664 |
2743 bool | 1665 bool |
2763 int minf = int(lrint(min)); | 1685 int minf = int(lrint(min)); |
2764 int maxf = int(lrint(max)); | 1686 int maxf = int(lrint(max)); |
2765 | 1687 |
2766 if (m_minFrequency == minf && m_maxFrequency == maxf) return true; | 1688 if (m_minFrequency == minf && m_maxFrequency == maxf) return true; |
2767 | 1689 |
2768 invalidateImageCaches(); | 1690 invalidateRenderers(); |
2769 invalidateMagnitudes(); | 1691 invalidateMagnitudes(); |
2770 | 1692 |
2771 m_minFrequency = minf; | 1693 m_minFrequency = minf; |
2772 m_maxFrequency = maxf; | 1694 m_maxFrequency = maxf; |
2773 | 1695 |
2815 } | 1737 } |
2816 | 1738 |
2817 void | 1739 void |
2818 SpectrogramLayer::measureDoubleClick(LayerGeometryProvider *v, QMouseEvent *e) | 1740 SpectrogramLayer::measureDoubleClick(LayerGeometryProvider *v, QMouseEvent *e) |
2819 { | 1741 { |
2820 const View *view = v->getView(); | 1742 const Colour3DPlotRenderer *renderer = getRenderer(v); |
2821 ScrollableImageCache &cache = getImageCacheReference(view); | 1743 if (!renderer) return; |
2822 | 1744 |
2823 cerr << "cache width: " << cache.getSize().width() << ", height: " | 1745 QRect rect = renderer->findSimilarRegionExtents(e->pos()); |
2824 << cache.getSize().height() << endl; | |
2825 | |
2826 QImage image = cache.getImage(); | |
2827 | |
2828 ImageRegionFinder finder; | |
2829 QRect rect = finder.findRegionExtents(&image, e->pos()); | |
2830 if (rect.isValid()) { | 1746 if (rect.isValid()) { |
2831 MeasureRect mr; | 1747 MeasureRect mr; |
2832 setMeasureRectFromPixrect(v, mr, rect); | 1748 setMeasureRectFromPixrect(v, mr, rect); |
2833 CommandHistory::getInstance()->addCommand | 1749 CommandHistory::getInstance()->addCommand |
2834 (new AddMeasurementRectCommand(this, mr)); | 1750 (new AddMeasurementRectCommand(this, mr)); |
2892 paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); | 1808 paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y()); |
2893 paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->getPaintHeight()); | 1809 paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->getPaintHeight()); |
2894 | 1810 |
2895 double fundamental = getFrequencyForY(v, cursorPos.y()); | 1811 double fundamental = getFrequencyForY(v, cursorPos.y()); |
2896 | 1812 |
2897 v->drawVisibleText(paint, | 1813 PaintAssistant::drawVisibleText(v, paint, |
2898 sw + 2, | 1814 sw + 2, |
2899 cursorPos.y() - 2, | 1815 cursorPos.y() - 2, |
2900 QString("%1 Hz").arg(fundamental), | 1816 QString("%1 Hz").arg(fundamental), |
2901 View::OutlinedText); | 1817 PaintAssistant::OutlinedText); |
2902 | 1818 |
2903 if (Pitch::isFrequencyInMidiRange(fundamental)) { | 1819 if (Pitch::isFrequencyInMidiRange(fundamental)) { |
2904 QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); | 1820 QString pitchLabel = Pitch::getPitchLabelForFrequency(fundamental); |
2905 v->drawVisibleText(paint, | 1821 PaintAssistant::drawVisibleText(v, paint, |
2906 sw + 2, | 1822 sw + 2, |
2907 cursorPos.y() + paint.fontMetrics().ascent() + 2, | 1823 cursorPos.y() + paint.fontMetrics().ascent() + 2, |
2908 pitchLabel, | 1824 pitchLabel, |
2909 View::OutlinedText); | 1825 PaintAssistant::OutlinedText); |
2910 } | 1826 } |
2911 | 1827 |
2912 sv_frame_t frame = v->getFrameForX(cursorPos.x()); | 1828 sv_frame_t frame = v->getFrameForX(cursorPos.x()); |
2913 RealTime rt = RealTime::frame2RealTime(frame, m_model->getSampleRate()); | 1829 RealTime rt = RealTime::frame2RealTime(frame, m_model->getSampleRate()); |
2914 QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); | 1830 QString rtLabel = QString("%1 s").arg(rt.toText(true).c_str()); |
