view data/fft/FFTMemoryCache.cpp @ 490:c3fb8258e34d

* Make it possible to import an entire session from an RDF document. However, at the moment the timings of events appear to be constrained by how far the audio decoder has got through its audio file at the time the event is queried -- need to investigate.
author Chris Cannam
date Fri, 21 Nov 2008 18:03:14 +0000
parents 115f60df1e4d
children 3cc4b7cd2aa5
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 Chris Cannam.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "FFTMemoryCache.h"
#include "system/System.h"

#include <iostream>

//#define DEBUG_FFT_MEMORY_CACHE 1

FFTMemoryCache::FFTMemoryCache(StorageType storageType) :
    m_width(0),
    m_height(0),
    m_magnitude(0),
    m_phase(0),
    m_fmagnitude(0),
    m_fphase(0),
    m_freal(0),
    m_fimag(0),
    m_factor(0),
    m_storageType(storageType)
{
#ifdef DEBUG_FFT_MEMORY_CACHE
    std::cerr << "FFTMemoryCache[" << this << "]::FFTMemoryCache (type "
              << m_storageType << ")" << std::endl;
#endif
}

FFTMemoryCache::~FFTMemoryCache()
{
#ifdef DEBUG_FFT_MEMORY_CACHE
    std::cerr << "FFTMemoryCache[" << this << "]::~FFTMemoryCache" << std::endl;
#endif

    for (size_t i = 0; i < m_width; ++i) {
	if (m_magnitude && m_magnitude[i]) free(m_magnitude[i]);
	if (m_phase && m_phase[i]) free(m_phase[i]);
	if (m_fmagnitude && m_fmagnitude[i]) free(m_fmagnitude[i]);
	if (m_fphase && m_fphase[i]) free(m_fphase[i]);
        if (m_freal && m_freal[i]) free(m_freal[i]);
        if (m_fimag && m_fimag[i]) free(m_fimag[i]);
    }

    if (m_magnitude) free(m_magnitude);
    if (m_phase) free(m_phase);
    if (m_fmagnitude) free(m_fmagnitude);
    if (m_fphase) free(m_fphase);
    if (m_freal) free(m_freal);
    if (m_fimag) free(m_fimag);
    if (m_factor) free(m_factor);
}

void
FFTMemoryCache::resize(size_t width, size_t height)
{
    Profiler profiler("FFTMemoryCache::resize");

#ifdef DEBUG_FFT_MEMORY_CACHE
    std::cerr << "FFTMemoryCache[" << this << "]::resize(" << width << "x" << height << " = " << width*height << ")" << std::endl;
#endif
    
    if (m_width == width && m_height == height) return;

    if (m_storageType == Compact) {
        resize(m_magnitude, width, height);
        resize(m_phase, width, height);
    } else if (m_storageType == Polar) {
        resize(m_fmagnitude, width, height);
        resize(m_fphase, width, height);
    } else {
        resize(m_freal, width, height);
        resize(m_fimag, width, height);
    }

    m_colset.resize(width);

    m_factor = (float *)realloc(m_factor, width * sizeof(float));

    m_width = width;
    m_height = height;

#ifdef DEBUG_FFT_MEMORY_CACHE
    std::cerr << "done, width = " << m_width << " height = " << m_height << std::endl;
#endif
}

void
FFTMemoryCache::resize(uint16_t **&array, size_t width, size_t height)
{
    for (size_t i = width; i < m_width; ++i) {
	free(array[i]);
    }

    if (width != m_width) {
	array = (uint16_t **)realloc(array, width * sizeof(uint16_t *));
	if (!array) throw std::bad_alloc();
	MUNLOCK(array, width * sizeof(uint16_t *));
    }

    for (size_t i = m_width; i < width; ++i) {
	array[i] = 0;
    }

    for (size_t i = 0; i < width; ++i) {
	array[i] = (uint16_t *)realloc(array[i], height * sizeof(uint16_t));
	if (!array[i]) throw std::bad_alloc();
	MUNLOCK(array[i], height * sizeof(uint16_t));
    }
}

