view base/Window.h @ 184:5a916fee6d2d

* Handle generator transforms (plugins whose channel count isn't dependent on number of audio inputs, as they have none) * Be less keen to suspend writing FFT data in spectrogram repaint -- only do it if we find we actually need to query the FFT data (i.e. we aren't repainting an area that hasn't been generated at all yet)
author Chris Cannam
date Tue, 10 Oct 2006 19:04:57 +0000
parents 3fe6660f8fe2
children 524bcd89743b
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 Chris Cannam.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#ifndef _WINDOW_H_
#define _WINDOW_H_

#include <cmath>
#include <iostream>
#include <map>

enum WindowType {
    RectangularWindow,
    BartlettWindow,
    HammingWindow,
    HanningWindow,
    BlackmanWindow,
    GaussianWindow,
    ParzenWindow,
    NuttallWindow,
    BlackmanHarrisWindow
};

template <typename T>
class Window
{
public:
    /**
     * Construct a windower of the given type.
     */
    Window(WindowType type, size_t size) : m_type(type), m_size(size) { encache(); }
    Window(const Window &w) : m_type(w.m_type), m_size(w.m_size) { encache(); }
    Window &operator=(const Window &w) {
	if (&w == this) return *this;
	m_type = w.m_type;
	m_size = w.m_size;
	encache();
	return *this;
    }
    virtual ~Window() { delete[] m_cache; }
    
    void cut(T *src) const { cut(src, src); }
    void cut(T *src, T *dst) const {
	for (size_t i = 0; i < m_size; ++i) dst[i] = src[i] * m_cache[i];
    }

    T getArea() { return m_area; }
    T getValue(size_t i) { return m_cache[i]; }

    WindowType getType() const { return m_type; }
    size_t getSize() const { return m_size; }

protected:
    WindowType m_type;
    size_t m_size;
    T *m_cache;
    T m_area;
    
    void encache();
    void cosinewin(T *, T, T, T, T);
};

template <typename T>
void Window<T>::encache()
{
    int n = int(m_size);
    T *mult = new T[n];
    int i;
    for (i = 0; i < n; ++i) mult[i] = 1.0;

    switch (m_type) {
		
    case RectangularWindow:
	for (i = 0; i < n; ++i) {
	    mult[i] *= 0.5;
	}
	break;
	    
    case BartlettWindow:
	for (i = 0; i < n/2; ++i) {
	    mult[i] *= (i / T(n/2));
	    mult[i + n/2] *= (1.0 - (i / T(n/2)));
	}
	break;
	    
    case HammingWindow:
        cosinewin(mult, 0.54, 0.46, 0.0, 0.0);
	break;
	    
    case HanningWindow:
        cosinewin(mult, 0.50, 0.50, 0.0, 0.0);
	break;
	    
    case BlackmanWindow:
        cosinewin(mult, 0.42, 0.50, 0.08, 0.0);
	break;
	    
    case GaussianWindow:
	for (i = 0; i < n; ++i) {
            mult[i] *= pow(2, - pow((i - (n-1)/2.0) / ((n-1)/2.0 / 3), 2));
	}
	break;
	    
    case ParzenWindow:
    {
        int N = n-1;
        for (i = 0; i < N/4; ++i) {
            T m = 2 * pow(1.0 - (T(N)/2 - i) / (T(N)/2), 3);
            mult[i] *= m;
            mult[N-i] *= m;
        }
        for (i = N/4; i <= N/2; ++i) {
            int wn = i - N/2;
            T m = 1.0 - 6 * pow(wn / (T(N)/2), 2) * (1.0 - abs(wn) / (T(N)/2));
            mult[i] *= m;
            mult[N-i] *= m;
        }            
        break;
    }

    case NuttallWindow:
        cosinewin(mult, 0.3635819, 0.4891775, 0.1365995, 0.0106411);
	break;

    case BlackmanHarrisWindow:
        cosinewin(mult, 0.35875, 0.48829, 0.14128, 0.01168);
        break;
    }
	
    m_cache = mult;

    m_area = 0;
    for (int i = 0; i < n; ++i) {
        m_area += m_cache[i];
    }
    m_area /= n;
}

template <typename T>
void Window<T>::cosinewin(T *mult, T a0, T a1, T a2, T a3)
{
    int n = int(m_size);
    for (int i = 0; i < n; ++i) {
        mult[i] *= (a0
                    - a1 * cos(2 * M_PI * i / n)
                    + a2 * cos(4 * M_PI * i / n)
                    - a3 * cos(6 * M_PI * i / n));
    }
}

#endif