Mercurial > hg > svcore
view plugin/transform/FeatureExtractionModelTransformer.cpp @ 374:7cc6b7b0d819 sv1-v1.2pre3
* line up overview widget nicely with main pane (at least on first startup)
* fix #1878396 renaming layer seems to have no visible effect
* comment out some debug output
author | Chris Cannam |
---|---|
date | Wed, 06 Feb 2008 17:40:53 +0000 |
parents | 4bb19132da23 |
children | 7aa1de571880 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "FeatureExtractionModelTransformer.h" #include "plugin/FeatureExtractionPluginFactory.h" #include "plugin/PluginXml.h" #include "vamp-sdk/Plugin.h" #include "data/model/Model.h" #include "base/Window.h" #include "data/model/SparseOneDimensionalModel.h" #include "data/model/SparseTimeValueModel.h" #include "data/model/EditableDenseThreeDimensionalModel.h" #include "data/model/DenseTimeValueModel.h" #include "data/model/NoteModel.h" #include "data/model/FFTModel.h" #include "data/model/WaveFileModel.h" #include "TransformFactory.h" #include <QMessageBox> #include <iostream> FeatureExtractionModelTransformer::FeatureExtractionModelTransformer(Input in, const Transform &transform) : ModelTransformer(in, transform), m_plugin(0), m_descriptor(0), m_outputFeatureNo(0) { // std::cerr << "FeatureExtractionModelTransformer::FeatureExtractionModelTransformer: plugin " << pluginId.toStdString() << ", outputName " << m_transform.getOutput().toStdString() << std::endl; QString pluginId = transform.getPluginIdentifier(); FeatureExtractionPluginFactory *factory = FeatureExtractionPluginFactory::instanceFor(pluginId); if (!factory) { m_message = tr("No factory available for feature extraction plugin id \"%1\" (unknown plugin type, or internal error?)").arg(pluginId); return; } DenseTimeValueModel *input = getConformingInput(); if (!input) { m_message = tr("Input model for feature extraction plugin \"%1\" is of wrong type (internal error?)").arg(pluginId); return; } m_plugin = factory->instantiatePlugin(pluginId, input->getSampleRate()); if (!m_plugin) { m_message = tr("Failed to instantiate plugin \"%1\"").arg(pluginId); return; } TransformFactory::getInstance()->makeContextConsistentWithPlugin (m_transform, m_plugin); TransformFactory::getInstance()->setPluginParameters (m_transform, m_plugin); size_t channelCount = input->getChannelCount(); if (m_plugin->getMaxChannelCount() < channelCount) { channelCount = 1; } if (m_plugin->getMinChannelCount() > channelCount) { m_message = tr("Cannot provide enough channels to feature extraction plugin \"%1\" (plugin min is %2, max %3; input model has %4)") .arg(pluginId) .arg(m_plugin->getMinChannelCount()) .arg(m_plugin->getMaxChannelCount()) .arg(input->getChannelCount()); return; } std::cerr << "Initialising feature extraction plugin with channels = " << channelCount << ", step = " << m_transform.getStepSize() << ", block = " << m_transform.getBlockSize() << std::endl; if (!m_plugin->initialise(channelCount, m_transform.getStepSize(), m_transform.getBlockSize())) { size_t pstep = m_transform.getStepSize(); size_t pblock = m_transform.getBlockSize(); m_transform.setStepSize(0); m_transform.setBlockSize(0); TransformFactory::getInstance()->makeContextConsistentWithPlugin (m_transform, m_plugin); if (m_transform.getStepSize() != pstep || m_transform.getBlockSize() != pblock) { if (!m_plugin->initialise(channelCount, m_transform.getStepSize(), m_transform.getBlockSize())) { m_message = tr("Failed to initialise feature extraction plugin \"%1\"").arg(pluginId); return; } else { m_message = tr("Feature extraction plugin \"%1\" rejected the given step and block sizes (%2 and %3); using plugin defaults (%4 and %5) instead") .arg(pluginId) .arg(pstep) .arg(pblock) .arg(m_transform.getStepSize()) .arg(m_transform.getBlockSize()); } } else { m_message = tr("Failed to initialise feature extraction plugin \"%1\"").arg(pluginId); return; } } if (m_transform.getPluginVersion() != "") { QString pv = QString("%1").arg(m_plugin->getPluginVersion()); if (pv != m_transform.getPluginVersion()) { QString vm = tr("Transform was configured for version %1 of plugin \"%2\", but the plugin being used is version %3") .arg(m_transform.getPluginVersion()) .arg(pluginId) .arg(pv); if (m_message != "") { m_message = QString("%1; %2").arg(vm).arg(m_message); } else { m_message = vm; } } } Vamp::Plugin::OutputList outputs = m_plugin->getOutputDescriptors(); if (outputs.empty()) { m_message = tr("Plugin \"%1\" has no outputs").arg(pluginId); return; } for (size_t i = 0; i < outputs.size(); ++i) { if (m_transform.getOutput() == "" || outputs[i].identifier == m_transform.getOutput().toStdString()) { m_outputFeatureNo = i; m_descriptor = new Vamp::Plugin::OutputDescriptor (outputs[i]); break; } } if (!m_descriptor) { m_message = tr("Plugin \"%1\" has no output named \"%2\"") .arg(pluginId) .arg(m_transform.getOutput()); return; } // std::cerr << "FeatureExtractionModelTransformer: output sample type " // << m_descriptor->sampleType << std::endl; int binCount = 1; float minValue = 0.0, maxValue = 0.0; bool haveExtents = false; if (m_descriptor->hasFixedBinCount) { binCount = m_descriptor->binCount; } // std::cerr << "FeatureExtractionModelTransformer: output bin count " // << binCount << std::endl; if (binCount > 0 && m_descriptor->hasKnownExtents) { minValue = m_descriptor->minValue; maxValue = m_descriptor->maxValue; haveExtents = true; } size_t modelRate = input->getSampleRate(); size_t modelResolution = 1; switch (m_descriptor->sampleType) { case Vamp::Plugin::OutputDescriptor::VariableSampleRate: if (m_descriptor->sampleRate != 0.0) { modelResolution = size_t(modelRate / m_descriptor->sampleRate + 0.001); } break; case Vamp::Plugin::OutputDescriptor::OneSamplePerStep: modelResolution = m_transform.getStepSize(); break; case Vamp::Plugin::OutputDescriptor::FixedSampleRate: modelRate = size_t(m_descriptor->sampleRate + 0.001); break; } if (binCount == 0) { m_output = new SparseOneDimensionalModel(modelRate, modelResolution, false); } else if (binCount == 1) { SparseTimeValueModel *model; if (haveExtents) { model = new SparseTimeValueModel (modelRate, modelResolution, minValue, maxValue, false); } else { model = new SparseTimeValueModel (modelRate, modelResolution, false); } model->setScaleUnits(outputs[m_outputFeatureNo].unit.c_str()); m_output = model; } else if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::VariableSampleRate) { // We don't have a sparse 3D model, so interpret this as a // note model. There's nothing to define which values to use // as which parameters of the note -- for the moment let's // treat the first as pitch, second as duration in frames, // third (if present) as velocity. (Our note model doesn't // yet store velocity.) //!!! todo: ask the user! NoteModel *model; if (haveExtents) { model = new NoteModel (modelRate, modelResolution, minValue, maxValue, false); } else { model = new NoteModel (modelRate, modelResolution, false); } model->setScaleUnits(outputs[m_outputFeatureNo].unit.c_str()); m_output = model; } else { EditableDenseThreeDimensionalModel *model = new EditableDenseThreeDimensionalModel (modelRate, modelResolution, binCount, false); if (!m_descriptor->binNames.empty()) { std::vector<QString> names; for (size_t i = 0; i < m_descriptor->binNames.size(); ++i) { names.push_back(m_descriptor->binNames[i].c_str()); } model->setBinNames(names); } m_output = model; } if (m_output) m_output->setSourceModel(input); } FeatureExtractionModelTransformer::~FeatureExtractionModelTransformer() { std::cerr << "FeatureExtractionModelTransformer::~FeatureExtractionModelTransformer()" << std::endl; delete m_plugin; delete m_descriptor; } DenseTimeValueModel * FeatureExtractionModelTransformer::getConformingInput() { DenseTimeValueModel *dtvm = dynamic_cast<DenseTimeValueModel *>(getInputModel()); if (!dtvm) { std::cerr << "FeatureExtractionModelTransformer::getConformingInput: WARNING: Input model is not conformable to DenseTimeValueModel" << std::endl; } return dtvm; } void FeatureExtractionModelTransformer::run() { DenseTimeValueModel *input = getConformingInput(); if (!input) return; if (!m_output) return; while (!input->isReady()) { /* if (dynamic_cast<WaveFileModel *>(input)) { std::cerr << "FeatureExtractionModelTransformer::run: Model is not ready, but it's not a WaveFileModel (it's a " << typeid(input).name() << "), so