2915 QString frameLabel = QString("%1").arg(frame); | 1831 QString frameLabel = QString("%1").arg(frame); |
2916 v->drawVisibleText(paint, | 1832 PaintAssistant::drawVisibleText(v, paint, |
2917 cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, | 1833 cursorPos.x() - paint.fontMetrics().width(frameLabel) - 2, |
2918 v->getPaintHeight() - 2, | 1834 v->getPaintHeight() - 2, |
2919 frameLabel, | 1835 frameLabel, |
2920 View::OutlinedText); | 1836 PaintAssistant::OutlinedText); |
2921 v->drawVisibleText(paint, | 1837 PaintAssistant::drawVisibleText(v, paint, |
2922 cursorPos.x() + 2, | 1838 cursorPos.x() + 2, |
2923 v->getPaintHeight() - 2, | 1839 v->getPaintHeight() - 2, |
2924 rtLabel, | 1840 rtLabel, |
2925 View::OutlinedText); | 1841 PaintAssistant::OutlinedText); |
2926 | 1842 |
2927 int harmonic = 2; | 1843 int harmonic = 2; |
2928 | 1844 |
2929 while (harmonic < 100) { | 1845 while (harmonic < 100) { |
2930 | 1846 |
2976 haveValues = true; | 1892 haveValues = true; |
2977 } | 1893 } |
2978 | 1894 |
2979 QString adjFreqText = "", adjPitchText = ""; | 1895 QString adjFreqText = "", adjPitchText = ""; |
2980 | 1896 |
2981 if (m_binDisplay == PeakFrequencies) { | 1897 if (m_binDisplay == BinDisplay::PeakFrequencies) { |
2982 | 1898 |
2983 if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, | 1899 if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax, |
2984 adjFreqMin, adjFreqMax)) { | 1900 adjFreqMin, adjFreqMax)) { |
2985 return ""; | 1901 return ""; |
2986 } | 1902 } |
3088 m_model->getSampleRate() / 2)); | 2004 m_model->getSampleRate() / 2)); |
3089 | 2005 |
3090 int fw = paint.fontMetrics().width(tr("43Hz")); | 2006 int fw = paint.fontMetrics().width(tr("43Hz")); |
3091 if (tw < fw) tw = fw; | 2007 if (tw < fw) tw = fw; |
3092 | 2008 |
3093 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); | 2009 int tickw = (m_binScale == BinScale::Log ? 10 : 4); |
3094 | 2010 |
3095 return cw + tickw + tw + 13; | 2011 return cw + tickw + tw + 13; |
3096 } | 2012 } |
3097 | 2013 |
3098 void | 2014 void |
3099 SpectrogramLayer::paintVerticalScale(LayerGeometryProvider *v, bool detailed, QPainter &paint, QRect rect) const | 2015 SpectrogramLayer::paintVerticalScale(LayerGeometryProvider *v, bool detailed, |
2016 QPainter &paint, QRect rect) const | |
3100 { | 2017 { |
3101 if (!m_model || !m_model->isOK()) { | 2018 if (!m_model || !m_model->isOK()) { |
3102 return; | 2019 return; |
3103 } | 2020 } |
3104 | 2021 |
3105 Profiler profiler("SpectrogramLayer::paintVerticalScale"); | 2022 Profiler profiler("SpectrogramLayer::paintVerticalScale"); |
3106 | 2023 |
3107 //!!! cache this? | 2024 //!!! cache this? |
3108 | 2025 |
3109 int h = rect.height(), w = rect.width(); | 2026 int h = rect.height(), w = rect.width(); |
3110 | 2027 int textHeight = paint.fontMetrics().height(); |
3111 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4); | 2028 |
3112 int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0); | 2029 if (detailed && (h > textHeight * 3 + 10)) { |
3113 | 2030 paintDetailedScale(v, paint, rect); |
3114 int bins = m_fftSize / 2; | 2031 } |
2032 m_haveDetailedScale = detailed; | |
2033 | |
2034 int tickw = (m_binScale == BinScale::Log ? 10 : 4); | |
2035 int pkw = (m_binScale == BinScale::Log ? 10 : 0); | |
2036 | |
2037 int bins = getFFTSize() / 2; | |
3115 sv_samplerate_t sr = m_model->getSampleRate(); | 2038 sv_samplerate_t sr = m_model->getSampleRate(); |
3116 | 2039 |
3117 if (m_maxFrequency > 0) { | 2040 if (m_maxFrequency > 0) { |
3118 bins = int((double(m_maxFrequency) * m_fftSize) / sr + 0.1); | 2041 bins = int((double(m_maxFrequency) * getFFTSize()) / sr + 0.1); |
3119 if (bins > m_fftSize / 2) bins = m_fftSize / 2; | 2042 if (bins > getFFTSize() / 2) bins = getFFTSize() / 2; |
