Mercurial > hg > svcore
view data/model/FFTModel.h @ 1187:fd40a5335968 spectrogram-minor-refactor
Pull out column ops into ColumnOp
author | Chris Cannam |
---|---|
date | Mon, 20 Jun 2016 11:30:15 +0100 |
parents | 12a8daa89970 |
children | 6d09ad2ab21f |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #ifndef FFT_MODEL_H #define FFT_MODEL_H #include "DenseThreeDimensionalModel.h" #include "DenseTimeValueModel.h" #include "base/Window.h" #include "data/fft/FFTapi.h" #include <set> #include <vector> #include <complex> #include <deque> /** * An implementation of DenseThreeDimensionalModel that makes FFT data * derived from a DenseTimeValueModel available as a generic data * grid. */ class FFTModel : public DenseThreeDimensionalModel { Q_OBJECT //!!! threading requirements? //!!! doubles? since we're not caching much public: /** * Construct an FFT model derived from the given * DenseTimeValueModel, with the given window parameters and FFT * size (which may exceed the window size, for zero-padded FFTs). * * If the model has multiple channels use only the given channel, * unless the channel is -1 in which case merge all available * channels. */ FFTModel(const DenseTimeValueModel *model, int channel, WindowType windowType, int windowSize, int windowIncrement, int fftSize); ~FFTModel(); // DenseThreeDimensionalModel and Model methods: // virtual int getWidth() const; virtual int getHeight() const; virtual float getValueAt(int x, int y) const { return getMagnitudeAt(x, y); } virtual bool isOK() const { return m_model && m_model->isOK(); } virtual sv_frame_t getStartFrame() const { return 0; } virtual sv_frame_t getEndFrame() const { return sv_frame_t(getWidth()) * getResolution() + getResolution(); } virtual sv_samplerate_t getSampleRate() const { return isOK() ? m_model->getSampleRate() : 0; } virtual int getResolution() const { return m_windowIncrement; } virtual int getYBinCount() const { return getHeight(); } virtual float getMinimumLevel() const { return 0.f; } // Can't provide virtual float getMaximumLevel() const { return 1.f; } // Can't provide virtual Column getColumn(int x) const; // magnitudes virtual QString getBinName(int n) const; virtual bool shouldUseLogValueScale() const { return true; } virtual int getCompletion() const { int c = 100; if (m_model) { if (m_model->isReady(&c)) return 100; } return c; } virtual QString getError() const { return ""; } //!!!??? virtual sv_frame_t getFillExtent() const { return getEndFrame(); } // FFTModel methods: // int getChannel() const { return m_channel; } WindowType getWindowType() const { return m_windowType; } int getWindowSize() const { return m_windowSize; } int getWindowIncrement() const { return m_windowIncrement; } int getFFTSize() const { return m_fftSize; } float getMagnitudeAt(int x, int y) const; float getMaximumMagnitudeAt(int x) const; float getPhaseAt(int x, int y) const; void getValuesAt(int x, int y, float &real, float &imaginary) const; bool getMagnitudesAt(int x, float *values, int minbin = 0, int count = 0) const; bool getPhasesAt(int x, float *values, int minbin = 0, int count = 0) const; bool getValuesAt(int x, float *reals, float *imaginaries, int minbin = 0, int count = 0) const; /** * Calculate an estimated frequency for a stable signal in this * bin, using phase unwrapping. This will be completely wrong if * the signal is not stable here. */ virtual bool estimateStableFrequency(int x, int y, double &frequency); enum PeakPickType { AllPeaks, /// Any bin exceeding its immediate neighbours MajorPeaks, /// Peaks picked using sliding median window MajorPitchAdaptivePeaks /// Bigger window for higher frequencies }; typedef std::set<int> PeakLocationSet; // bin typedef std::map<int, double> PeakSet; // bin -> freq /** * Return locations of peak bins in the range [ymin,ymax]. If * ymax is zero, getHeight()-1 will be used. */ virtual PeakLocationSet getPeaks(PeakPickType type, int x, int ymin = 0, int ymax = 0); /** * Return locations and estimated stable frequencies of peak bins. */ virtual PeakSet getPeakFrequencies(PeakPickType type, int x, int ymin = 0, int ymax = 0); QString getTypeName() const { return tr("FFT"); } public slots: void sourceModelAboutToBeDeleted(); private: FFTModel(const FFTModel &); // not implemented FFTModel &operator=(const FFTModel &); // not implemented const DenseTimeValueModel *m_model; int m_channel; WindowType m_windowType; int m_windowSize; int m_windowIncrement; int m_fftSize; Window<float> m_windower; FFTForward m_fft; int getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate, int bin, float &percentile) const; std::pair<sv_frame_t, sv_frame_t> getSourceSampleRange(int column) const { sv_frame_t startFrame = m_windowIncrement * sv_frame_t(column); sv_frame_t endFrame = startFrame + m_windowSize; // Cols are centred on the audio sample (e.g. col 0 is centred at sample 0) startFrame -= m_windowSize / 2; endFrame -= m_windowSize / 2; return { startFrame, endFrame }; } std::vector<std::complex<float> > getFFTColumn(int column) const; std::vector<float> getSourceSamples(int column) const; std::vector<float> getSourceData(std::pair<sv_frame_t, sv_frame_t>) const; std::vector<float> getSourceDataUncached(std::pair<sv_frame_t, sv_frame_t>) const; struct SavedSourceData { std::pair<sv_frame_t, sv_frame_t> range; std::vector<float> data; }; mutable SavedSourceData m_savedData; struct SavedColumn { int n; std::vector<std::complex<float> > col; }; mutable std::deque<SavedColumn> m_cached; size_t m_cacheSize; }; #endif