view data/fft/FFTFileCacheReader.cpp @ 537:3cc4b7cd2aa5

* Merge from one-fftdataserver-per-fftmodel branch. This bit of reworking (which is not described very accurately by the title of the branch) turns the MatrixFile object into something that either reads or writes, but not both, and separates the FFT file cache reader and writer implementations separately. This allows the FFT data server to have a single thread owning writers and one reader per "customer" thread, and for all locking to be vastly simplified and concentrated in the data server alone (because none of the classes it makes use of is used in more than one thread at a time). The result is faster and more trustworthy code.
author Chris Cannam
date Tue, 27 Jan 2009 13:25:10 +0000
parents
children 60482f13e627
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006-2009 Chris Cannam and QMUL.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "FFTFileCacheReader.h"
#include "FFTFileCacheWriter.h"

#include "fileio/MatrixFile.h"

#include "base/Profiler.h"
#include "base/Thread.h"
#include "base/Exceptions.h"

#include <iostream>


// The underlying matrix has height (m_height * 2 + 1).  In each
// column we store magnitude at [0], [2] etc and phase at [1], [3]
// etc, and then store the normalization factor (maximum magnitude) at
// [m_height * 2].  In compact mode, the factor takes two cells.

FFTFileCacheReader::FFTFileCacheReader(FFTFileCacheWriter *writer) :
    m_readbuf(0),
    m_readbufCol(0),
    m_readbufWidth(0),
    m_storageType(writer->getStorageType()),
    m_factorSize(m_storageType == FFTCache::Compact ? 2 : 1),
    m_mfc(new MatrixFile
          (writer->getFileBase(),
           MatrixFile::ReadOnly,
           m_storageType == FFTCache::Compact ? sizeof(uint16_t) : sizeof(float),
           writer->getWidth(),
           writer->getHeight() * 2 + m_factorSize))
{
//    std::cerr << "FFTFileCacheReader: storage type is " << (storageType == FFTCache::Compact ? "Compact" : storageType == Polar ? "Polar" : "Rectangular") << std::endl;
}

FFTFileCacheReader::~FFTFileCacheReader()
{
    if (m_readbuf) delete[] m_readbuf;
    delete m_mfc;
}

size_t
FFTFileCacheReader::getWidth() const
{
    return m_mfc->getWidth();
}

size_t
FFTFileCacheReader::getHeight() const
{
    size_t mh = m_mfc->getHeight();
    if (mh > m_factorSize) return (mh - m_factorSize) / 2;
    else return 0;
}

float
FFTFileCacheReader::getMagnitudeAt(size_t x, size_t y) const
{
    Profiler profiler("FFTFileCacheReader::getMagnitudeAt", false);

    float value = 0.f;

    switch (m_storageType) {

    case FFTCache::Compact:
        value = (getFromReadBufCompactUnsigned(x, y * 2) / 65535.0)
            * getNormalizationFactor(x);
        break;

    case FFTCache::Rectangular:
    {
        float real, imag;
        getValuesAt(x, y, real, imag);
        value = sqrtf(real * real + imag * imag);
        break;
    }

    case FFTCache::Polar:
        value = getFromReadBufStandard(x, y * 2);
        break;
    }

    return value;
}

float
FFTFileCacheReader::getNormalizedMagnitudeAt(size_t x, size_t y) const
{
    float value = 0.f;

    switch (m_storageType) {

    case FFTCache::Compact:
        value = getFromReadBufCompactUnsigned(x, y * 2) / 65535.0;
        break;

    default:
    {
        float mag = getMagnitudeAt(x, y);
        float factor = getNormalizationFactor(x);
        if (factor != 0) value = mag / factor;
        else value = 0.f;
        break;
    }
    }

    return value;
}

float
FFTFileCacheReader::getMaximumMagnitudeAt(size_t x) const
{
    return getNormalizationFactor(x);
}

float
FFTFileCacheReader::getPhaseAt(size_t x, size_t y) const
{
    float value = 0.f;
    
    switch (m_storageType) {

    case FFTCache::Compact:
        value = (getFromReadBufCompactSigned(x, y * 2 + 1) / 32767.0) * M_PI;
        break;

    case FFTCache::Rectangular:
    {
        float real, imag;
        getValuesAt(x, y, real, imag);
        value = atan2f(imag, real);
        break;
    }

    case FFTCache::Polar:
        value = getFromReadBufStandard(x, y * 2 + 1);
        break;
    }

    return value;
}

void
FFTFileCacheReader::getValuesAt(size_t x, size_t y, float &real, float &imag) const
{
    switch (m_storageType) {

    case FFTCache::Rectangular:
        real = getFromReadBufStandard(x, y * 2);
        imag = getFromReadBufStandard(x, y * 2 + 1);
        return;

    default:
        float mag = getMagnitudeAt(x, y);
        float phase = getPhaseAt(x, y);
        real = mag * cosf(phase);
        imag = mag * sinf(phase);
        return;
    }
}

void
FFTFileCacheReader::getMagnitudesAt(size_t x, float *values, size_t minbin, size_t count, size_t step) const
{
    Profiler profiler("FFTFileCacheReader::getMagnitudesAt");

    switch (m_storageType) {

    case FFTCache::Compact:
        for (size_t i = 0; i < count; ++i) {
            size_t y = minbin + i * step;
            values[i] = (getFromReadBufCompactUnsigned(x, y * 2) / 65535.0)
                * getNormalizationFactor(x);
        }
        break;

    case FFTCache::Rectangular:
    {
        float real, imag;
        for (size_t i = 0; i < count; ++i) {
            size_t y = minbin + i * step;
            real = getFromReadBufStandard(x, y * 2);
            imag = getFromReadBufStandard(x, y * 2 + 1);
            values[i] = sqrtf(real * real + imag * imag);
        }
        break;
    }

    case FFTCache::Polar:
        for (size_t i = 0; i < count; ++i) {
            size_t y = minbin + i * step;
            values[i] = getFromReadBufStandard(x, y * 2);
        }
        break;
    }
}

bool
FFTFileCacheReader::haveSetColumnAt(size_t x) const
{
    return m_mfc->haveSetColumnAt(x);
}

size_t
FFTFileCacheReader::getCacheSize(size_t width, size_t height,
                                 FFTCache::StorageType type)
{
    return (height * 2 + (type == FFTCache::Compact ? 2 : 1)) * width *
        (type == FFTCache::Compact ? sizeof(uint16_t) : sizeof(float)) +
        2 * sizeof(size_t); // matrix file header size
}

void
FFTFileCacheReader::populateReadBuf(size_t x) const
{
    Profiler profiler("FFTFileCacheReader::populateReadBuf", false);

    if (!m_readbuf) {
        m_readbuf = new char[m_mfc->getHeight() * 2 * m_mfc->getCellSize()];
    }

    try {
        m_mfc->getColumnAt(x, m_readbuf);
        if (m_mfc->haveSetColumnAt(x + 1)) {
            m_mfc->getColumnAt
                (x + 1, m_readbuf + m_mfc->getCellSize() * m_mfc->getHeight());
            m_readbufWidth = 2;
        } else {
            m_readbufWidth = 1;
        }
    } catch (FileReadFailed f) {
        std::cerr << "ERROR: FFTFileCacheReader::populateReadBuf: File read failed: "
                  << f.what() << std::endl;
        memset(m_readbuf, 0, m_mfc->getHeight() * 2 * m_mfc->getCellSize());
    }
    m_readbufCol = x;
}