view data/model/FFTModel.h @ 1784:4eac4bf35b45

More graceful handling of failure to construct FFT models in the case where the source model has already been deleted before this occurs
author Chris Cannam
date Tue, 17 Sep 2019 11:21:33 +0100
parents 6d6740b075c3
children dd51797e528e
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 Chris Cannam.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#ifndef FFT_MODEL_H
#define FFT_MODEL_H

#include "DenseThreeDimensionalModel.h"
#include "DenseTimeValueModel.h"

#include "base/Window.h"

#include <bqfft/FFT.h>
#include <bqvec/Allocators.h>

#include <set>
#include <vector>
#include <complex>

/**
 * An implementation of DenseThreeDimensionalModel that makes FFT data
 * derived from a DenseTimeValueModel available as a generic data
 * grid.
 */
class FFTModel : public DenseThreeDimensionalModel
{
    Q_OBJECT

    //!!! threading requirements?
    //!!! doubles? since we're not caching much

public:
    /**
     * Construct an FFT model derived from the given
     * DenseTimeValueModel, with the given window parameters and FFT
     * size (which may exceed the window size, for zero-padded FFTs).
     * 
     * If the model has multiple channels use only the given channel,
     * unless the channel is -1 in which case merge all available
     * channels.
     */
    FFTModel(ModelId model, // a DenseTimeValueModel
             int channel,
             WindowType windowType,
             int windowSize,
             int windowIncrement,
             int fftSize);
    ~FFTModel();

    // DenseThreeDimensionalModel and Model methods:
    //
    int getWidth() const override;
    int getHeight() const override;
    float getValueAt(int x, int y) const override { return getMagnitudeAt(x, y); }
    bool isOK() const override;
    sv_frame_t getStartFrame() const override { return 0; }
    sv_frame_t getTrueEndFrame() const override {
        return sv_frame_t(getWidth()) * getResolution() + getResolution();
    }
    sv_samplerate_t getSampleRate() const override;
    int getResolution() const override { return m_windowIncrement; }
    virtual int getYBinCount() const { return getHeight(); }
    float getMinimumLevel() const override { return 0.f; } // Can't provide
    float getMaximumLevel() const override { return 1.f; } // Can't provide
    Column getColumn(int x) const override; // magnitudes
    virtual Column getPhases(int x) const;
    QString getBinName(int n) const override;
    bool shouldUseLogValueScale() const override { return true; }
    int getCompletion() const override;
    virtual QString getError() const { return m_error; }
    virtual sv_frame_t getFillExtent() const { return getEndFrame(); }
    QString toDelimitedDataString(QString, DataExportOptions,
                                  sv_frame_t, sv_frame_t) const override {
        return "";
    }

    // FFTModel methods:
    //
    int getChannel() const { return m_channel; }
    WindowType getWindowType() const { return m_windowType; }
    int getWindowSize() const { return m_windowSize; }
    int getWindowIncrement() const { return m_windowIncrement; }
    int getFFTSize() const { return m_fftSize; }

    void setMaximumFrequency(double freq);
    double getMaximumFrequency() const { return m_maximumFrequency; }

//!!! review which of these are ever actually called
    
    float getMagnitudeAt(int x, int y) const;
    float getMaximumMagnitudeAt(int x) const;
    float getPhaseAt(int x, int y) const;
    void getValuesAt(int x, int y, float &real, float &imaginary) const;
    bool getMagnitudesAt(int x, float *values, int minbin = 0, int count = 0) const;
    bool getPhasesAt(int x, float *values, int minbin = 0, int count = 0) const;
    bool getValuesAt(int x, float *reals, float *imaginaries, int minbin = 0, int count = 0) const;

    /**
     * Calculate an estimated frequency for a stable signal in this
     * bin, using phase unwrapping.  This will be completely wrong if
     * the signal is not stable here.
     */
    virtual bool estimateStableFrequency(int x, int y, double &frequency);

    enum PeakPickType
    {
        AllPeaks,                /// Any bin exceeding its immediate neighbours
        MajorPeaks,              /// Peaks picked using sliding median window
        MajorPitchAdaptivePeaks  /// Bigger window for higher frequencies
    };

    typedef std::set<int> PeakLocationSet; // bin
    typedef std::map<int, double> PeakSet; // bin -> freq

    /**
     * Return locations of peak bins in the range [ymin,ymax].  If
     * ymax is zero, getHeight()-1 will be used.
     */
    virtual PeakLocationSet getPeaks(PeakPickType type, int x,
                                     int ymin = 0, int ymax = 0) const;

    /**
     * Return locations and estimated stable frequencies of peak bins.
     */
    virtual PeakSet getPeakFrequencies(PeakPickType type, int x,
                                       int ymin = 0, int ymax = 0) const;

    QString getTypeName() const override { return tr("FFT"); }

private:
    FFTModel(const FFTModel &) =delete;
    FFTModel &operator=(const FFTModel &) =delete;

    const ModelId m_model; // a DenseTimeValueModel
    sv_samplerate_t m_sampleRate;
    int m_channel;
    WindowType m_windowType;
    int m_windowSize;
    int m_windowIncrement;
    int m_fftSize;
    Window<float> m_windower;
    mutable breakfastquay::FFT m_fft;
    double m_maximumFrequency;
    mutable QString m_error;
    
    int getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
                              int bin, double &dist) const;

    std::pair<sv_frame_t, sv_frame_t> getSourceSampleRange(int column) const {
        sv_frame_t startFrame = m_windowIncrement * sv_frame_t(column);
        sv_frame_t endFrame = startFrame + m_windowSize;
        // Cols are centred on the audio sample (e.g. col 0 is centred at sample 0)
        startFrame -= m_windowSize / 2;
        endFrame -= m_windowSize / 2;
        return { startFrame, endFrame };
    }

    typedef std::vector<float, breakfastquay::StlAllocator<float>> fvec;
    typedef std::vector<std::complex<float>,
                        breakfastquay::StlAllocator<std::complex<float>>> cvec;

    cvec getFFTColumn(int column) const;
    fvec getSourceSamples(int column) const;
    fvec getSourceData(std::pair<sv_frame_t, sv_frame_t>) const;
    fvec getSourceDataUncached(std::pair<sv_frame_t, sv_frame_t>) const;

    struct SavedSourceData {
        std::pair<sv_frame_t, sv_frame_t> range;
        fvec data;
    };
    mutable SavedSourceData m_savedData;

    struct SavedColumn {
        int n;
        cvec col;
    };
    mutable std::vector<SavedColumn> m_cached;
    mutable size_t m_cacheWriteIndex;
    size_t m_cacheSize;
};

#endif