Mercurial > hg > svcore
view data/model/test/MockWaveModel.cpp @ 1086:9f4505ac9072
Tidy dense time-value model API a bit; add first simple unit test for FFT model
author | Chris Cannam |
---|---|
date | Wed, 10 Jun 2015 17:06:02 +0100 |
parents | |
children | dcf54a6964d0 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "MockWaveModel.h" using namespace std; MockWaveModel::MockWaveModel(vector<Sort> sorts, int length) { for (auto sort: sorts) { m_data.push_back(generate(sort, length)); } } sv_frame_t MockWaveModel::getData(int channel, sv_frame_t start, sv_frame_t count, float *buffer) const { sv_frame_t i = 0; cerr << "MockWaveModel::getData(" << channel << "," << start << "," << count << "): "; while (i < count) { sv_frame_t idx = start + i; if (!in_range_for(m_data[channel], idx)) break; buffer[i] = m_data[channel][idx]; cerr << buffer[i] << " "; ++i; } cerr << endl; return i; } sv_frame_t MockWaveModel::getMultiChannelData(int fromchannel, int tochannel, sv_frame_t start, sv_frame_t count, float **buffers) const { sv_frame_t min = count; for (int c = fromchannel; c <= tochannel; ++c) { sv_frame_t n = getData(c, start, count, buffers[c]); if (n < min) min = n; } return min; } vector<float> MockWaveModel::generate(Sort sort, int length) const { vector<float> data; for (int i = 0; i < length; ++i) { float v = 0.f; switch (sort) { case DC: v = 1.f; break; case Sine: v = (float)sin((2.0 * M_PI / 8.0) * i); break; case Cosine: v = (float)cos((2.0 * M_PI / 8.0) * i); break; case Nyquist: v = (i % 2) * 2 - 1; break; case Dirac: v = (i == 0) ? 1.f : 0.f; break; } data.push_back(v); } return data; }