Mercurial > hg > svcore
view data/model/FFTModel.cpp @ 816:e2b535b35b5f tonioni
bugfixes to compile on Linux again
author | gyorgyf |
---|---|
date | Tue, 18 Jun 2013 22:18:10 +0100 |
parents | d7f3dfe6f9a4 |
children | e802e550a1f2 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "FFTModel.h" #include "DenseTimeValueModel.h" #include "AggregateWaveModel.h" #include "base/Profiler.h" #include "base/Pitch.h" #include <algorithm> #include <cassert> #ifndef __GNUC__ #include <alloca.h> #endif FFTModel::FFTModel(const DenseTimeValueModel *model, int channel, WindowType windowType, size_t windowSize, size_t windowIncrement, size_t fftSize, bool polar, StorageAdviser::Criteria criteria, size_t fillFromColumn) : //!!! ZoomConstraint! m_server(0), m_xshift(0), m_yshift(0) { setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm. m_server = getServer(model, channel, windowType, windowSize, windowIncrement, fftSize, polar, criteria, fillFromColumn); if (!m_server) return; // caller should check isOK() size_t xratio = windowIncrement / m_server->getWindowIncrement(); size_t yratio = m_server->getFFTSize() / fftSize; while (xratio > 1) { if (xratio & 0x1) { std::cerr << "ERROR: FFTModel: Window increment ratio " << windowIncrement << " / " << m_server->getWindowIncrement() << " must be a power of two" << std::endl; assert(!(xratio & 0x1)); } ++m_xshift; xratio >>= 1; } while (yratio > 1) { if (yratio & 0x1) { std::cerr << "ERROR: FFTModel: FFT size ratio " << m_server->getFFTSize() << " / " << fftSize << " must be a power of two" << std::endl; assert(!(yratio & 0x1)); } ++m_yshift; yratio >>= 1; } } FFTModel::~FFTModel() { if (m_server) FFTDataServer::releaseInstance(m_server); } void FFTModel::sourceModelAboutToBeDeleted() { if (m_sourceModel) { std::cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_sourceModel << ")" << std::endl; if (m_server) { FFTDataServer::releaseInstance(m_server); m_server = 0; } FFTDataServer::modelAboutToBeDeleted(m_sourceModel); } } FFTDataServer * FFTModel::getServer(const DenseTimeValueModel *model, int channel, WindowType windowType, size_t windowSize, size_t windowIncrement, size_t fftSize, bool polar, StorageAdviser::Criteria criteria, size_t fillFromColumn) { // Obviously, an FFT model of channel C (where C != -1) of an // aggregate model is the same as the FFT model of the appropriate // channel of whichever model that aggregate channel is drawn // from. We should use that model here, in case we already have // the data for it or will be wanting the same data again later. // If the channel is -1 (i.e. mixture of all channels), then we // can't do this shortcut unless the aggregate model only has one // channel or contains exactly all of the channels of a single // other model. That isn't very likely -- if it were the case, // why would we be using an aggregate model? if (channel >= 0) { const AggregateWaveModel *aggregate = dynamic_cast<const AggregateWaveModel *>(model); if (aggregate && channel < aggregate->getComponentCount()) { AggregateWaveModel::ModelChannelSpec spec = aggregate->getComponent(channel); return getServer(spec.model, spec.channel, windowType, windowSize, windowIncrement, fftSize, polar, criteria, fillFromColumn); } } // The normal case return FFTDataServer::getFuzzyInstance(model, channel, windowType, windowSize, windowIncrement, fftSize, polar, criteria, fillFromColumn); } size_t FFTModel::getSampleRate() const { return isOK() ? m_server->getModel()->getSampleRate() : 0; } FFTModel::Column FFTModel::getColumn(size_t x) const { Profiler profiler("FFTModel::getColumn", false); Column result; result.clear(); size_t h = getHeight(); result.reserve(h); #ifdef __GNUC__ float magnitudes[h]; #else float *magnitudes = (float *)alloca(h * sizeof(float)); #endif if (m_server->getMagnitudesAt(x << m_xshift, magnitudes)) { for (size_t y = 0; y < h; ++y) { result.push_back(magnitudes[y]); } } else { for (size_t i = 0; i < h; ++i) result.push_back(0.f); } return result; } QString FFTModel::getBinName(size_t n) const { size_t sr = getSampleRate(); if (!sr) return ""; QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2)); return name; } bool FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency) { if (!isOK()) return false; size_t sampleRate = m_server->getModel()->getSampleRate(); size_t fftSize = m_server->getFFTSize() >> m_yshift; frequency = (float(y) * sampleRate) / fftSize; if (x+1 >= getWidth()) return false; // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec. // At hopsize h and sample rate sr, one hop happens in h/sr sec. // At window size w, for bin b, f is b*sr/w. // thus 2pi phase shift happens in w/(b*sr) sec. // We need to know what phase shift we expect from h/sr sec. // -> 2pi * ((h/sr) / (w/(b*sr))) // = 2pi * ((h * b * sr) / (w * sr)) // = 2pi * (h * b) / w. float oldPhase = getPhaseAt(x, y); float newPhase = getPhaseAt(x+1, y); size_t incr = getResolution(); float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize; float phaseError = princargf(newPhase - expectedPhase); // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize)); // The new frequency estimate based on the phase error resulting // from