view base/RealTime.cpp @ 184:5a916fee6d2d

* Handle generator transforms (plugins whose channel count isn't dependent on number of audio inputs, as they have none) * Be less keen to suspend writing FFT data in spectrogram repaint -- only do it if we find we actually need to query the FFT data (i.e. we aren't repainting an area that hasn't been generated at all yet)
author Chris Cannam
date Tue, 10 Oct 2006 19:04:57 +0000
parents 146eb9e35baa
children 21b9b25bff48
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

/*
   This is a modified version of a source file from the 
   Rosegarden MIDI and audio sequencer and notation editor.
   This file copyright 2000-2006 Chris Cannam.
*/

#include <iostream>

#if (__GNUC__ < 3)
#include <strstream>
#define stringstream strstream
#else
#include <sstream>
#endif

using std::cerr;
using std::endl;

#include "RealTime.h"
#include "sys/time.h"

// A RealTime consists of two ints that must be at least 32 bits each.
// A signed 32-bit int can store values exceeding +/- 2 billion.  This
// means we can safely use our lower int for nanoseconds, as there are
// 1 billion nanoseconds in a second and we need to handle double that
// because of the implementations of addition etc that we use.
//
// The maximum valid RealTime on a 32-bit system is somewhere around
// 68 years: 999999999 nanoseconds longer than the classic Unix epoch.

#define ONE_BILLION 1000000000

RealTime::RealTime(int s, int n) :
    sec(s), nsec(n)
{
    if (sec == 0) {
	while (nsec <= -ONE_BILLION) { nsec += ONE_BILLION; --sec; }
	while (nsec >=  ONE_BILLION) { nsec -= ONE_BILLION; ++sec; }
    } else if (sec < 0) {
	while (nsec <= -ONE_BILLION) { nsec += ONE_BILLION; --sec; }
	while (nsec > 0)             { nsec -= ONE_BILLION; ++sec; }
    } else { 
	while (nsec >=  ONE_BILLION) { nsec -= ONE_BILLION; ++sec; }
	while (nsec < 0)             { nsec += ONE_BILLION; --sec; }
    }
}

RealTime
RealTime::fromSeconds(double sec)
{
    return RealTime(int(sec), int((sec - int(sec)) * ONE_BILLION + 0.5));
}

RealTime
RealTime::fromMilliseconds(int msec)
{
    return RealTime(msec / 1000, (msec % 1000) * 1000000);
}

RealTime
RealTime::fromTimeval(const struct timeval &tv)
{
    return RealTime(tv.tv_sec, tv.tv_usec * 1000);
}

std::ostream &operator<<(std::ostream &out, const RealTime &rt)
{
    if (rt < RealTime::zeroTime) {
	out << "-";
    } else {
	out << " ";
    }

    int s = (rt.sec < 0 ? -rt.sec : rt.sec);
    int n = (rt.nsec < 0 ? -rt.nsec : rt.nsec);

    out << s << ".";

    int nn(n);
    if (nn == 0) out << "00000000";
    else while (nn < (ONE_BILLION / 10)) {
	out << "0";
	nn *= 10;
    }
    
    out << n << "R";
    return out;
}

std::string
RealTime::toString(bool align) const
{
    std::stringstream out;
    out << *this;
    
#if (__GNUC__ < 3)
    out << std::ends;
#endif

    std::string s = out.str();

    if (!align && *this >= RealTime::zeroTime) {
        // remove leading " "
        s = s.substr(1, s.length() - 1);
    }

    // remove trailing R
    return s.substr(0, s.length() - 1);
}

std::string
RealTime::toText(bool fixedDp) const
{
    if (*this < RealTime::zeroTime) return "-" + (-*this).toText();

    std::stringstream out;

    if (sec >= 3600) {
	out << (sec / 3600) << ":";
    }

    if (sec >= 60) {
	out << (sec % 3600) / 60 << ":";
    }

    if (sec >= 10) {
	out << ((sec % 60) / 10);
    }

    out << (sec % 10);
    
    int ms = msec();

    if (ms != 0) {
	out << ".";
	out << (ms / 100);
	ms = ms % 100;
	if (ms != 0) {
	    out << (ms / 10);
	    ms = ms % 10;
	} else if (fixedDp) {
	    out << "0";
	}
	if (ms != 0) {
	    out << ms;
	} else if (fixedDp) {
	    out << "0";
	}
    } else if (fixedDp) {
	out << ".000";
    }
	
#if (__GNUC__ < 3)
    out << std::ends;
#endif

    std::string s = out.str();

    return s;
}

RealTime
RealTime::operator*(int m) const
{
    double t = (double(nsec) / ONE_BILLION) * m;
    t += sec * m;
    return fromSeconds(t);
}

RealTime
RealTime::operator/(int d) const
{
    int secdiv = sec / d;
    int secrem = sec % d;

    double nsecdiv = (double(nsec) + ONE_BILLION * double(secrem)) / d;
    
    return RealTime(secdiv, int(nsecdiv + 0.5));
}

double 
RealTime::operator/(const RealTime &r) const
{
    double lTotal = double(sec) * ONE_BILLION + double(nsec);
    double rTotal = double(r.sec) * ONE_BILLION + double(r.nsec);
    
    if (rTotal == 0) return 0.0;
    else return lTotal/rTotal;
}

long
RealTime::realTime2Frame(const RealTime &time, unsigned int sampleRate)
{
    if (time < zeroTime) return -realTime2Frame(-time, sampleRate);

    // We like integers.  The last term is always zero unless the
    // sample rate is greater than 1MHz, but hell, you never know...

    long frame =
	time.sec * sampleRate +
	(time.msec() * sampleRate) / 1000 +
	((time.usec() - 1000 * time.msec()) * sampleRate) / 1000000 +
	((time.nsec - 1000 * time.usec()) * sampleRate) / 1000000000;

    return frame;
}

RealTime
RealTime::frame2RealTime(long frame, unsigned int sampleRate)
{
    if (frame < 0) return -frame2RealTime(-frame, sampleRate);

    RealTime rt;
    rt.sec = frame / long(sampleRate);
    frame -= rt.sec * long(sampleRate);
    rt.nsec = (int)(((float(frame) * 1000000) / long(sampleRate)) * 1000);
    return rt;
}

const RealTime RealTime::zeroTime(0,0);