view data/model/DenseTimeValueModel.h @ 876:47aa3aeb687b tonioni

For outputs with unknown bin count or multiple bins with variable sample rate, create additional output models for bins beyond the first
author Chris Cannam
date Wed, 29 Jan 2014 09:31:22 +0000
parents 3a3541b357fe
children 59e7fe1b1003
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 Chris Cannam.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#ifndef _DENSE_TIME_VALUE_MODEL_H_
#define _DENSE_TIME_VALUE_MODEL_H_

#include <QObject>

#include "Model.h"

/**
 * Base class for models containing dense two-dimensional data (value
 * against time).  For example, audio waveform data.  Other time-value
 * plot data, especially if editable, will normally go into a
 * SparseTimeValueModel instead even if regularly sampled.
 */

class DenseTimeValueModel : public Model
{
    Q_OBJECT

public:
    DenseTimeValueModel();

    virtual ~DenseTimeValueModel();

    /**
     * Return the minimum possible value found in this model type.
     * (That is, the minimum that would be valid, not the minimum
     * actually found in a particular model).
     */
    virtual float getValueMinimum() const = 0;

    /**
     * Return the minimum possible value found in this model type.
     * (That is, the minimum that would be valid, not the minimum
     * actually found in a particular model).
     */
    virtual float getValueMaximum() const = 0;

    /**
     * Return the number of distinct channels for this model.
     */
    virtual size_t getChannelCount() const = 0;

    /**
     * Get the specified set of samples from the given channel of the
     * model in single-precision floating-point format.  Return the
     * number of samples actually retrieved.
     * If the channel is given as -1, mix all available channels and
     * return the result.
     */
    virtual size_t getData(int channel, size_t start, size_t count,
                           float *buffer) const = 0;

    /**
     * Get the specified set of samples from the given channel of the
     * model in double-precision floating-point format.  Return the
     * number of samples actually retrieved.
     * If the channel is given as -1, mix all available channels and
     * return the result.
     */
    virtual size_t getData(int channel, size_t start, size_t count,
                           double *buffer) const = 0;

    /**
     * Get the specified set of samples from given contiguous range
     * of channels of the model in single-precision floating-point
     * format.  Return the number of sample frames actually retrieved.
     */
    virtual size_t getData(size_t fromchannel, size_t tochannel,
                           size_t start, size_t count,
                           float **buffers) const = 0;

    virtual bool canPlay() const { return true; }
    virtual QString getDefaultPlayClipId() const { return ""; }

    virtual QString toDelimitedDataString(QString delimiter, size_t f0, size_t f1) const;

    QString getTypeName() const { return tr("Dense Time-Value"); }
};

#endif