Mercurial > hg > svcore
view data/fft/FFTMemoryCache.h @ 555:8accc7969c1c
* Some steps to avoid backward seeks in MatrixFile in common use cases
author | Chris Cannam |
---|---|
date | Mon, 09 Feb 2009 11:38:08 +0000 |
parents | 1469caaa8e67 |
children | 59e7fe1b1003 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #ifndef _FFT_MEMORY_CACHE_H_ #define _FFT_MEMORY_CACHE_H_ #include "FFTCacheReader.h" #include "FFTCacheWriter.h" #include "FFTCacheStorageType.h" #include "base/ResizeableBitset.h" #include "base/Profiler.h" #include <QReadWriteLock> /** * In-memory FFT cache. For this we want to cache magnitude with * enough resolution to have gain applied afterwards and determine * whether something is a peak or not, and also cache phase rather * than only phase-adjusted frequency so that we don't have to * recalculate if switching between phase and magnitude displays. At * the same time, we don't want to take up too much memory. It's not * expected to be accurate enough to be used as input for DSP or * resynthesis code. * * This implies probably 16 bits for a normalized magnitude and at * most 16 bits for phase. * * Each column's magnitudes are expected to be stored normalized * to [0,1] with respect to the column, so the normalization * factor should be calculated before all values in a column, and * set appropriately. */ class FFTMemoryCache : public FFTCacheReader, public FFTCacheWriter { public: FFTMemoryCache(FFTCache::StorageType storageType, size_t width, size_t height); ~FFTMemoryCache(); size_t getWidth() const { return m_width; } size_t getHeight() const { return m_height; } float getMagnitudeAt(size_t x, size_t y) const { if (m_storageType == FFTCache::Rectangular) { Profiler profiler("FFTMemoryCache::getMagnitudeAt: cart to polar"); return sqrtf(m_freal[x][y] * m_freal[x][y] + m_fimag[x][y] * m_fimag[x][y]); } else { return getNormalizedMagnitudeAt(x, y) * m_factor[x]; } } float getNormalizedMagnitudeAt(size_t x, size_t y) const { if (m_storageType == FFTCache::Rectangular) return getMagnitudeAt(x, y) / m_factor[x]; else if (m_storageType == FFTCache::Polar) return m_fmagnitude[x][y]; else return float(m_magnitude[x][y]) / 65535.0; } float getMaximumMagnitudeAt(size_t x) const { return m_factor[x]; } float getPhaseAt(size_t x, size_t y) const { if (m_storageType == FFTCache::Rectangular) { Profiler profiler("FFTMemoryCache::getValuesAt: cart to polar"); return atan2f(m_fimag[x][y], m_freal[x][y]); } else if (m_storageType == FFTCache::Polar) { return m_fphase[x][y]; } else { int16_t i = (int16_t)m_phase[x][y]; return (float(i) / 32767.0) * M_PI; } } void getValuesAt(size_t x, size_t y, float &real, float &imag) const { if (m_storageType == FFTCache::Rectangular) { real = m_freal[x][y]; imag = m_fimag[x][y]; } else { Profiler profiler("FFTMemoryCache::getValuesAt: polar to cart"); float mag = getMagnitudeAt(x, y); float phase = getPhaseAt(x, y); real = mag * cosf(phase); imag = mag * sinf(phase); } } void getMagnitudesAt(size_t x, float *values, size_t minbin, size_t count, size_t step) const { if (m_storageType == FFTCache::Rectangular) { for (size_t i = 0; i < count; ++i) { size_t y = i * step + minbin; values[i] = sqrtf(m_freal[x][y] * m_freal[x][y] + m_fimag[x][y] * m_fimag[x][y]); } } else if (m_storageType == FFTCache::Polar) { for (size_t i = 0; i < count; ++i) { size_t y = i * step + minbin; values[i] = m_fmagnitude[x][y] * m_factor[x]; } } else { for (size_t i = 0; i < count; ++i) { size_t y = i * step + minbin; values[i] = (float(m_magnitude[x][y]) * m_factor[x]) / 65535.0; } } } bool haveSetColumnAt(size_t x) const { m_colsetLock.lockForRead(); bool have = m_colset.get(x); m_colsetLock.unlock(); return have; } void setColumnAt(size_t x, float *mags, float *phases, float factor); void setColumnAt(size_t x, float *reals, float *imags); void allColumnsWritten() { } static size_t getCacheSize(size_t width, size_t height, FFTCache::StorageType type); FFTCache::StorageType getStorageType() const { return m_storageType; } private: size_t m_width; size_t m_height; uint16_t **m_magnitude; uint16_t **m_phase; float **m_fmagnitude; float **m_fphase; float **m_freal; float **m_fimag; float *m_factor; FFTCache::StorageType m_storageType; ResizeableBitset m_colset; mutable QReadWriteLock m_colsetLock; void initialise(); void setNormalizationFactor(size_t x, float factor) { if (x < m_width) m_factor[x] = factor; } void setMagnitudeAt(size_t x, size_t y, float mag) { // norm factor must already be set setNormalizedMagnitudeAt(x, y, mag / m_factor[x]); } void setNormalizedMagnitudeAt(size_t x, size_t y, float norm) { if (x < m_width && y < m_height) { if (m_storageType == FFTCache::Polar) m_fmagnitude[x][y] = norm; else m_magnitude[x][y] = uint16_t(norm * 65535.0); } } void setPhaseAt(size_t x, size_t y, float phase) { // phase in range -pi -> pi if (x < m_width && y < m_height) { if (m_storageType == FFTCache::Polar) m_fphase[x][y] = phase; else m_phase[x][y] = uint16_t(int16_t((phase * 32767) / M_PI)); } } void initialise(uint16_t **&); void initialise(float **&); }; #endif