3120 } | 2043 } |
3121 | 2044 |
3122 int cw = 0; | 2045 int cw = 0; |
3123 | |
3124 if (detailed) cw = getColourScaleWidth(paint); | 2046 if (detailed) cw = getColourScaleWidth(paint); |
3125 int cbw = paint.fontMetrics().width("dB"); | |
3126 | 2047 |
3127 int py = -1; | 2048 int py = -1; |
3128 int textHeight = paint.fontMetrics().height(); | |
3129 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | 2049 int toff = -textHeight + paint.fontMetrics().ascent() + 2; |
3130 | |
3131 if (detailed && (h > textHeight * 3 + 10)) { | |
3132 | |
3133 int topLines = 2; | |
3134 if (m_colourScale == PhaseColourScale) topLines = 1; | |
3135 | |
3136 int ch = h - textHeight * (topLines + 1) - 8; | |
3137 // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); | |
3138 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
3139 | |
3140 QString top, bottom; | |
3141 double min = m_viewMags[v->getId()].getMin(); | |
3142 double max = m_viewMags[v->getId()].getMax(); | |
3143 | |
3144 double dBmin = AudioLevel::multiplier_to_dB(min); | |
3145 double dBmax = AudioLevel::multiplier_to_dB(max); | |
3146 | |
3147 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
3148 cerr << "paintVerticalScale: for view id " << v->getId() | |
3149 << ": min = " << min << ", max = " << max | |
3150 << ", dBmin = " << dBmin << ", dBmax = " << dBmax << endl; | |
3151 #endif | |
3152 | |
3153 if (dBmax < -60.f) dBmax = -60.f; | |
3154 else top = QString("%1").arg(lrint(dBmax)); | |
3155 | |
3156 if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; | |
3157 bottom = QString("%1").arg(lrint(dBmin)); | |
3158 | |
3159 //!!! & phase etc | |
3160 | |
3161 if (m_colourScale != PhaseColourScale) { | |
3162 paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, | |
3163 2 + textHeight + toff, "dBFS"); | |
3164 } | |
3165 | |
3166 // paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2, | |
3167 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
3168 2 + textHeight * topLines + toff + textHeight/2, top); | |
3169 | |
3170 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
3171 h + toff - 3 - textHeight/2, bottom); | |
3172 | |
3173 paint.save(); | |
3174 paint.setBrush(Qt::NoBrush); | |
3175 | |
3176 int lasty = 0; | |
3177 int lastdb = 0; | |
3178 | |
3179 for (int i = 0; i < ch; ++i) { | |
3180 | |
3181 double dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); | |
3182 int idb = int(dBval); | |
3183 | |
3184 double value = AudioLevel::dB_to_multiplier(dBval); | |
3185 int colour = getDisplayValue(v, value * m_gain); | |
3186 | |
3187 paint.setPen(m_palette.getColour((unsigned char)colour)); | |
3188 | |
3189 int y = textHeight * topLines + 4 + ch - i; | |
3190 | |
3191 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
3192 | |
3193 if (i == 0) { | |
3194 lasty = y; | |
3195 lastdb = idb; | |
3196 } else if (i < ch - paint.fontMetrics().ascent() && | |
3197 idb != lastdb && | |
3198 ((abs(y - lasty) > textHeight && | |
3199 idb % 10 == 0) || | |
3200 (abs(y - lasty) > paint.fontMetrics().ascent() && | |
3201 idb % 5 == 0))) { | |
3202 paint.setPen(v->getBackground()); | |
3203 QString text = QString("%1").arg(idb); | |
3204 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), | |
3205 y + toff + textHeight/2, text); | |
3206 paint.setPen(v->getForeground()); | |
3207 paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); | |
3208 lasty = y; | |
3209 lastdb = idb; | |
3210 } | |
3211 } | |
3212 paint.restore(); | |
3213 } | |
3214 | 2050 |
3215 paint.drawLine(cw + 7, 0, cw + 7, h); | 2051 paint.drawLine(cw + 7, 0, cw + 7, h); |
3216 | 2052 |
3217 int bin = -1; | 2053 int bin = -1; |
