Mercurial > hg > svcore
view data/model/test/TestFFTModel.h @ 1759:b679bae1627b by-id
Print object name as well (if a QObject)
author | Chris Cannam |
---|---|
date | Mon, 08 Jul 2019 10:07:55 +0100 |
parents | 6d09d68165a4 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #ifndef TEST_FFT_MODEL_H #define TEST_FFT_MODEL_H #include "../FFTModel.h" #include "MockWaveModel.h" #include "Compares.h" #include <QObject> #include <QtTest> #include <QDir> #include <iostream> #include <complex> using namespace std; class TestFFTModel : public QObject { Q_OBJECT private: void test(ModelId model, // a DenseTimeValueModel WindowType window, int windowSize, int windowIncrement, int fftSize, int columnNo, vector<vector<complex<float>>> expectedValues, int expectedWidth) { for (int ch = 0; in_range_for(expectedValues, ch); ++ch) { FFTModel fftm(model, ch, window, windowSize, windowIncrement, fftSize); QCOMPARE(fftm.getWidth(), expectedWidth); int hs1 = fftSize/2 + 1; QCOMPARE(fftm.getHeight(), hs1); vector<float> reals(hs1 + 1, 0.f); vector<float> imags(hs1 + 1, 0.f); reals[hs1] = 999.f; // overrun guards imags[hs1] = 999.f; for (int stepThrough = 0; stepThrough <= 1; ++stepThrough) { if (stepThrough) { // Read through the columns in order instead of // randomly accessing the one we want. This is to // exercise the case where the FFT model saves // part of each input frame and moves along by // only the non-overlapping distance for (int sc = 0; sc < columnNo; ++sc) { fftm.getValuesAt(sc, &reals[0], &imags[0]); } } fftm.getValuesAt(columnNo, &reals[0], &imags[0]); for (int i = 0; i < hs1; ++i) { float eRe = expectedValues[ch][i].real(); float eIm = expectedValues[ch][i].imag(); float thresh = 1e-5f; if (abs(reals[i] - eRe) > thresh || abs(imags[i] - eIm) > thresh) { SVCERR << "ERROR: output is not as expected for column " << i << " in channel " << ch << " (stepThrough = " << stepThrough << ")" << endl; SVCERR << "expected : "; for (int j = 0; j < hs1; ++j) { SVCERR << expectedValues[ch][j] << " "; } SVCERR << "\nactual : "; for (int j = 0; j < hs1; ++j) { SVCERR << complex<float>(reals[j], imags[j]) << " "; } SVCERR << endl; } COMPARE_FUZZIER_F(reals[i], eRe); COMPARE_FUZZIER_F(imags[i], eIm); } QCOMPARE(reals[hs1], 999.f); QCOMPARE(imags[hs1], 999.f); } } } ModelId makeMock(std::vector<Sort> sorts, int length, int pad) { auto mwm = std::make_shared<MockWaveModel>(sorts, length, pad); return ModelById::add(mwm); } void releaseMock(ModelId id) { ModelById::release(id); } private slots: // NB. FFTModel columns are centred on the sample frame, and in // particular this means column 0 is centred at sample 0 (i.e. it // contains only half the window-size worth of real samples, the // others are 0-valued from before the origin). Generally in // these tests we are padding our signal with half a window of // zeros, in order that the result for column 0 is all zeros // (rather than something with a step in it that is harder to // reason about the FFT of) and the results for subsequent columns // are those of our expected signal. void dc_simple_rect() { auto mwm = makeMock({ DC }, 16, 4); test(mwm, RectangularWindow, 8, 8, 8, 0, { { {}, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 1, { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 2, { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 3, { { {}, {}, {}, {}, {} } }, 4); releaseMock(mwm); } void dc_simple_hann() { // The Hann window function is a simple sinusoid with period // equal to twice the window size, and it halves the DC energy auto mwm = makeMock({ DC }, 16, 4); test(mwm, HanningWindow, 8, 8, 8, 0, { { {}, {}, {}, {}, {} } }, 4); test(mwm, HanningWindow, 8, 8, 8, 1, { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4); test(mwm, HanningWindow, 8, 8, 8, 2, { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4); test(mwm, HanningWindow, 8, 8, 8, 3, { { {}, {}, {}, {}, {} } }, 4); releaseMock(mwm); } void