Mercurial > hg > svcore
view transform/FeatureExtractionPluginTransform.cpp @ 117:c30728d5625c sv1-v0.9rc1
* Make vertical scale alignment modes work in note layer as well as time-value
layer, and several significant fixes to it
* Make it possible to draw notes properly on the note layer
* Show units (and frequencies etc in note layer's case) in the time-value and
note layer description boxes
* Minor fix to item edit dialog layout
* Some minor menu rearrangement
* Comment out a lot of debug output
* Add SV website and reference URLs to Help menu, and add code to (attempt to)
open them in the user's preferred browser
author | Chris Cannam |
---|---|
date | Fri, 12 May 2006 14:40:43 +0000 |
parents | 90ade4fa63be |
children | 4170b21773cf |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "FeatureExtractionPluginTransform.h" #include "plugin/FeatureExtractionPluginFactory.h" #include "plugin/PluginXml.h" #include "vamp-sdk/Plugin.h" #include "base/Model.h" #include "base/Window.h" #include "model/SparseOneDimensionalModel.h" #include "model/SparseTimeValueModel.h" #include "model/DenseThreeDimensionalModel.h" #include "model/DenseTimeValueModel.h" #include "model/NoteModel.h" #include <fftw3.h> #include <iostream> FeatureExtractionPluginTransform::FeatureExtractionPluginTransform(Model *inputModel, QString pluginId, int channel, QString configurationXml, QString outputName) : Transform(inputModel), m_plugin(0), m_channel(channel), m_stepSize(0), m_blockSize(0), m_descriptor(0), m_outputFeatureNo(0) { // std::cerr << "FeatureExtractionPluginTransform::FeatureExtractionPluginTransform: plugin " << pluginId.toStdString() << ", outputName " << outputName.toStdString() << std::endl; FeatureExtractionPluginFactory *factory = FeatureExtractionPluginFactory::instanceFor(pluginId); if (!factory) { std::cerr << "FeatureExtractionPluginTransform: No factory available for plugin id \"" << pluginId.toStdString() << "\"" << std::endl; return; } m_plugin = factory->instantiatePlugin(pluginId, m_input->getSampleRate()); if (!m_plugin) { std::cerr << "FeatureExtractionPluginTransform: Failed to instantiate plugin \"" << pluginId.toStdString() << "\"" << std::endl; return; } if (configurationXml != "") { PluginXml(m_plugin).setParametersFromXml(configurationXml); } m_blockSize = m_plugin->getPreferredBlockSize(); m_stepSize = m_plugin->getPreferredStepSize(); if (m_blockSize == 0) m_blockSize = 1024; //!!! todo: ask user if (m_stepSize == 0) m_stepSize = m_blockSize; //!!! likewise DenseTimeValueModel *input = getInput(); if (!input) return; size_t channelCount = input->getChannelCount(); if (m_plugin->getMaxChannelCount() < channelCount) { channelCount = 1; } if (m_plugin->getMinChannelCount() > channelCount) { std::cerr << "FeatureExtractionPluginTransform:: " << "Can't provide enough channels to plugin (plugin min " << m_plugin->getMinChannelCount() << ", max " << m_plugin->getMaxChannelCount() << ", input model has " << input->getChannelCount() << ")" << std::endl; return; } if (!m_plugin->initialise(channelCount, m_stepSize, m_blockSize)) { std::cerr << "FeatureExtractionPluginTransform: Plugin " << m_plugin->getName() << " failed to initialise!" << std::endl; return; } //!!! cope with plugins that request non-power-of-2 block sizes in // the frequency domain! Vamp::Plugin::OutputList outputs = m_plugin->getOutputDescriptors(); if (outputs.empty()) { std::cerr << "FeatureExtractionPluginTransform: Plugin \"" << pluginId.toStdString() << "\" has no outputs" << std::endl; return; } for (size_t i = 0; i < outputs.size(); ++i) { if (outputName == "" || outputs[i].name == outputName.toStdString()) { m_outputFeatureNo = i; m_descriptor = new Vamp::Plugin::OutputDescriptor (outputs[i]); break; } } if (!m_descriptor) { std::cerr << "FeatureExtractionPluginTransform: Plugin \"" << pluginId.toStdString() << "\" has no output named \"" << outputName.toStdString() << "\"" << std::endl; return; } // std::cerr << "FeatureExtractionPluginTransform: output sample type " // << m_descriptor->sampleType << std::endl; int binCount = 1; float minValue = 0.0, maxValue = 0.0; if (m_descriptor->hasFixedBinCount) { binCount = m_descriptor->binCount; } // std::cerr << "FeatureExtractionPluginTransform: output bin count " // << binCount << std::endl; if (binCount > 0 && m_descriptor->hasKnownExtents) { minValue = m_descriptor->minValue; maxValue = m_descriptor->maxValue; } size_t