3218 | 2054 |
3228 bin = int(q0); | 2064 bin = int(q0); |
3229 } else { | 2065 } else { |
3230 continue; | 2066 continue; |
3231 } | 2067 } |
3232 | 2068 |
3233 int freq = int((sr * bin) / m_fftSize); | 2069 int freq = int((sr * bin) / getFFTSize()); |
3234 | 2070 |
3235 if (py >= 0 && (vy - py) < textHeight - 1) { | 2071 if (py >= 0 && (vy - py) < textHeight - 1) { |
3236 if (m_frequencyScale == LinearFrequencyScale) { | 2072 if (m_binScale == BinScale::Linear) { |
3237 paint.drawLine(w - tickw, h - vy, w, h - vy); | 2073 paint.drawLine(w - tickw, h - vy, w, h - vy); |
3238 } | 2074 } |
3239 continue; | 2075 continue; |
3240 } | 2076 } |
3241 | 2077 |
3249 } | 2085 } |
3250 | 2086 |
3251 py = vy; | 2087 py = vy; |
3252 } | 2088 } |
3253 | 2089 |
3254 if (m_frequencyScale == LogFrequencyScale) { | 2090 if (m_binScale == BinScale::Log) { |
3255 | 2091 |
3256 // piano keyboard | 2092 // piano keyboard |
3257 | 2093 |
3258 PianoScale().paintPianoVertical | 2094 PianoScale().paintPianoVertical |
3259 (v, paint, QRect(w - pkw - 1, 0, pkw, h), | 2095 (v, paint, QRect(w - pkw - 1, 0, pkw, h), |
3260 getEffectiveMinFrequency(), getEffectiveMaxFrequency()); | 2096 getEffectiveMinFrequency(), getEffectiveMaxFrequency()); |
3261 } | 2097 } |
3262 | 2098 |
3263 m_haveDetailedScale = detailed; | 2099 m_haveDetailedScale = detailed; |
2100 } | |
2101 | |
2102 void | |
2103 SpectrogramLayer::paintDetailedScale(LayerGeometryProvider *v, | |
2104 QPainter &paint, QRect rect) const | |
2105 { | |
2106 // The colour scale | |
2107 | |
2108 if (m_colourScale == ColourScaleType::Phase) { | |
2109 paintDetailedScalePhase(v, paint, rect); | |
2110 return; | |
2111 } | |
2112 | |
2113 int h = rect.height(); | |
2114 int textHeight = paint.fontMetrics().height(); | |
2115 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | |
2116 | |
2117 int cw = getColourScaleWidth(paint); | |
2118 int cbw = paint.fontMetrics().width("dB"); | |
2119 | |
2120 int topLines = 2; | |
2121 | |
2122 int ch = h - textHeight * (topLines + 1) - 8; | |
2123 // paint.drawRect(4, textHeight + 4, cw - 1, ch + 1); | |
2124 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
2125 | |
2126 QString top, bottom; | |
2127 double min = m_viewMags[v->getId()].getMin(); | |
2128 double max = m_viewMags[v->getId()].getMax(); | |
2129 | |
2130 if (min < m_threshold) min = m_threshold; | |
2131 if (max <= min) max = min + 0.1; | |
2132 | |
2133 double dBmin = AudioLevel::multiplier_to_dB(min); | |
2134 double dBmax = AudioLevel::multiplier_to_dB(max); | |
2135 | |
2136 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2137 cerr << "paintVerticalScale: for view id " << v->getId() | |
2138 << ": min = " << min << ", max = " << max | |
2139 << ", dBmin = " << dBmin << ", dBmax = " << dBmax << endl; | |
2140 #endif | |
2141 | |
2142 if (dBmax < -60.f) dBmax = -60.f; | |
2143 else top = QString("%1").arg(lrint(dBmax)); | |
2144 | |
2145 if (dBmin < dBmax - 60.f) dBmin = dBmax - 60.f; | |
2146 bottom = QString("%1").arg(lrint(dBmin)); | |
2147 | |
2148 #ifdef DEBUG_SPECTROGRAM_REPAINT | |
2149 cerr << "adjusted dB range to min = " << dBmin << ", max = " << dBmax | |
2150 << endl; | |
2151 #endif | |
2152 | |
2153 paint.drawText((cw + 6 - paint.fontMetrics().width("dBFS")) / 2, | |
2154 2 + textHeight + toff, "dBFS"); | |
2155 | |
2156 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
2157 2 + textHeight * topLines + toff + textHeight/2, top); | |
2158 | |
2159 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
2160 h + toff - 3 - textHeight/2, bottom); | |
2161 | |
2162 paint.save(); | |
2163 paint.setBrush(Qt::NoBrush); | |
2164 | |
2165 int lasty = 0; | |