that's OK" << std::endl; sleep(2); break; // no need to wait } */ std::cerr << "FeatureExtractionModelTransformer::run: Waiting for input model to be ready..." << std::endl; sleep(1); } size_t sampleRate = input->getSampleRate(); size_t channelCount = input->getChannelCount(); if (m_plugin->getMaxChannelCount() < channelCount) { channelCount = 1; } float **buffers = new float*[channelCount]; for (size_t ch = 0; ch < channelCount; ++ch) { buffers[ch] = new float[m_transform.getBlockSize() + 2]; } size_t stepSize = m_transform.getStepSize(); size_t blockSize = m_transform.getBlockSize(); bool frequencyDomain = (m_plugin->getInputDomain() == Vamp::Plugin::FrequencyDomain); std::vector<FFTModel *> fftModels; if (frequencyDomain) { for (size_t ch = 0; ch < channelCount; ++ch) { FFTModel *model = new FFTModel (getConformingInput(), channelCount == 1 ? m_input.getChannel() : ch, m_transform.getWindowType(), blockSize, stepSize, blockSize, false, StorageAdviser::PrecisionCritical); if (!model->isOK()) { QMessageBox::critical (0, tr("FFT cache failed"), tr("Failed to create the FFT model for this transform.\n" "There may be insufficient memory or disc space to continue.")); delete model; setCompletion(100); return; } model->resume(); fftModels.push_back(model); } } long startFrame = m_input.getModel()->getStartFrame(); long endFrame = m_input.getModel()->getEndFrame(); RealTime contextStartRT = m_transform.getStartTime(); RealTime contextDurationRT = m_transform.getDuration(); long contextStart = RealTime::realTime2Frame(contextStartRT, sampleRate); long contextDuration = RealTime::realTime2Frame(contextDurationRT, sampleRate); if (contextStart == 0 || contextStart < startFrame) { contextStart = startFrame; } if (contextDuration == 0) { contextDuration = endFrame - contextStart; } if (contextStart + contextDuration > endFrame) { contextDuration = endFrame - contextStart; } long blockFrame = contextStart; long prevCompletion = 0; setCompletion(0); while (!m_abandoned) { if (frequencyDomain) { if (blockFrame - int(blockSize)/2 > contextStart + contextDuration) break; } else { if (blockFrame >= contextStart + contextDuration) break; } // std::cerr << "FeatureExtractionModelTransformer::run: blockFrame " // << blockFrame << ", endFrame " << endFrame << ", blockSize " // << blockSize << std::endl; long completion = (((blockFrame - contextStart) / stepSize) * 99) / (contextDuration / stepSize); // channelCount is either m_input.getModel()->channelCount or 1 if (frequencyDomain) { for (size_t ch = 0; ch < channelCount; ++ch) { int column = (blockFrame - startFrame) / stepSize; for (size_t i = 0; i <= blockSize/2; ++i) { fftModels[ch]->getValuesAt (column, i, buffers[ch][i*2], buffers[ch][i*2+1]); } } } else { getFrames(channelCount, blockFrame, blockSize, buffers); } Vamp::Plugin::FeatureSet features = m_plugin->process (buffers, Vamp::RealTime::frame2RealTime(blockFrame, sampleRate)); for (size_t fi = 0; fi < features[m_outputFeatureNo].size(); ++fi) { Vamp::Plugin::Feature feature = features[m_outputFeatureNo][fi]; addFeature(blockFrame, feature); } if (blockFrame == contextStart || completion > prevCompletion) { setCompletion(completion); prevCompletion = completion; } blockFrame += stepSize; } if (m_abandoned) return; Vamp::Plugin::FeatureSet features = m_plugin->getRemainingFeatures(); for (size_t fi = 0; fi < features[m_outputFeatureNo].size(); ++fi) { Vamp::Plugin::Feature feature = features[m_outputFeatureNo][fi]; addFeature(blockFrame, feature); } if (frequencyDomain) { for (size_t ch = 0; ch < channelCount; ++ch) { delete fftModels[ch]; } } setCompletion(100); } void FeatureExtractionModelTransformer::getFrames(int channelCount, long startFrame, long size, float **buffers) { long offset = 0; if (startFrame < 0) { for (int c = 0; c < channelCount; ++c) { for (int i = 0; i < size && startFrame + i < 0; ++i) { buffers[c][i] = 0.0f; } } offset = -startFrame; size -= offset; if (size <= 0) return; startFrame = 0; } DenseTimeValueModel *input = getConformingInput(); if (!input) return; long got = 0; if (channelCount == 1) { got = input->getData(m_input.getChannel(), startFrame, size, buffers[0] + offset); if (m_input.getChannel() == -1 && input->getChannelCount() > 1) { // use mean instead of sum, as plugin input float cc = float(input->getChannelCount()); for (long i = 0; i < size; ++i) { buffers[0][i + offset] /= cc; } } } else { float **writebuf = buffers; if (offset > 0) { writebuf = new float *[channelCount]; for (int i = 0; i < channelCount; ++i) { writebuf[i] = buffers[i] + offset; } } got = input->getData(0, channelCount-1, startFrame, size, writebuf); if (writebuf != buffers) delete[] writebuf; } while (got < size) { for (int c = 0; c < channelCount; ++c) { buffers[c][got + offset] = 0.0; } ++got; } } void FeatureExtractionModelTransformer::addFeature(size_t blockFrame, const Vamp::Plugin::Feature &feature) { size_t inputRate = m_input.getModel()->getSampleRate(); // std::cerr << "FeatureExtractionModelTransformer::addFeature(" // << blockFrame << ")" << std::endl; int binCount = 1; if (m_descriptor->hasFixedBinCount) { binCount = m_descriptor->binCount; } size_t frame = blockFrame; if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::VariableSampleRate) { if (!feature.hasTimestamp) { std::cerr << "WARNING: FeatureExtractionModelTransformer::addFeature: " << "Feature has variable sample rate but no timestamp!" << std::endl; return; } else { frame = Vamp::RealTime::realTime2Frame(feature.timestamp, inputRate); } } else if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::FixedSampleRate) { if (feature.hasTimestamp) { //!!! warning: sampleRate may be non-integral frame = Vamp::RealTime::realTime2Frame(feature.timestamp, lrintf(m_descriptor->sampleRate)); } else { frame = m_output->getEndFrame(); } } if (binCount == 0) { SparseOneDimensionalModel *model = getConformingOutput<SparseOneDimensionalModel>(); if (!model) return; model->addPoint(SparseOneDimensionalModel::Point(frame, feature.label.c_str())); } else if (binCount == 1) { float value = 0.0; if (feature.values.size() > 0) value = feature.values[0]; SparseTimeValueModel *model = getConformingOutput<SparseTimeValueModel>(); if (!model) return; model->addPoint(SparseTimeValueModel::Point(frame, value, feature.label.c_str())); // std::cerr << "SparseTimeValueModel::addPoint(" << frame << ", " << value << "), " << feature.label.c_str() << std::endl; } else if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::VariableSampleRate) { float pitch = 0.0; if (feature.values.size() > 0) pitch = feature.values[0]; float duration = 1; if (feature.values.size() > 1) duration = feature.values[1]; float velocity = 100; if (feature.values.size() > 2) velocity = feature.values[2]; if (velocity < 0) velocity = 127; if (velocity > 127) velocity = 127; NoteModel *model = getConformingOutput<NoteModel>(); if (!model) return; model->addPoint(NoteModel::Point(frame, pitch, lrintf(duration), velocity / 127.f, feature.label.c_str())); } else { DenseThreeDimensionalModel::Column values = feature.values; EditableDenseThreeDimensionalModel *model = getConformingOutput<EditableDenseThreeDimensionalModel>(); if (!model) return; model->setColumn(frame / model->getResolution(), values); } } void FeatureExtractionModelTransformer::setCompletion(int completion) { int binCount = 1; if (m_descriptor->hasFixedBinCount) { binCount = m_descriptor->binCount; } // std::cerr << "FeatureExtractionModelTransformer::setCompletion(" // << completion << ")" << std::endl; if (binCount == 0) { SparseOneDimensionalModel *model = getConformingOutput<SparseOneDimensionalModel>(); if (!model) return; model->setCompletion(completion, true); //!!!m_context.updates); } else if (binCount == 1) { SparseTimeValueModel *model = getConformingOutput<SparseTimeValueModel>(); if (!model) return; model->setCompletion(completion, true); //!!!m_context.updates); } else if (m_descriptor->sampleType == Vamp::Plugin::OutputDescriptor::VariableSampleRate) { NoteModel *model = getConformingOutput<NoteModel>(); if (!model) return; model->setCompletion(completion, true); //!!!m_context.updates); } else { EditableDenseThreeDimensionalModel *model = getConformingOutput<EditableDenseThreeDimensionalModel>(); if (!model) return; model->setCompletion(completion, true); //!!!m_context.updates); } }