modelRate = m_input->getSampleRate(); size_t modelResolution = 1; switch (m_descriptor->sampleType) { case Vamp::Plugin::OutputDescriptor::VariableSampleRate: if (m_descriptor->sampleRate != 0.0) { modelResolution = size_t(modelRate / m_descriptor->sampleRate + 0.001); } break; case Vamp::Plugin::OutputDescriptor::OneSamplePerStep: modelResolution = m_stepSize; break; case Vamp::Plugin::OutputDescriptor::FixedSampleRate: modelRate = size_t(m_descriptor->sampleRate + 0.001); break; } if (binCount == 0) { m_output = new SparseOneDimensionalModel(modelRate, modelResolution, false); } else if (binCount == 1) { SparseTimeValueModel *model = new SparseTimeValueModel (modelRate, modelResolution, minValue, maxValue, false); model->setScaleUnits(outputs[m_outputFeatureNo].unit.c_str()); m_output = model; } else if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::VariableSampleRate) { // We don't have a sparse 3D model, so interpret this as a // note model. There's nothing to define which values to use // as which parameters of the note -- for the moment let's // treat the first as pitch, second as duration in frames, // third (if present) as velocity. (Our note model doesn't // yet store velocity.) //!!! todo: ask the user! NoteModel *model = new NoteModel (modelRate, modelResolution, minValue, maxValue, false); model->setScaleUnits(outputs[m_outputFeatureNo].unit.c_str()); m_output = model; } else { m_output = new DenseThreeDimensionalModel(modelRate, modelResolution, binCount, false); if (!m_descriptor->binNames.empty()) { std::vector<QString> names; for (size_t i = 0; i < m_descriptor->binNames.size(); ++i) { names.push_back(m_descriptor->binNames[i].c_str()); } (dynamic_cast<DenseThreeDimensionalModel *>(m_output)) ->setBinNames(names); } } } FeatureExtractionPluginTransform::~FeatureExtractionPluginTransform() { delete m_plugin; delete m_descriptor; } DenseTimeValueModel * FeatureExtractionPluginTransform::getInput() { DenseTimeValueModel *dtvm = dynamic_cast<DenseTimeValueModel *>(getInputModel()); if (!dtvm) { std::cerr << "FeatureExtractionPluginTransform::getInput: WARNING: Input model is not conformable to DenseTimeValueModel" << std::endl; } return dtvm; } void FeatureExtractionPluginTransform::run() { DenseTimeValueModel *input = getInput(); if (!input) return; if (!m_output) return; size_t sampleRate = m_input->getSampleRate(); size_t channelCount = input->getChannelCount(); if (m_plugin->getMaxChannelCount() < channelCount) { channelCount = 1; } float **buffers = new float*[channelCount]; for (size_t ch = 0; ch < channelCount; ++ch) { buffers[ch] = new float[m_blockSize]; } double *fftInput = 0; fftw_complex *fftOutput = 0; fftw_plan fftPlan = 0; Window<double> windower(HanningWindow, m_blockSize); if (m_plugin->getInputDomain() == Vamp::Plugin::FrequencyDomain) { fftInput = (double *)fftw_malloc(m_blockSize * sizeof(double)); fftOutput = (fftw_complex *)fftw_malloc(m_blockSize * sizeof(fftw_complex)); fftPlan = fftw_plan_dft_r2c_1d(m_blockSize, fftInput, fftOutput, FFTW_ESTIMATE); if (!fftPlan) { std::cerr << "ERROR: FeatureExtractionPluginTransform::run(): fftw_plan failed! Results will be garbage" << std::endl; } } long startFrame = m_input->getStartFrame(); long endFrame = m_input->getEndFrame(); long blockFrame = startFrame; long prevCompletion = 0; while (1) { if (fftPlan) { if (blockFrame - int(m_blockSize)/2 > endFrame) break; } else { if (blockFrame >= endFrame) break; } // std::cerr << "FeatureExtractionPluginTransform::run: blockFrame " // << blockFrame << std::endl; long completion = (((blockFrame - startFrame) / m_stepSize) * 99) / ( (endFrame - startFrame) / m_stepSize); // channelCount is either m_input->channelCount or 1 for (size_t ch = 0; ch < channelCount; ++ch) { if (fftPlan) { getFrames(ch, channelCount, blockFrame - m_blockSize/2, m_blockSize, buffers[ch]); } else { getFrames(ch, channelCount, blockFrame, m_blockSize, buffers[ch]); } } if (fftPlan) { for (size_t ch = 0; ch < channelCount; ++ch) { for (size_t i = 0; i < m_blockSize; ++i) { fftInput[i] = buffers[ch][i]; } windower.cut(fftInput); for (size_t i = 0; i < m_blockSize/2; ++i) { double temp = fftInput[i]; fftInput[i] = fftInput[i + m_blockSize/2]; fftInput[i + m_blockSize/2] = temp; } fftw_execute(fftPlan); for (size_t i = 0; i < m_blockSize/2; ++i) { buffers[ch][i*2] = fftOutput[i][0]; buffers[ch][i*2 + 1] = fftOutput[i][1]; } } } Vamp::Plugin::FeatureSet