2166 int lastdb = 0; | |
2167 | |
2168 for (int i = 0; i < ch; ++i) { | |
2169 | |
2170 double dBval = dBmin + (((dBmax - dBmin) * i) / (ch - 1)); | |
2171 int idb = int(dBval); | |
2172 | |
2173 double value = AudioLevel::dB_to_multiplier(dBval); | |
2174 paint.setPen(getRenderer(v)->getColour(value)); | |
2175 | |
2176 int y = textHeight * topLines + 4 + ch - i; | |
2177 | |
2178 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
2179 | |
2180 if (i == 0) { | |
2181 lasty = y; | |
2182 lastdb = idb; | |
2183 } else if (i < ch - paint.fontMetrics().ascent() && | |
2184 idb != lastdb && | |
2185 ((abs(y - lasty) > textHeight && | |
2186 idb % 10 == 0) || | |
2187 (abs(y - lasty) > paint.fontMetrics().ascent() && | |
2188 idb % 5 == 0))) { | |
2189 paint.setPen(v->getForeground()); | |
2190 QString text = QString("%1").arg(idb); | |
2191 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(text), | |
2192 y + toff + textHeight/2, text); | |
2193 paint.drawLine(5 + cw - cbw, y, 8 + cw - cbw, y); | |
2194 lasty = y; | |
2195 lastdb = idb; | |
2196 } | |
2197 } | |
2198 paint.restore(); | |
2199 } | |
2200 | |
2201 void | |
2202 SpectrogramLayer::paintDetailedScalePhase(LayerGeometryProvider *v, | |
2203 QPainter &paint, QRect rect) const | |
2204 { | |
2205 // The colour scale in phase mode | |
2206 | |
2207 int h = rect.height(); | |
2208 int textHeight = paint.fontMetrics().height(); | |
2209 int toff = -textHeight + paint.fontMetrics().ascent() + 2; | |
2210 | |
2211 int cw = getColourScaleWidth(paint); | |
2212 | |
2213 // Phase is not measured in dB of course, but this places the | |
2214 // scale at the same position as in the magnitude spectrogram | |
2215 int cbw = paint.fontMetrics().width("dB"); | |
2216 | |
2217 int topLines = 1; | |
2218 | |
2219 int ch = h - textHeight * (topLines + 1) - 8; | |
2220 paint.drawRect(4 + cw - cbw, textHeight * topLines + 4, cbw - 1, ch + 1); | |
2221 | |
2222 QString top, bottom, middle; | |
2223 top = QString("%1").arg(QChar(0x3c0)); // pi | |
2224 bottom = "-" + top; | |
2225 middle = "0"; | |
2226 | |
2227 double min = -M_PI; | |
2228 double max = M_PI; | |
2229 | |
2230 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(top), | |
2231 2 + textHeight * topLines + toff + textHeight/2, top); | |
2232 | |
2233 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(middle), | |
2234 2 + textHeight * topLines + ch/2 + toff + textHeight/2, middle); | |
2235 | |
2236 paint.drawText(3 + cw - cbw - paint.fontMetrics().width(bottom), | |
2237 h + toff - 3 - textHeight/2, bottom); | |
2238 | |
2239 paint.save(); | |
2240 paint.setBrush(Qt::NoBrush); | |
2241 | |
2242 for (int i = 0; i < ch; ++i) { | |
2243 double val = min + (((max - min) * i) / (ch - 1)); | |
2244 paint.setPen(getRenderer(v)->getColour(val)); | |
2245 int y = textHeight * topLines + 4 + ch - i; | |
2246 paint.drawLine(5 + cw - cbw, y, cw + 2, y); | |
2247 } | |
2248 paint.restore(); | |
3264 } | 2249 } |
3265 | 2250 |
3266 class SpectrogramRangeMapper : public RangeMapper | 2251 class SpectrogramRangeMapper : public RangeMapper |
3267 { | 2252 { |
3268 public: | 2253 public: |
3325 { | 2310 { |
3326 if (!m_model) return 0; | 2311 if (!m_model) return 0; |
3327 | 2312 |
3328 sv_samplerate_t sr = m_model->getSampleRate(); | 2313 sv_samplerate_t sr = m_model->getSampleRate(); |
3329 | 2314 |
3330 SpectrogramRangeMapper mapper(sr, m_fftSize); | 2315 SpectrogramRangeMapper mapper(sr, getFFTSize()); |
3331 | 2316 |
3332 // int maxStep = mapper.getPositionForValue((double(sr) / m_fftSize) + 0.001); | 2317 // int maxStep = mapper.getPositionForValue((double(sr) / getFFTSize()) + 0.001); |
