Mercurial > hg > svcore
view data/fft/FFTFileCacheWriter.cpp @ 631:3a5ee4b6c9ad
* Complete the overhaul of CSV file import; now you can pick the purpose for
each column in the file, and SV should do the rest. The most significant
practical improvement here is that we can now handle files in which time
and duration do not necessarily appear in known columns.
author | Chris Cannam |
---|---|
date | Mon, 19 Jul 2010 17:08:56 +0000 |
parents | f9cf4b49b08b |
children | 06f13a3b9e9e |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2009 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "FFTFileCacheWriter.h" #include "fileio/MatrixFile.h" #include "base/Profiler.h" #include "base/Thread.h" #include "base/Exceptions.h" #include <iostream> //#define DEBUG_FFT_FILE_CACHE_WRITER 1 // The underlying matrix has height (m_height * 2 + 1). In each // column we store magnitude at [0], [2] etc and phase at [1], [3] // etc, and then store the normalization factor (maximum magnitude) at // [m_height * 2]. In compact mode, the factor takes two cells. FFTFileCacheWriter::FFTFileCacheWriter(QString fileBase, FFTCache::StorageType storageType, size_t width, size_t height) : m_writebuf(0), m_fileBase(fileBase), m_storageType(storageType), m_factorSize(storageType == FFTCache::Compact ? 2 : 1), m_mfc(new MatrixFile (fileBase, MatrixFile::WriteOnly, storageType == FFTCache::Compact ? sizeof(uint16_t) : sizeof(float), width, height * 2 + m_factorSize)) { #ifdef DEBUG_FFT_FILE_CACHE_WRITER std::cerr << "FFTFileCacheWriter: storage type is " << (storageType == FFTCache::Compact ? "Compact" : storageType == FFTCache::Polar ? "Polar" : "Rectangular") << ", size " << width << "x" << height << std::endl; #endif m_mfc->setAutoClose(true); m_writebuf = new char[(height * 2 + m_factorSize) * m_mfc->getCellSize()]; } FFTFileCacheWriter::~FFTFileCacheWriter() { if (m_writebuf) delete[] m_writebuf; delete m_mfc; } QString FFTFileCacheWriter::getFileBase() const { return m_fileBase; } size_t FFTFileCacheWriter::getWidth() const { return m_mfc->getWidth(); } size_t FFTFileCacheWriter::getHeight() const { size_t mh = m_mfc->getHeight(); if (mh > m_factorSize) return (mh - m_factorSize) / 2; else return 0; } bool FFTFileCacheWriter::haveSetColumnAt(size_t x) const { return m_mfc->haveSetColumnAt(x); } void FFTFileCacheWriter::setColumnAt(size_t x, float *mags, float *phases, float factor) { size_t h = getHeight(); switch (m_storageType) { case FFTCache::Compact: for (size_t y = 0; y < h; ++y) { ((uint16_t *)m_writebuf)[y * 2] = uint16_t((mags[y] / factor) * 65535.0); ((uint16_t *)m_writebuf)[y * 2 + 1] = uint16_t(int16_t((phases[y] * 32767) / M_PI)); } break; case FFTCache::Rectangular: for (size_t y = 0; y < h; ++y) { ((float *)m_writebuf)[y * 2] = mags[y] * cosf(phases[y]); ((float *)m_writebuf)[y * 2 + 1] = mags[y] * sinf(phases[y]); } break; case FFTCache::Polar: for (size_t y = 0; y < h; ++y) { ((float *)m_writebuf)[y * 2] = mags[y]; ((float *)m_writebuf)[y * 2 + 1] = phases[y]; } break; } static float maxFactor = 0; if (factor > maxFactor) maxFactor = factor; #ifdef DEBUG_FFT_FILE_CACHE_WRITER std::cerr << "Column " << x << ": normalization factor: " << factor << ", max " << maxFactor << " (height " << getHeight() << ")" << std::endl; #endif setNormalizationFactorToWritebuf(factor); m_mfc->setColumnAt(x, m_writebuf); } void FFTFileCacheWriter::setColumnAt(size_t x, float *real, float *imag) { size_t h = getHeight(); float factor = 0.0f; switch (m_storageType) { case FFTCache::Compact: for (size_t y = 0; y < h; ++y) { float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]); if (mag > factor) factor = mag; } for (size_t y = 0; y < h; ++y) { float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]); float phase = atan2f(imag[y], real[y]); ((uint16_t *)m_writebuf)[y * 2] = uint16_t((mag / factor) * 65535.0); ((uint16_t *)m_writebuf)[y * 2 + 1] = uint16_t(int16_t((phase * 32767) / M_PI)); } break; case FFTCache::Rectangular: for (size_t y = 0; y < h; ++y) { ((float *)m_writebuf)[y * 2] = real[y]; ((float *)m_writebuf)[y * 2 + 1] = imag[y]; float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]); if (mag > factor) factor = mag; } break; case FFTCache::Polar: for (size_t y = 0; y < h; ++y) { float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]); if (mag > factor) factor = mag; ((float *)m_writebuf)[y * 2] = mag; float phase = atan2f(imag[y], real[y]); ((float *)m_writebuf)[y * 2 + 1] = phase; } break; } static float maxFactor = 0; if (factor > maxFactor) maxFactor = factor; #ifdef DEBUG_FFT_FILE_CACHE_WRITER std::cerr << "[RI] Column " << x << ": normalization factor: " << factor << ", max " << maxFactor << " (height " << getHeight() << ")" << std::endl; #endif setNormalizationFactorToWritebuf(factor); m_mfc->setColumnAt(x, m_writebuf); } size_t FFTFileCacheWriter::getCacheSize(size_t width, size_t height, FFTCache::StorageType type) { return (height * 2 + (type == FFTCache::Compact ? 2 : 1)) * width * (type == FFTCache::Compact ? sizeof(uint16_t) : sizeof(float)) + 2 * sizeof(size_t); // matrix file header size } void FFTFileCacheWriter::allColumnsWritten() { #ifdef DEBUG_FFT_FILE_CACHE_WRITER std::cerr << "FFTFileCacheWriter::allColumnsWritten" << std::endl; #endif m_mfc->close(); }