void
FFTMemoryCache::resize(float **&array, size_t width, size_t height)
{
    for (size_t i = width; i < m_width; ++i) {
	free(array[i]);
    }

    if (width != m_width) {
	array = (float **)realloc(array, width * sizeof(float *));
	if (!array) throw std::bad_alloc();
	MUNLOCK(array, width * sizeof(float *));
    }

    for (size_t i = m_width; i < width; ++i) {
	array[i] = 0;
    }

    for (size_t i = 0; i < width; ++i) {
	array[i] = (float *)realloc(array[i], height * sizeof(float));
	if (!array[i]) throw std::bad_alloc();
	MUNLOCK(array[i], height * sizeof(float));
    }
}

void
FFTMemoryCache::reset()
{
    switch (m_storageType) {

    case Compact:
        for (size_t x = 0; x < m_width; ++x) {
            for (size_t y = 0; y < m_height; ++y) {
                m_magnitude[x][y] = 0;
                m_phase[x][y] = 0;
            }
            m_factor[x] = 1.0;
        }
        break;
        
    case Polar:
        for (size_t x = 0; x < m_width; ++x) {
            for (size_t y = 0; y < m_height; ++y) {
                m_fmagnitude[x][y] = 0;
                m_fphase[x][y] = 0;
            }
            m_factor[x] = 1.0;
        }
        break;

    case Rectangular:
        for (size_t x = 0; x < m_width; ++x) {
            for (size_t y = 0; y < m_height; ++y) {
                m_freal[x][y] = 0;
                m_fimag[x][y] = 0;
            }
            m_factor[x] = 1.0;
        }
        break;        
    }
}	    

void
FFTMemoryCache::setColumnAt(size_t x, float *mags, float *phases, float factor)
{
    Profiler profiler("FFTMemoryCache::setColumnAt: from polar");

    setNormalizationFactor(x, factor);

    if (m_storageType == Rectangular) {
        Profiler subprof("FFTMemoryCache::setColumnAt: polar to cart");
        for (size_t y = 0; y < m_height; ++y) {
            m_freal[x][y] = mags[y] * cosf(phases[y]);
            m_fimag[x][y] = mags[y] * sinf(phases[y]);
        }
    } else {
        for (size_t y = 0; y < m_height; ++y) {
            setMagnitudeAt(x, y, mags[y]);
            setPhaseAt(x, y, phases[y]);
        }
    }

    m_colset.set(x);
}

void
FFTMemoryCache::setColumnAt(size_t x, float *reals, float *imags)
{
    Profiler profiler("FFTMemoryCache::setColumnAt: from cart");

    float max = 0.0;

    switch (m_storageType) {

    case Rectangular:
        for (size_t y = 0; y < m_height; ++y) {
            m_freal[x][y] = reals[y];
            m_fimag[x][y] = imags[y];
            float mag = sqrtf(reals[y] * reals[y] + imags[y] * imags[y]);
            if (mag > max) max = mag;
        }
        break;

    case Compact:
    case Polar:
    {
        Profiler subprof("FFTMemoryCache::setColumnAt: cart to polar");
        for (size_t y = 0; y < m_height; ++y) {
            float mag = sqrtf(reals[y] * reals[y] + imags[y] * imags[y]);
            float phase = atan2f(imags[y], reals[y]);
            reals[y] = mag;
            imags[y] = phase;
            if (mag > max) max = mag;
        }
        break;
    }
    };

    if (m_storageType == Rectangular) {
        m_factor[x] = max;
        m_colset.set(x);
    } else {
        setColumnAt(x, reals, imags, max);
    }
}

size_t
FFTMemoryCache::getCacheSize(size_t width, size_t height, StorageType type)
{
    size_t sz = 0;

    switch (type) {

    case Compact:
        sz = (height * 2 + 1) * width * sizeof(uint16_t);

    case Polar:
    case Rectangular:
        sz = (height * 2 + 1) * width * sizeof(float);
    }

    return sz;
}