3333 int maxStep = mapper.getPositionForValue(0); | 2318 int maxStep = mapper.getPositionForValue(0); |
3334 int minStep = mapper.getPositionForValue(double(sr) / 2); | 2319 int minStep = mapper.getPositionForValue(double(sr) / 2); |
3335 | 2320 |
3336 int initialMax = m_initialMaxFrequency; | 2321 int initialMax = m_initialMaxFrequency; |
3337 if (initialMax == 0) initialMax = int(sr / 2); | 2322 if (initialMax == 0) initialMax = int(sr / 2); |
3349 if (!m_model) return 0; | 2334 if (!m_model) return 0; |
3350 | 2335 |
3351 double dmin, dmax; | 2336 double dmin, dmax; |
3352 getDisplayExtents(dmin, dmax); | 2337 getDisplayExtents(dmin, dmax); |
3353 | 2338 |
3354 SpectrogramRangeMapper mapper(m_model->getSampleRate(), m_fftSize); | 2339 SpectrogramRangeMapper mapper(m_model->getSampleRate(), getFFTSize()); |
3355 int n = mapper.getPositionForValue(dmax - dmin); | 2340 int n = mapper.getPositionForValue(dmax - dmin); |
3356 // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; | 2341 // SVDEBUG << "SpectrogramLayer::getCurrentVerticalZoomStep: " << n << endl; |
3357 return n; | 2342 return n; |
3358 } | 2343 } |
3359 | 2344 |
3366 // getDisplayExtents(dmin, dmax); | 2351 // getDisplayExtents(dmin, dmax); |
3367 | 2352 |
3368 // cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << endl; | 2353 // cerr << "current range " << dmin << " -> " << dmax << ", range " << dmax-dmin << ", mid " << (dmax + dmin)/2 << endl; |
3369 | 2354 |
3370 sv_samplerate_t sr = m_model->getSampleRate(); | 2355 sv_samplerate_t sr = m_model->getSampleRate(); |
3371 SpectrogramRangeMapper mapper(sr, m_fftSize); | 2356 SpectrogramRangeMapper mapper(sr, getFFTSize()); |
3372 double newdist = mapper.getValueForPosition(step); | 2357 double newdist = mapper.getValueForPosition(step); |
3373 | 2358 |
3374 double newmin, newmax; | 2359 double newmin, newmax; |
3375 | 2360 |
3376 if (m_frequencyScale == LogFrequencyScale) { | 2361 if (m_binScale == BinScale::Log) { |
3377 | 2362 |
3378 // need to pick newmin and newmax such that | 2363 // need to pick newmin and newmax such that |
3379 // | 2364 // |
3380 // (log(newmin) + log(newmax)) / 2 == logmid | 2365 // (log(newmin) + log(newmax)) / 2 == logmid |
3381 // and | 2366 // and |
3427 | 2412 |
3428 RangeMapper * | 2413 RangeMapper * |
3429 SpectrogramLayer::getNewVerticalZoomRangeMapper() const | 2414 SpectrogramLayer::getNewVerticalZoomRangeMapper() const |
3430 { | 2415 { |
3431 if (!m_model) return 0; | 2416 if (!m_model) return 0; |
3432 return new SpectrogramRangeMapper(m_model->getSampleRate(), m_fftSize); | 2417 return new SpectrogramRangeMapper(m_model->getSampleRate(), getFFTSize()); |
3433 } | 2418 } |
3434 | 2419 |
3435 void | 2420 void |
3436 SpectrogramLayer::updateMeasureRectYCoords(LayerGeometryProvider *v, const MeasureRect &r) const | 2421 SpectrogramLayer::updateMeasureRectYCoords(LayerGeometryProvider *v, const MeasureRect &r) const |
3437 { | 2422 { |
3483 "colourRotation=\"%5\" " | 2468 "colourRotation=\"%5\" " |
3484 "frequencyScale=\"%6\" " | 2469 "frequencyScale=\"%6\" " |
3485 "binDisplay=\"%7\" ") | 2470 "binDisplay=\"%7\" ") |
3486 .arg(m_minFrequency) | 2471 .arg(m_minFrequency) |
3487 .arg(m_maxFrequency) | 2472 .arg(m_maxFrequency) |
3488 .arg(m_colourScale) | 2473 .arg(convertFromColourScale(m_colourScale, m_colourScaleMultiple)) |
3489 .arg(m_colourMap) | 2474 .arg(m_colourMap) |
3490 .arg(m_colourRotation) | 2475 .arg(m_colourRotation) |
3491 .arg(m_frequencyScale) | 2476 .arg(int(m_binScale)) |
3492 .arg(m_binDisplay); | 2477 .arg(int(m_binDisplay)); |
3493 | 2478 |
3494 // New-style normalization attributes, allowing for more types of | 2479 // New-style normalization attributes, allowing for more types of |
