Chris@152: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@152: Chris@152: /* Chris@152: Sonic Visualiser Chris@152: An audio file viewer and annotation editor. Chris@152: Centre for Digital Music, Queen Mary, University of London. Chris@152: This file copyright 2006 Chris Cannam. Chris@152: Chris@152: This program is free software; you can redistribute it and/or Chris@152: modify it under the terms of the GNU General Public License as Chris@152: published by the Free Software Foundation; either version 2 of the Chris@152: License, or (at your option) any later version. See the file Chris@152: COPYING included with this distribution for more information. Chris@152: */ Chris@152: Chris@152: #ifndef _FFT_MODEL_H_ Chris@152: #define _FFT_MODEL_H_ Chris@152: Chris@152: #include "data/fft/FFTDataServer.h" Chris@152: #include "DenseThreeDimensionalModel.h" Chris@152: Chris@275: #include Chris@275: #include Chris@275: Chris@254: /** Chris@254: * An implementation of DenseThreeDimensionalModel that makes FFT data Chris@387: * derived from a DenseTimeValueModel available as a generic data Chris@387: * grid. The FFT data is acquired using FFTDataServer. Note that any Chris@387: * of the accessor functions may throw AllocationFailed if a cache Chris@387: * resize fails. Chris@254: */ Chris@254: Chris@152: class FFTModel : public DenseThreeDimensionalModel Chris@152: { Chris@247: Q_OBJECT Chris@247: Chris@152: public: Chris@254: /** Chris@254: * Construct an FFT model derived from the given Chris@254: * DenseTimeValueModel, with the given window parameters and FFT Chris@254: * size (which may exceed the window size, for zero-padded FFTs). Chris@254: * Chris@254: * If the model has multiple channels use only the given channel, Chris@254: * unless the channel is -1 in which case merge all available Chris@254: * channels. Chris@254: * Chris@254: * If polar is true, the data will normally be retrieved from the Chris@254: * FFT model in magnitude/phase form; otherwise it will normally Chris@254: * be retrieved in "cartesian" real/imaginary form. The results Chris@254: * should be the same either way, but a "polar" model addressed in Chris@254: * "cartesian" form or vice versa may suffer a performance Chris@254: * penalty. Chris@254: * Chris@254: * The fillFromColumn argument gives a hint that the FFT data Chris@254: * server should aim to start calculating FFT data at that column Chris@254: * number if possible, as that is likely to be requested first. Chris@254: */ Chris@152: FFTModel(const DenseTimeValueModel *model, Chris@152: int channel, Chris@152: WindowType windowType, Chris@152: size_t windowSize, Chris@152: size_t windowIncrement, Chris@152: size_t fftSize, Chris@152: bool polar, Chris@334: StorageAdviser::Criteria criteria = StorageAdviser::NoCriteria, Chris@152: size_t fillFromColumn = 0); Chris@152: ~FFTModel(); Chris@152: Chris@497: inline float getMagnitudeAt(size_t x, size_t y) { Chris@152: return m_server->getMagnitudeAt(x << m_xshift, y << m_yshift); Chris@152: } Chris@497: inline float getNormalizedMagnitudeAt(size_t x, size_t y) { Chris@152: return m_server->getNormalizedMagnitudeAt(x << m_xshift, y << m_yshift); Chris@152: } Chris@497: inline float getMaximumMagnitudeAt(size_t x) { Chris@152: return m_server->getMaximumMagnitudeAt(x << m_xshift); Chris@152: } Chris@497: inline float getPhaseAt(size_t x, size_t y) { Chris@152: return m_server->getPhaseAt(x << m_xshift, y << m_yshift); Chris@152: } Chris@497: inline void getValuesAt(size_t x, size_t y, float &real, float &imaginary) { Chris@152: m_server->getValuesAt(x << m_xshift, y << m_yshift, real, imaginary); Chris@152: } Chris@497: inline bool isColumnAvailable(size_t x) const { Chris@152: return m_server->isColumnReady(x << m_xshift); Chris@152: } Chris@152: Chris@551: inline bool getMagnitudesAt(size_t x, float *values, size_t minbin = 0, size_t count = 0) { Chris@408: return m_server->getMagnitudesAt(x << m_xshift, values, minbin << m_yshift, count, getYRatio()); Chris@408: } Chris@551: inline bool getNormalizedMagnitudesAt(size_t x, float *values, size_t minbin = 0, size_t count = 0) { Chris@408: return m_server->getNormalizedMagnitudesAt(x << m_xshift, values, minbin << m_yshift, count, getYRatio()); Chris@408: } Chris@551: inline bool getPhasesAt(size_t x, float *values, size_t minbin = 0, size_t count = 0) { Chris@408: return m_server->getPhasesAt(x << m_xshift, values, minbin << m_yshift, count, getYRatio()); Chris@408: } Chris@556: inline bool getValuesAt(size_t x, float *reals, float *imaginaries, size_t minbin = 0, size_t count = 0) { Chris@556: return m_server->getValuesAt(x << m_xshift, reals, imaginaries, minbin << m_yshift, count, getYRatio()); Chris@556: } Chris@408: Chris@497: inline size_t getFillExtent() const { return m_server->getFillExtent(); } Chris@152: Chris@152: // DenseThreeDimensionalModel and Model methods: Chris@152: // Chris@497: inline virtual size_t getWidth() const { Chris@182: return m_server->getWidth() >> m_xshift; Chris@182: } Chris@497: inline virtual size_t getHeight() const { Chris@212: // If there is no y-shift, the server's height (based on its Chris@212: // fftsize/2 + 1) is correct. If there is a shift, then the Chris@212: // server is using a larger fft size than we want, so we shift Chris@212: // it right as many times as necessary, but then we need to Chris@212: // re-add the "+1" part (because ((fftsize*2)/2 + 1) / 2 != Chris@212: // fftsize/2 + 1). Chris@212: return (m_server->getHeight() >> m_yshift) + (m_yshift > 0 ? 1 : 0); Chris@182: } Chris@182: virtual float getValueAt(size_t x, size_t y) const { Chris@182: return const_cast(this)->getMagnitudeAt(x, y); Chris@182: } Chris@152: virtual bool isOK() const { Chris@152: return m_server && m_server->getModel(); Chris@152: } Chris@152: virtual size_t getStartFrame() const { Chris@152: return 0; Chris@152: } Chris@152: virtual size_t getEndFrame() const { Chris@152: return getWidth() * getResolution() + getResolution(); Chris@152: } Chris@152: virtual size_t getSampleRate() const; Chris@152: virtual size_t getResolution() const { Chris@152: return m_server->getWindowIncrement() << m_xshift; Chris@152: } Chris@152: virtual size_t getYBinCount() const { Chris@152: return getHeight(); Chris@152: } Chris@152: virtual float getMinimumLevel() const { Chris@152: return 0.f; // Can't provide Chris@152: } Chris@152: virtual float getMaximumLevel() const { Chris@152: return 1.f; // Can't provide Chris@152: } Chris@533: virtual Column getColumn(size_t x) const; Chris@152: virtual QString getBinName(size_t n) const; Chris@152: Chris@478: virtual bool shouldUseLogValueScale() const { Chris@478: return true; // Although obviously it's up to the user... Chris@478: } Chris@478: Chris@275: /** Chris@275: * Calculate an estimated frequency for a stable signal in this Chris@275: * bin, using phase unwrapping. This will be completely wrong if Chris@275: * the signal is not stable here. Chris@275: */ Chris@275: virtual bool estimateStableFrequency(size_t x, size_t y, float &frequency); Chris@275: Chris@275: enum PeakPickType Chris@275: { Chris@275: AllPeaks, /// Any bin exceeding its immediate neighbours Chris@275: MajorPeaks, /// Peaks picked using sliding median window Chris@275: MajorPitchAdaptivePeaks /// Bigger window for higher frequencies Chris@275: }; Chris@275: Chris@551: typedef std::set PeakLocationSet; // bin Chris@551: typedef std::map PeakSet; // bin -> freq Chris@275: Chris@275: /** Chris@275: * Return locations of peak bins in the range [ymin,ymax]. If Chris@275: * ymax is zero, getHeight()-1 will be used. Chris@275: */ Chris@275: virtual PeakLocationSet getPeaks(PeakPickType type, size_t x, Chris@275: size_t ymin = 0, size_t ymax = 0); Chris@275: Chris@275: /** Chris@275: * Return locations and estimated stable frequencies of peak bins. Chris@275: */ Chris@275: virtual PeakSet getPeakFrequencies(PeakPickType type, size_t x, Chris@275: size_t ymin = 0, size_t ymax = 0); Chris@273: Chris@152: virtual int getCompletion() const { return m_server->getFillCompletion(); } Chris@678: virtual QString getError() const { return m_server->getError(); } Chris@152: Chris@152: virtual Model *clone() const; Chris@152: Chris@154: virtual void suspend() { m_server->suspend(); } Chris@155: virtual void suspendWrites() { m_server->suspendWrites(); } Chris@154: virtual void resume() { m_server->resume(); } Chris@154: Chris@345: QString getTypeName() const { return tr("FFT"); } Chris@345: Chris@360: public slots: Chris@360: void sourceModelAboutToBeDeleted(); Chris@360: Chris@152: private: Chris@297: FFTModel(const FFTModel &); // not implemented Chris@152: FFTModel &operator=(const FFTModel &); // not implemented Chris@152: Chris@152: FFTDataServer *m_server; Chris@152: int m_xshift; Chris@152: int m_yshift; Chris@275: Chris@297: FFTDataServer *getServer(const DenseTimeValueModel *, Chris@297: int, WindowType, size_t, size_t, size_t, Chris@334: bool, StorageAdviser::Criteria, size_t); Chris@297: Chris@280: size_t getPeakPickWindowSize(PeakPickType type, size_t sampleRate, Chris@280: size_t bin, float &percentile) const; Chris@408: Chris@408: size_t getYRatio() { Chris@408: size_t ys = m_yshift; Chris@408: size_t r = 1; Chris@408: while (ys) { --ys; r <<= 1; } Chris@408: return r; Chris@408: } Chris@152: }; Chris@152: Chris@152: #endif