dc_simple_hann_halfoverlap() { auto mwm = makeMock({ DC }, 16, 4); test(mwm, HanningWindow, 8, 4, 8, 0, { { {}, {}, {}, {}, {} } }, 7); test(mwm, HanningWindow, 8, 4, 8, 2, { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7); test(mwm, HanningWindow, 8, 4, 8, 3, { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7); test(mwm, HanningWindow, 8, 4, 8, 6, { { {}, {}, {}, {}, {} } }, 7); releaseMock(mwm); } void sine_simple_rect() { auto mwm = makeMock({ Sine }, 16, 4); // Sine: output is purely imaginary. Note the sign is flipped // (normally the first half of the output would have negative // sign for a sine starting at 0) because the model does an // FFT shift to centre the phase test(mwm, RectangularWindow, 8, 8, 8, 0, { { {}, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 1, { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 2, { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 3, { { {}, {}, {}, {}, {} } }, 4); releaseMock(mwm); } void cosine_simple_rect() { auto mwm = makeMock({ Cosine }, 16, 4); // Cosine: output is purely real. Note the sign is flipped // because the model does an FFT shift to centre the phase test(mwm, RectangularWindow, 8, 8, 8, 0, { { {}, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 1, { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 2, { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 3, { { {}, {}, {}, {}, {} } }, 4); releaseMock(mwm); } void twochan_simple_rect() { auto mwm = makeMock({ Sine, Cosine }, 16, 4); // Test that the two channels are read and converted separately test(mwm, RectangularWindow, 8, 8, 8, 0, { { {}, {}, {}, {}, {} }, { {}, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 1, { { {}, { 0.f, 2.f }, {}, {}, {} }, { {}, { -2.f, 0.f }, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 2, { { {}, { 0.f, 2.f }, {}, {}, {} }, { {}, { -2.f, 0.f }, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 3, { { {}, {}, {}, {}, {} }, { {}, {}, {}, {}, {} } }, 4); releaseMock(mwm); } void nyquist_simple_rect() { auto mwm = makeMock({ Nyquist }, 16, 4); // Again, the sign is flipped. This has the same amount of // energy as the DC example test(mwm, RectangularWindow, 8, 8, 8, 0, { { {}, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 1, { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 2, { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 3, { { {}, {}, {}, {}, {} } }, 4); releaseMock(mwm); } void dirac_simple_rect() { auto mwm = makeMock({ Dirac }, 16, 4); // The window scales by 0.5 and some signs are flipped. Only // column 1 has any data (the single impulse). test(mwm, RectangularWindow, 8, 8, 8, 0, { { {}, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 1, { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 2, { { {}, {}, {}, {}, {} } }, 4); test(mwm, RectangularWindow, 8, 8, 8, 3, { { {}, {}, {}, {}, {} } }, 4); releaseMock(mwm); } void dirac_simple_rect_2() { auto mwm = makeMock({ Dirac }, 16, 8); // With 8 samples padding, the FFT shift places the first // Dirac impulse at the start of column 1, thus giving all // positive values test(mwm, RectangularWindow, 8, 8, 8, 0, { { {}, {}, {}, {}, {} } }, 5); test(mwm, RectangularWindow, 8, 8, 8, 1, { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 5); test(mwm, RectangularWindow, 8, 8, 8, 2, { { {}, {}, {}, {}, {} } }, 5); test(mwm, RectangularWindow, 8, 8, 8, 3, { { {}, {}, {}, {}, {} } }, 5); test(mwm, RectangularWindow, 8, 8, 8, 4, { { {}, {}, {}, {}, {} } }, 5); releaseMock(mwm); } void dirac_simple_rect_halfoverlap() { auto mwm = makeMock({ Dirac }, 16, 4); test(mwm, RectangularWindow, 8, 4, 8, 0, { { {}, {}, {}, {}, {} } }, 7); test(mwm, RectangularWindow, 8, 4, 8, 1, { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 7); test(mwm, RectangularWindow, 8, 4, 8, 2, { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 7); test(mwm, RectangularWindow, 8, 4, 8, 3, { { {}, {}, {}, {}, {} } }, 7); releaseMock(mwm); } }; #endif