3495 // normalization in future: write out the column normalization | 2480 // normalization in future: write out the column normalization |
3496 // type separately, and then whether we are normalizing visible | 2481 // type separately, and then whether we are normalizing visible |
3497 // area as well afterwards | 2482 // area as well afterwards |
3498 | 2483 |
3499 s += QString("columnNormalization=\"%1\" ") | 2484 s += QString("columnNormalization=\"%1\" ") |
3500 .arg(m_normalization == NormalizeColumns ? "peak" : | 2485 .arg(m_normalization == ColumnNormalization::Max1 ? "peak" : |
3501 m_normalization == NormalizeHybrid ? "hybrid" : "none"); | 2486 m_normalization == ColumnNormalization::Hybrid ? "hybrid" : "none"); |
3502 | 2487 |
3503 // Old-style normalization attribute. We *don't* write out | 2488 // Old-style normalization attribute. We *don't* write out |
3504 // normalizeHybrid here because the only release that would accept | 2489 // normalizeHybrid here because the only release that would accept |
3505 // it (Tony v1.0) has a totally different scale factor for | 2490 // it (Tony v1.0) has a totally different scale factor for |
3506 // it. We'll just have to accept that session files from Tony | 2491 // it. We'll just have to accept that session files from Tony |
3507 // v2.0+ will look odd in Tony v1.0 | 2492 // v2.0+ will look odd in Tony v1.0 |
3508 | 2493 |
3509 s += QString("normalizeColumns=\"%1\" ") | 2494 s += QString("normalizeColumns=\"%1\" ") |
3510 .arg(m_normalization == NormalizeColumns ? "true" : "false"); | 2495 .arg(m_normalization == ColumnNormalization::Max1 ? "true" : "false"); |
3511 | 2496 |
3512 // And this applies to both old- and new-style attributes | 2497 // And this applies to both old- and new-style attributes |
3513 | 2498 |
3514 s += QString("normalizeVisibleArea=\"%1\" ") | 2499 s += QString("normalizeVisibleArea=\"%1\" ") |
3515 .arg(m_normalization == NormalizeVisibleArea ? "true" : "false"); | 2500 .arg(m_normalizeVisibleArea ? "true" : "false"); |
3516 | 2501 |
3517 Layer::toXml(stream, indent, extraAttributes + " " + s); | 2502 Layer::toXml(stream, indent, extraAttributes + " " + s); |
3518 } | 2503 } |
3519 | 2504 |
3520 void | 2505 void |
3558 if (ok) { | 2543 if (ok) { |
3559 SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; | 2544 SVDEBUG << "SpectrogramLayer::setProperties: setting max freq to " << maxFrequency << endl; |
3560 setMaxFrequency(maxFrequency); | 2545 setMaxFrequency(maxFrequency); |
3561 } | 2546 } |
3562 | 2547 |
3563 ColourScale colourScale = (ColourScale) | 2548 auto colourScale = convertToColourScale |
3564 attributes.value("colourScale").toInt(&ok); | 2549 (attributes.value("colourScale").toInt(&ok)); |
3565 if (ok) setColourScale(colourScale); | 2550 if (ok) { |
2551 setColourScale(colourScale.first); | |
2552 setColourScaleMultiple(colourScale.second); | |
2553 } | |
3566 | 2554 |
3567 int colourMap = attributes.value("colourScheme").toInt(&ok); | 2555 int colourMap = attributes.value("colourScheme").toInt(&ok); |
3568 if (ok) setColourMap(colourMap); | 2556 if (ok) setColourMap(colourMap); |
3569 | 2557 |
3570 int colourRotation = attributes.value("colourRotation").toInt(&ok); | 2558 int colourRotation = attributes.value("colourRotation").toInt(&ok); |
3571 if (ok) setColourRotation(colourRotation); | 2559 if (ok) setColourRotation(colourRotation); |
3572 | 2560 |
3573 FrequencyScale frequencyScale = (FrequencyScale) | 2561 BinScale binScale = (BinScale) |
3574 attributes.value("frequencyScale").toInt(&ok); | 2562 attributes.value("frequencyScale").toInt(&ok); |
