Mercurial > hg > svcore
view data/model/RangeSummarisableTimeValueModel.h @ 297:c022976d18e8
* Merge from sv-match-alignment branch (excluding alignment-specific document).
- add aggregate wave model (not yet complete enough to be added as a true
model in a layer, but there's potential)
- add play solo mode
- add alignment model -- unused in plain SV
- fix two plugin leaks
- add m3u playlist support (opens all files at once, potentially hazardous)
- fix retrieval of pre-encoded URLs
- add ability to resample audio files on import, so as to match rates with
other files previously loaded; add preference for same
- add preliminary support in transform code for range and rate of transform
input
- reorganise preferences dialog, move dark-background option to preferences,
add option for temporary directory location
author | Chris Cannam |
---|---|
date | Fri, 28 Sep 2007 13:56:38 +0000 |
parents | 185454896a76 |
children | 5877d68815c7 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2007 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #ifndef _RANGE_SUMMARISABLE_TIME_VALUE_MODEL_H_ #define _RANGE_SUMMARISABLE_TIME_VALUE_MODEL_H_ #include <QObject> #include "DenseTimeValueModel.h" #include "base/ZoomConstraint.h" class AlignmentModel; /** * Base class for models containing dense two-dimensional data (value * against time) that may be meaningfully represented in a zoomed view * using min/max range summaries. Audio waveform data is an obvious * example: think "peaks and minima" for "ranges". */ class RangeSummarisableTimeValueModel : public DenseTimeValueModel { Q_OBJECT public: RangeSummarisableTimeValueModel() : m_alignment(0) { } struct Range { float min; float max; float absmean; Range() : min(0.f), max(0.f), absmean(0.f) { } Range(const Range &r) : min(r.min), max(r.max), absmean(r.absmean) { } Range(float min_, float max_, float absmean_) : min(min_), max(max_), absmean(absmean_) { } }; typedef std::vector<Range> RangeBlock; /** * Return ranges between the given start and end frames, * summarised at the given block size. ((end - start + 1) / * blockSize) ranges should ideally be returned. * * If the given block size is not supported by this model * (according to its zoom constraint), also modify the blockSize * parameter so as to return the block size that was actually * obtained. */ virtual void getRanges(size_t channel, size_t start, size_t end, RangeBlock &ranges, size_t &blockSize) const = 0; /** * Return the range between the given start and end frames, * summarised at a block size equal to the distance between start * and end frames. */ virtual Range getRange(size_t channel, size_t start, size_t end) const = 0; virtual void setAlignment(AlignmentModel *alignment); // I take ownership virtual const Model *getAlignmentReference() const; virtual size_t alignToReference(size_t frame) const; virtual size_t alignFromReference(size_t referenceFrame) const; virtual int getAlignmentCompletion() const; signals: void alignmentCompletionChanged(); protected: AlignmentModel *m_alignment; }; #endif