assuming the "native" frequency of this bin frequency = (sampleRate * (expectedPhase + phaseError - oldPhase)) / (2 * M_PI * incr); return true; } FFTModel::PeakLocationSet FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax) { Profiler profiler("FFTModel::getPeaks"); FFTModel::PeakLocationSet peaks; if (!isOK()) return peaks; if (ymax == 0 || ymax > getHeight() - 1) { ymax = getHeight() - 1; } if (type == AllPeaks) { int minbin = ymin; if (minbin > 0) minbin = minbin - 1; int maxbin = ymax; if (maxbin < getHeight() - 1) maxbin = maxbin + 1; const int n = maxbin - minbin + 1; #ifdef __GNUC__ float values[n]; #else float *values = (float *)alloca(n * sizeof(float)); #endif getMagnitudesAt(x, values, minbin, maxbin - minbin + 1); for (size_t bin = ymin; bin <= ymax; ++bin) { if (bin == minbin || bin == maxbin) continue; if (values[bin - minbin] > values[bin - minbin - 1] && values[bin - minbin] > values[bin - minbin + 1]) { peaks.insert(bin); } } return peaks; } Column values = getColumn(x); float mean = 0.f; for (int i = 0; i < values.size(); ++i) mean += values[i]; if (values.size() >0) mean /= values.size(); // For peak picking we use a moving median window, picking the // highest value within each continuous region of values that // exceed the median. For pitch adaptivity, we adjust the window // size to a roughly constant pitch range (about four tones). size_t sampleRate = getSampleRate(); std::deque<float> window; std::vector<size_t> inrange; float dist = 0.5; size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist); size_t halfWin = medianWinSize/2; size_t binmin; if (ymin > halfWin) binmin = ymin - halfWin; else binmin = 0; size_t binmax; if (ymax + halfWin < values.size()) binmax = ymax + halfWin; else binmax = values.size()-1; size_t prevcentre = 0; for (size_t bin = binmin; bin <= binmax; ++bin) { float value = values[bin]; window.push_back(value); // so-called median will actually be the dist*100'th percentile medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist); halfWin = medianWinSize/2; while (window.size() > medianWinSize) { window.pop_front(); } size_t actualSize = window.size(); if (type == MajorPitchAdaptivePeaks) { if (ymax + halfWin < values.size()) binmax = ymax + halfWin; else binmax = values.size()-1; } std::deque<float> sorted(window); std::sort(sorted.begin(), sorted.end()); float median = sorted[int(sorted.size() * dist)]; size_t centrebin = 0; if (bin > actualSize/2) centrebin = bin - actualSize/2; while (centrebin > prevcentre || bin == binmin) { if (centrebin > prevcentre) ++prevcentre; float centre = values[prevcentre]; if (centre > median) { inrange.push_back(centrebin); } if (centre <= median || centrebin+1 == values.size()) { if (!inrange.empty()) { size_t peakbin = 0; float peakval = 0.f; for (size_t i = 0; i < inrange.size(); ++i) { if (i == 0 || values[inrange[i]] > peakval) { peakval = values[inrange[i]]; peakbin = inrange[i]; } } inrange.clear(); if (peakbin >= ymin && peakbin <= ymax) { peaks.insert(peakbin); } } } if (bin == binmin) break; } } return peaks; } size_t FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate, size_t bin, float &percentile) const { percentile = 0.5; if (type == MajorPeaks) return 10; if (bin == 0) return 3; size_t fftSize = m_server->getFFTSize() >> m_yshift; float binfreq = (sampleRate * bin) / fftSize; float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq); int hibin = lrintf((hifreq * fftSize) / sampleRate); int medianWinSize = hibin - bin; if (medianWinSize < 3) medianWinSize = 3; percentile = 0.5 + (binfreq / sampleRate); return medianWinSize; } FFTModel::PeakSet FFTModel::getPeakFrequencies(PeakPickType type, size_t x, size_t ymin, size_t ymax) { Profiler profiler("FFTModel::getPeakFrequencies"); PeakSet peaks; if (!isOK()) return peaks; PeakLocationSet locations = getPeaks(type, x, ymin, ymax); size_t sampleRate = getSampleRate(); size_t fftSize = m_server->getFFTSize() >> m_yshift; size_t incr = getResolution(); // This duplicates some of the work of estimateStableFrequency to // allow us to retrieve the phases in two separate vertical // columns, instead of jumping back and forth between columns x and // x+1, which may be significantly slower if re-seeking is needed std::vector<float> phases; for (PeakLocationSet::iterator i = locations.begin(); i != locations.end(); ++i) { phases.push_back(getPhaseAt(x, *i)); } size_t phaseIndex = 0; for (PeakLocationSet::iterator i = locations.begin(); i != locations.end(); ++i) { float oldPhase = phases[phaseIndex]; float newPhase = getPhaseAt(x+1, *i); float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize; float phaseError = princargf(newPhase - expectedPhase); float frequency = (sampleRate * (expectedPhase + phaseError - oldPhase)) / (2 * M_PI * incr); // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize)); // if (stable) peaks[*i] = frequency; ++phaseIndex; } return peaks; } Model * FFTModel::clone() const { return new FFTModel(*this); } FFTModel::FFTModel(const FFTModel &model) : DenseThreeDimensionalModel(), m_server(model.m_server), m_xshift(model.m_xshift), m_yshift(model.m_yshift) { FFTDataServer::claimInstance(m_server); }