view data/fileio/FFTFileCache.cpp @ 167:665342c6ec57

* Add a bit of resistance to pane dragging so as to make it harder to inadvertently drag in the other axis from the one you intended
author Chris Cannam
date Fri, 22 Sep 2006 16:46:10 +0000
parents 1a42221a1522
children
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 Chris Cannam.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "FFTFileCache.h"

#include "MatrixFile.h"

#include "base/Profiler.h"

#include <iostream>

#include <QMutexLocker>

// The underlying matrix has height (m_height * 2 + 1).  In each
// column we store magnitude at [0], [2] etc and phase at [1], [3]
// etc, and then store the normalization factor (maximum magnitude) at
// [m_height * 2].

FFTFileCache::FFTFileCache(QString fileBase, MatrixFile::Mode mode,
                           StorageType storageType) :
    m_writebuf(0),
    m_readbuf(0),
    m_readbufCol(0),
    m_readbufWidth(0),
    m_mfc(new MatrixFile
          (fileBase, mode, 
           storageType == Compact ? sizeof(uint16_t) : sizeof(float),
           mode == MatrixFile::ReadOnly)),
    m_storageType(storageType)
{
    std::cerr << "FFTFileCache: storage type is " << (storageType == Compact ? "Compact" : storageType == Polar ? "Polar" : "Rectangular") << std::endl;
}

FFTFileCache::~FFTFileCache()
{
    if (m_readbuf) delete[] m_readbuf;
    if (m_writebuf) delete[] m_writebuf;
    delete m_mfc;
}

size_t
FFTFileCache::getWidth() const
{
    return m_mfc->getWidth();
}

size_t
FFTFileCache::getHeight() const
{
    size_t mh = m_mfc->getHeight();
    if (mh > 0) return (mh - 1) / 2;
    else return 0;
}

void
FFTFileCache::resize(size_t width, size_t height)
{
    QMutexLocker locker(&m_writeMutex);

    m_mfc->resize(width, height * 2 + 1);
    if (m_readbuf) {
        delete[] m_readbuf;
        m_readbuf = 0;
    }
    if (m_writebuf) {
        delete[] m_writebuf;
    }
    m_writebuf = new char[(height * 2 + 1) * m_mfc->getCellSize()];
}

void
FFTFileCache::reset()
{
    m_mfc->reset();
}

float
FFTFileCache::getMagnitudeAt(size_t x, size_t y) const
{
    float value = 0.f;

    switch (m_storageType) {

    case Compact:
        value = (getFromReadBufCompactUnsigned(x, y * 2) / 65535.0)
            * getNormalizationFactor(x);
        break;

    case Rectangular:
    {
        float real, imag;
        getValuesAt(x, y, real, imag);
        value = sqrtf(real * real + imag * imag);
        break;
    }

    case Polar:
        value = getFromReadBufStandard(x, y * 2);
        break;
    }

    return value;
}

float
FFTFileCache::getNormalizedMagnitudeAt(size_t x, size_t y) const
{
    float value = 0.f;

    switch (m_storageType) {

    case Compact:
        value = getFromReadBufCompactUnsigned(x, y * 2) / 65535.0;
        break;

    default:
    {
        float mag = getMagnitudeAt(x, y);
        float factor = getNormalizationFactor(x);
        if (factor != 0) value = mag / factor;
        else value = 0.f;
        break;
    }
    }

    return value;
}

float
FFTFileCache::getMaximumMagnitudeAt(size_t x) const
{
    return getNormalizationFactor(x);
}

float
FFTFileCache::getPhaseAt(size_t x, size_t y) const
{
    float value = 0.f;
    
    switch (m_storageType) {

    case Compact:
        value = (getFromReadBufCompactSigned(x, y * 2 + 1) / 32767.0) * M_PI;
        break;

    case Rectangular:
    {
        float real, imag;
        getValuesAt(x, y, real, imag);
        value = princargf(atan2f(imag, real));
        break;
    }

    case Polar:
        value = getFromReadBufStandard(x, y * 2 + 1);
        break;
    }

    return value;
}

void
FFTFileCache::getValuesAt(size_t x, size_t y, float &real, float &imag) const
{
    switch (m_storageType) {

    case Rectangular:
        real = getFromReadBufStandard(x, y * 2);
        imag = getFromReadBufStandard(x, y * 2 + 1);
        return;

    default:
        float mag = getMagnitudeAt(x, y);
        float phase = getPhaseAt(x, y);
        real = mag * cosf(phase);
        imag = mag * sinf(phase);
        return;
    }
}

bool
FFTFileCache::haveSetColumnAt(size_t x) const
{
    return m_mfc->haveSetColumnAt(x);
}

void
FFTFileCache::setColumnAt(size_t x, float *mags, float *phases, float factor)
{
    QMutexLocker locker(&m_writeMutex);

    size_t h = getHeight();

    switch (m_storageType) {

    case Compact:
        for (size_t y = 0; y < h; ++y) {
            ((uint16_t *)m_writebuf)[y * 2] = uint16_t((mags[y] / factor) * 65535.0);
            ((uint16_t *)m_writebuf)[y * 2 + 1] = uint16_t(int16_t((phases[y] * 32767) / M_PI));
        }
        break;

    case Rectangular:
        for (size_t y = 0; y < h; ++y) {
            ((float *)m_writebuf)[y * 2] = mags[y] * cosf(phases[y]);
            ((float *)m_writebuf)[y * 2 + 1] = mags[y] * sinf(phases[y]);
        }
        break;

    case Polar:
        for (size_t y = 0; y < h; ++y) {
            ((float *)m_writebuf)[y * 2] = mags[y];
            ((float *)m_writebuf)[y * 2 + 1] = phases[y];
        }
        break;
    }

    static float maxFactor = 0;
    if (factor > maxFactor) maxFactor = factor;
//    std::cerr << "Normalization factor: " << factor << ", max " << maxFactor << " (height " << getHeight() << ")" << std::endl;

    if (m_storageType == Compact) {
        ((uint16_t *)m_writebuf)[h * 2] = factor * 65535.0;
    } else {
        ((float *)m_writebuf)[h * 2] = factor;
    }
    m_mfc->setColumnAt(x, m_writebuf);
}

void
FFTFileCache::setColumnAt(size_t x, float *real, float *imag)
{
    QMutexLocker locker(&m_writeMutex);

    size_t h = getHeight();

    float max = 0.0f;

    switch (m_storageType) {

    case Compact:
        for (size_t y = 0; y < h; ++y) {
            float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]);
            if (mag > max) max = mag;
        }
        for (size_t y = 0; y < h; ++y) {
            float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]);
            float phase = princargf(atan2f(imag[y], real[y]));
            ((uint16_t *)m_writebuf)[y * 2] = uint16_t((mag / max) * 65535.0);
            ((uint16_t *)m_writebuf)[y * 2 + 1] = uint16_t(int16_t((phase * 32767) / M_PI));
        }
        break;

    case Rectangular:
        for (size_t y = 0; y < h; ++y) {
            ((float *)m_writebuf)[y * 2] = real[y];
            ((float *)m_writebuf)[y * 2 + 1] = imag[y];
            float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]);
            if (mag > max) max = mag;
        }
        break;

    case Polar:
        for (size_t y = 0; y < h; ++y) {
            float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]);
            if (mag > max) max = mag;
            ((float *)m_writebuf)[y * 2] = mag;
            ((float *)m_writebuf)[y * 2 + 1] = princargf(atan2f(imag[y], real[y]));
        }
        break;
    }

    ((float *)m_writebuf)[h * 2] = max;
    m_mfc->setColumnAt(x, m_writebuf);
}