Mercurial > hg > svcore
view base/EventSeries.cpp @ 1693:718ce5fb9fec single-point
Merge
author | Chris Cannam |
---|---|
date | Thu, 25 Apr 2019 11:30:51 +0100 |
parents | 0d89abd631ac |
children | ff8c57c364a0 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "EventSeries.h" EventSeries EventSeries::fromEvents(const EventVector &v) { EventSeries s; for (const auto &e: v) { s.add(e); } return s; } bool EventSeries::isEmpty() const { return m_events.empty(); } int EventSeries::count() const { if (m_events.size() > INT_MAX) { throw std::logic_error("too many events"); } return int(m_events.size()); } void EventSeries::add(const Event &p) { bool isUnique = true; auto pitr = lower_bound(m_events.begin(), m_events.end(), p); if (pitr != m_events.end() && *pitr == p) { isUnique = false; } m_events.insert(pitr, p); if (!p.hasDuration() && p.getFrame() > m_finalDurationlessEventFrame) { m_finalDurationlessEventFrame = p.getFrame(); } if (p.hasDuration() && isUnique) { const sv_frame_t frame = p.getFrame(); const sv_frame_t endFrame = p.getFrame() + p.getDuration(); createSeam(frame); createSeam(endFrame); // These calls must both succeed after calling createSeam above const auto i0 = m_seams.find(frame); const auto i1 = m_seams.find(endFrame); for (auto i = i0; i != i1; ++i) { if (i == m_seams.end()) { SVCERR << "ERROR: EventSeries::add: " << "reached end of seam map" << endl; break; } i->second.push_back(p); } } #ifdef DEBUG_EVENT_SERIES std::cerr << "after add:" << std::endl; dumpEvents(); dumpSeams(); #endif } void EventSeries::remove(const Event &p) { // If we are removing the last (unique) example of an event, // then we also need to remove it from the seam map. If this // is only one of multiple identical events, then we don't. bool isUnique = true; auto pitr = lower_bound(m_events.begin(), m_events.end(), p); if (pitr == m_events.end() || *pitr != p) { // we don't know this event return; } else { auto nitr = pitr; ++nitr; if (nitr != m_events.end() && *nitr == p) { isUnique = false; } } m_events.erase(pitr); if (!p.hasDuration() && isUnique && p.getFrame() == m_finalDurationlessEventFrame) { m_finalDurationlessEventFrame = 0; for (auto ritr = m_events.rbegin(); ritr != m_events.rend(); ++ritr) { if (!ritr->hasDuration()) { m_finalDurationlessEventFrame = ritr->getFrame(); break; } } } if (p.hasDuration() && isUnique) { const sv_frame_t frame = p.getFrame(); const sv_frame_t endFrame = p.getFrame() + p.getDuration(); const auto i0 = m_seams.find(frame); const auto i1 = m_seams.find(endFrame); #ifdef DEBUG_EVENT_SERIES // This should be impossible if we found p in m_events above if (i0 == m_seams.end() || i1 == m_seams.end()) { SVCERR << "ERROR: EventSeries::remove: either frame " << frame << " or endFrame " << endFrame << " for event not found in seam map: event is " << p.toXmlString() << endl; } #endif // Remove any and all instances of p from the seam map; we // are only supposed to get here if we are removing the // last instance of p from the series anyway for (auto i = i0; i != i1; ++i) { if (i == m_seams.end()) { // This can happen only if we have a negative // duration, which Event forbids throw std::logic_error("unexpectedly reached end of map"); } for (size_t j = 0; j < i->second.size(); ) { if (i->second[j] == p) { i->second.erase(i->second.begin() + j); } else { ++j; } } } // Tidy up by removing any entries that are now identical // to their predecessors std::vector<sv_frame_t> redundant; auto pitr = m_seams.end(); if (i0 != m_seams.begin()) { pitr = i0; --pitr; } for (auto i = i0; i != m_seams.end(); ++i) { if (pitr != m_seams.end() && seamsEqual(i->second, pitr->second)) { redundant.push_back(i->first); } pitr = i; if (i == i1) { break; } } for (sv_frame_t f: redundant) { m_seams.erase(f); } // And remove any empty seams from the start of the map while (m_seams.begin() != m_seams.end() && m_seams.begin()->second.empty()) { m_seams.erase(m_seams.begin()); } } #ifdef DEBUG_EVENT_SERIES std::cerr << "after remove:" << std::endl; dumpEvents(); dumpSeams(); #endif } bool EventSeries::contains(const Event &p) const { return binary_search(m_events.begin(), m_events.end(), p); } void EventSeries::clear() { m_events.clear(); m_seams.clear(); m_finalDurationlessEventFrame = 0; } sv_frame_t EventSeries::getStartFrame() const { if (m_events.empty()) return 0; return m_events.begin()->getFrame(); } sv_frame_t EventSeries::getEndFrame() const { sv_frame_t latest = 0; if (m_events.empty()) return latest; latest = m_finalDurationlessEventFrame; if (m_seams.empty()) return latest; sv_frame_t lastSeam = m_seams.rbegin()->first; if (lastSeam > latest) { latest = lastSeam; } return latest; } EventVector EventSeries::getEventsSpanning(sv_frame_t frame, sv_frame_t duration) const { EventVector span; const sv_frame_t start = frame; const sv_frame_t end = frame + duration; // first find any zero-duration events auto pitr = lower_bound(m_events.begin(), m_events.end(), Event(start)); while (pitr != m_events.end() && pitr->getFrame() < end) { if (!pitr->hasDuration()) { span.push_back(*pitr); } ++pitr; } // now any non-zero-duration ones from the seam map std::set<Event> found; auto sitr = m_seams.lower_bound(start); if (sitr == m_seams.end() || sitr->first > start) { if (sitr != m_seams.begin()) { --sitr; } } while (sitr != m_seams.end() && sitr->first < end) { for (const auto &p: sitr->second) { found.insert(p); } ++sitr; } for (const auto &p: found) { auto pitr = lower_bound(m_events.begin(), m_events.end(), p); while (pitr != m_events.end() && *pitr == p) { span.push_back(p); ++pitr; } } return span; } EventVector EventSeries::getEventsWithin(sv_frame_t frame, sv_frame_t duration, int overspill) const { EventVector span; const sv_frame_t start = frame; const sv_frame_t end = frame + duration; // because we don't need to "look back" at events that end within // but started without, we can do this entirely from m_events. // The core operation is very simple, it's just overspill that // complicates it. Events::const_iterator reference = lower_bound(m_events.begin(), m_events.end(), Event(start)); Events::const_iterator first = reference; for (int i = 0; i < overspill; ++i) { if (first == m_events.begin()) break; --first; } for (int i = 0; i < overspill; ++i) { if (first == reference) break; span.push_back(*first); ++first; } Events::const_iterator pitr = reference; Events::const_iterator last = reference; while (pitr != m_events.end() && pitr->getFrame() < end) { if (!pitr->hasDuration() || (pitr->getFrame() + pitr->getDuration() <= end)) { span.push_back(*pitr); last = pitr; ++last; } ++pitr; } for (int i = 0; i < overspill; ++i) { if (last == m_events.end()) break; span.push_back(*last); ++last; } return span; } EventVector EventSeries::getEventsStartingWithin(sv_frame_t frame, sv_frame_t duration) const { EventVector span; const sv_frame_t start = frame; const sv_frame_t end = frame + duration; // because we don't need to "look back" at events that started // earlier than the start of the given range, we can do this // entirely from m_events auto pitr = lower_bound(m_events.begin(), m_events.end(), Event(start)); while (pitr != m_events.end() && pitr->getFrame() < end) { span.push_back(*pitr); ++pitr; } return span; } EventVector EventSeries::getEventsCovering(sv_frame_t frame) const { EventVector cover; // first find any zero-duration events auto pitr = lower_bound(m_events.begin(), m_events.end(), Event(frame)); while (pitr != m_events.end() && pitr->getFrame() == frame) { if (!pitr->hasDuration()) { cover.push_back(*pitr); } ++pitr; } // now any non-zero-duration ones from the seam map std::set<Event> found; auto sitr = m_seams.lower_bound(frame); if (sitr == m_seams.end() || sitr->first > frame) { if (sitr != m_seams.begin()) { --sitr; } } if (sitr != m_seams.end() && sitr->first <= frame) { for (const auto &p: sitr->second) { found.insert(p); } ++sitr; } for (const auto &p: found) { auto pitr = lower_bound(m_events.begin(), m_events.end(), p); while (pitr != m_events.end() && *pitr == p) { cover.push_back(p); ++pitr; } } return cover; } EventVector EventSeries::getAllEvents() const { return m_events; } bool EventSeries::getEventPreceding(const Event &e, Event &preceding) const { auto pitr = lower_bound(m_events.begin(), m_events.end(), e); if (pitr == m_events.end() || *pitr != e) { return false; } if (pitr == m_events.begin()) { return false; } --pitr; preceding = *pitr; return true; } bool EventSeries::getEventFollowing(const Event &e, Event &following) const { auto pitr = lower_bound(m_events.begin(), m_events.end(), e); if (pitr == m_events.end() || *pitr != e) { return false; } while (*pitr == e) { ++pitr; if (pitr == m_events.end()) { return false; } } following = *pitr; return true; } bool EventSeries::getNearestEventMatching(sv_frame_t startSearchAt, std::function<bool(const Event &)> predicate, Direction direction, Event &found) const { auto pitr = lower_bound(m_events.begin(), m_events.end(), Event(startSearchAt)); while (true) { if (direction == Backward) { if (pitr == m_events.begin()) { break; } else { --pitr; } } else { if (pitr == m_events.end()) { break; } } const Event &e = *pitr; if (predicate(e)) { found = e; return true; } if (direction == Forward) { ++pitr; } } return false; } Event EventSeries::getEventByIndex(int index) const { if (index < 0 || index >= count()) { throw std::logic_error("index out of range"); } return m_events[index]; } int EventSeries::getIndexForEvent(const Event &e) const { auto pitr = lower_bound(m_events.begin(), m_events.end(), e); auto d = distance(m_events.begin(), pitr); if (d < 0 || d > INT_MAX) return 0; return int(d); } void EventSeries::toXml(QTextStream &out, QString indent, QString extraAttributes) const { toXml(out, indent, extraAttributes, Event::ExportNameOptions()); } void EventSeries::toXml(QTextStream &out, QString indent, QString extraAttributes, Event::ExportNameOptions options) const { out << indent << QString("<dataset id=\"%1\" %2>\n") .arg(getExportId()) .arg(extraAttributes); for (const auto &p: m_events) { p.toXml(out, indent + " ", "", options); } out << indent << "</dataset>\n"; } QString EventSeries::toDelimitedDataString(QString delimiter, DataExportOptions options, sv_frame_t startFrame, sv_frame_t duration, sv_samplerate_t sampleRate, sv_frame_t resolution, Event fillEvent) const { QString s; const sv_frame_t end = startFrame + duration; auto pitr = lower_bound(m_events.begin(), m_events.end(), Event(startFrame)); if (!(options & DataExportFillGaps)) { while (pitr != m_events.end() && pitr->getFrame() < end) { s += pitr->toDelimitedDataString(delimiter, options, sampleRate); s += "\n"; ++pitr; } } else { // find frame time of first point in range (if any) sv_frame_t first = startFrame; if (pitr != m_events.end()) { first = pitr->getFrame(); } // project back to first frame time in range according to // resolution. e.g. if f0 = 2, first = 9, resolution = 4 then // we start at 5 (because 1 is too early and we need to arrive // at 9 to match the first actual point). This method is // stupid but easy to understand: sv_frame_t f = first; while (f >= startFrame + resolution) f -= resolution; // now progress, either writing the next point (if within // distance) or a default fill point while (f < end) { if (pitr != m_events.end() && pitr->getFrame() <= f) { s += pitr->toDelimitedDataString (delimiter, options & ~DataExportFillGaps, sampleRate); ++pitr; } else { s += fillEvent.withFrame(f).toDelimitedDataString (delimiter, options & ~DataExportFillGaps, sampleRate); } s += "\n"; f += resolution; } } return s; }