features = m_plugin->process (buffers, Vamp::RealTime::frame2RealTime(blockFrame, sampleRate)); for (size_t fi = 0; fi < features[m_outputFeatureNo].size(); ++fi) { Vamp::Plugin::Feature feature = features[m_outputFeatureNo][fi]; addFeature(blockFrame, feature); } if (blockFrame == startFrame || completion > prevCompletion) { setCompletion(completion); prevCompletion = completion; } blockFrame += m_stepSize; } if (fftPlan) { fftw_destroy_plan(fftPlan); fftw_free(fftInput); fftw_free(fftOutput); } Vamp::Plugin::FeatureSet features = m_plugin->getRemainingFeatures(); for (size_t fi = 0; fi < features[m_outputFeatureNo].size(); ++fi) { Vamp::Plugin::Feature feature = features[m_outputFeatureNo][fi]; addFeature(blockFrame, feature); } setCompletion(100); } void FeatureExtractionPluginTransform::getFrames(int channel, int channelCount, long startFrame, long size, float *buffer) { long offset = 0; if (startFrame < 0) { for (int i = 0; i < size && startFrame + i < 0; ++i) { buffer[i] = 0.0f; } offset = -startFrame; size -= offset; if (size <= 0) return; startFrame = 0; } long got = getInput()->getValues ((channelCount == 1 ? m_channel : channel), startFrame, startFrame + size, buffer + offset); while (got < size) { buffer[offset + got] = 0.0; ++got; } if (m_channel == -1 && channelCount == 1 && getInput()->getChannelCount() > 1) { // use mean instead of sum, as plugin input int cc = getInput()->getChannelCount(); for (long i = 0; i < size; ++i) { buffer[i] /= cc; } } } void FeatureExtractionPluginTransform::addFeature(size_t blockFrame, const Vamp::Plugin::Feature &feature) { size_t inputRate = m_input->getSampleRate(); // std::cerr << "FeatureExtractionPluginTransform::addFeature(" // << blockFrame << ")" << std::endl; int binCount = 1; if (m_descriptor->hasFixedBinCount) { binCount = m_descriptor->binCount; } size_t frame = blockFrame; if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::VariableSampleRate) { if (!feature.hasTimestamp) { std::cerr << "WARNING: FeatureExtractionPluginTransform::addFeature: " << "Feature has variable sample rate but no timestamp!" << std::endl; return; } else { frame = Vamp::RealTime::realTime2Frame(feature.timestamp, inputRate); } } else if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::FixedSampleRate) { if (feature.hasTimestamp) { //!!! warning: sampleRate may be non-integral frame = Vamp::RealTime::realTime2Frame(feature.timestamp, m_descriptor->sampleRate); } else { frame = m_output->getEndFrame() + 1; } } if (binCount == 0) { SparseOneDimensionalModel *model = getOutput<SparseOneDimensionalModel>(); if (!model) return; model->addPoint(SparseOneDimensionalModel::Point(frame, feature.label.c_str())); } else if (binCount == 1) { float value = 0.0; if (feature.values.size() > 0) value = feature.values[0]; SparseTimeValueModel *model = getOutput<SparseTimeValueModel>(); if (!model) return; model->addPoint(SparseTimeValueModel::Point(frame, value, feature.label.c_str())); } else if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::VariableSampleRate) { float pitch = 0.0; if (feature.values.size() > 0) pitch = feature.values[0]; float duration = 1; if (feature.values.size() > 1) duration = feature.values[1]; float velocity = 100; if (feature.values.size() > 2) velocity = feature.values[2]; NoteModel *model = getOutput<NoteModel>(); if (!model) return; model->addPoint(NoteModel::Point(frame, pitch, duration, feature.label.c_str())); } else { DenseThreeDimensionalModel::BinValueSet values = feature.values; DenseThreeDimensionalModel *model = getOutput<DenseThreeDimensionalModel>(); if (!model) return; model->setBinValues(frame, values); } } void FeatureExtractionPluginTransform::setCompletion(int completion) { int binCount = 1; if (m_descriptor->hasFixedBinCount) { binCount = m_descriptor->binCount; } if (binCount == 0) { SparseOneDimensionalModel *model = getOutput<SparseOneDimensionalModel>(); if (!model) return; model->setCompletion(completion); } else if (binCount == 1) { SparseTimeValueModel *model = getOutput<SparseTimeValueModel>(); if (!model) return; model->setCompletion(completion); } else if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::VariableSampleRate) { NoteModel *model = getOutput<NoteModel>(); if (!model) return; model->setCompletion(completion); } else { DenseThreeDimensionalModel *model = getOutput<DenseThreeDimensionalModel>(); if (!model) return; model->setCompletion(completion); } }