3575 if (ok) setFrequencyScale(frequencyScale); | 2563 if (ok) setBinScale(binScale); |
3576 | 2564 |
3577 BinDisplay binDisplay = (BinDisplay) | 2565 BinDisplay binDisplay = (BinDisplay) |
3578 attributes.value("binDisplay").toInt(&ok); | 2566 attributes.value("binDisplay").toInt(&ok); |
3579 if (ok) setBinDisplay(binDisplay); | 2567 if (ok) setBinDisplay(binDisplay); |
3580 | 2568 |
3585 if (columnNormalization != "") { | 2573 if (columnNormalization != "") { |
3586 | 2574 |
3587 haveNewStyleNormalization = true; | 2575 haveNewStyleNormalization = true; |
3588 | 2576 |
3589 if (columnNormalization == "peak") { | 2577 if (columnNormalization == "peak") { |
3590 setNormalization(NormalizeColumns); | 2578 setNormalization(ColumnNormalization::Max1); |
3591 } else if (columnNormalization == "hybrid") { | 2579 } else if (columnNormalization == "hybrid") { |
3592 setNormalization(NormalizeHybrid); | 2580 setNormalization(ColumnNormalization::Hybrid); |
3593 } else if (columnNormalization == "none") { | 2581 } else if (columnNormalization == "none") { |
3594 // do nothing | 2582 setNormalization(ColumnNormalization::None); |
3595 } else { | 2583 } else { |
3596 cerr << "NOTE: Unknown or unsupported columnNormalization attribute \"" | 2584 cerr << "NOTE: Unknown or unsupported columnNormalization attribute \"" |
3597 << columnNormalization << "\"" << endl; | 2585 << columnNormalization << "\"" << endl; |
3598 } | 2586 } |
3599 } | 2587 } |
3601 if (!haveNewStyleNormalization) { | 2589 if (!haveNewStyleNormalization) { |
3602 | 2590 |
3603 bool normalizeColumns = | 2591 bool normalizeColumns = |
3604 (attributes.value("normalizeColumns").trimmed() == "true"); | 2592 (attributes.value("normalizeColumns").trimmed() == "true"); |
3605 if (normalizeColumns) { | 2593 if (normalizeColumns) { |
3606 setNormalization(NormalizeColumns); | 2594 setNormalization(ColumnNormalization::Max1); |
3607 } | 2595 } |
3608 | 2596 |
3609 bool normalizeHybrid = | 2597 bool normalizeHybrid = |
3610 (attributes.value("normalizeHybrid").trimmed() == "true"); | 2598 (attributes.value("normalizeHybrid").trimmed() == "true"); |
3611 if (normalizeHybrid) { | 2599 if (normalizeHybrid) { |
3612 setNormalization(NormalizeHybrid); | 2600 setNormalization(ColumnNormalization::Hybrid); |
3613 } | 2601 } |
3614 } | 2602 } |
3615 | 2603 |
3616 bool normalizeVisibleArea = | 2604 bool normalizeVisibleArea = |
3617 (attributes.value("normalizeVisibleArea").trimmed() == "true"); | 2605 (attributes.value("normalizeVisibleArea").trimmed() == "true"); |
3618 if (normalizeVisibleArea) { | 2606 setNormalizeVisibleArea(normalizeVisibleArea); |
3619 setNormalization(NormalizeVisibleArea); | 2607 |
3620 } | 2608 if (!haveNewStyleNormalization && m_normalization == ColumnNormalization::Hybrid) { |
3621 | |
3622 if (!haveNewStyleNormalization && m_normalization == NormalizeHybrid) { | |
3623 // Tony v1.0 is (and hopefully will remain!) the only released | 2609 // Tony v1.0 is (and hopefully will remain!) the only released |
3624 // SV-a-like to use old-style attributes when saving sessions | 2610 // SV-a-like to use old-style attributes when saving sessions |
3625 // that ask for hybrid normalization. It saves them with the | 2611 // that ask for hybrid normalization. It saves them with the |
3626 // wrong gain factor, so hack in a fix for that here -- this | 2612 // wrong gain factor, so hack in a fix for that here -- this |
3627 // gives us backward but not forward compatibility. | 2613 // gives us backward but not forward compatibility. |
3628 setGain(m_gain / float(m_fftSize / 2)); | 2614 setGain(m_gain / float(getFFTSize() / 2)); |
3629 } | 2615 } |
3630 } | 2616 } |
3631 | 2617 |