Mercurial > hg > svcore
view data/fileio/FFTFileCache.cpp @ 200:2f2d282d45d0
* Somewhat better handling of running out of memory or disc space
author | Chris Cannam |
---|---|
date | Mon, 13 Nov 2006 14:48:57 +0000 |
parents | 1a42221a1522 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "FFTFileCache.h" #include "MatrixFile.h" #include "base/Profiler.h" #include <iostream> #include <QMutexLocker> // The underlying matrix has height (m_height * 2 + 1). In each // column we store magnitude at [0], [2] etc and phase at [1], [3] // etc, and then store the normalization factor (maximum magnitude) at // [m_height * 2]. FFTFileCache::FFTFileCache(QString fileBase, MatrixFile::Mode mode, StorageType storageType) : m_writebuf(0), m_readbuf(0), m_readbufCol(0), m_readbufWidth(0), m_mfc(new MatrixFile (fileBase, mode, storageType == Compact ? sizeof(uint16_t) : sizeof(float), mode == MatrixFile::ReadOnly)), m_storageType(storageType) { std::cerr << "FFTFileCache: storage type is " << (storageType == Compact ? "Compact" : storageType == Polar ? "Polar" : "Rectangular") << std::endl; } FFTFileCache::~FFTFileCache() { if (m_readbuf) delete[] m_readbuf; if (m_writebuf) delete[] m_writebuf; delete m_mfc; } size_t FFTFileCache::getWidth() const { return m_mfc->getWidth(); } size_t FFTFileCache::getHeight() const { size_t mh = m_mfc->getHeight(); if (mh > 0) return (mh - 1) / 2; else return 0; } void FFTFileCache::resize(size_t width, size_t height) { QMutexLocker locker(&m_writeMutex); m_mfc->resize(width, height * 2 + 1); if (m_readbuf) { delete[] m_readbuf; m_readbuf = 0; } if (m_writebuf) { delete[] m_writebuf; } m_writebuf = new char[(height * 2 + 1) * m_mfc->getCellSize()]; } void FFTFileCache::reset() { m_mfc->reset(); } float FFTFileCache::getMagnitudeAt(size_t x, size_t y) const { float value = 0.f; switch (m_storageType) { case Compact: value = (getFromReadBufCompactUnsigned(x, y * 2) / 65535.0) * getNormalizationFactor(x); break; case Rectangular: { float real, imag; getValuesAt(x, y, real, imag); value = sqrtf(real * real + imag * imag); break; } case Polar: value = getFromReadBufStandard(x, y * 2); break; } return value; } float FFTFileCache::getNormalizedMagnitudeAt(size_t x, size_t y) const { float value = 0.f; switch (m_storageType) { case Compact: value = getFromReadBufCompactUnsigned(x, y * 2) / 65535.0; break; default: { float mag = getMagnitudeAt(x, y); float factor = getNormalizationFactor(x); if (factor != 0) value = mag / factor; else value = 0.f; break; } } return value; } float FFTFileCache::getMaximumMagnitudeAt(size_t x) const { return getNormalizationFactor(x); } float FFTFileCache::getPhaseAt(size_t x, size_t y) const { float value = 0.f; switch (m_storageType) { case Compact: value = (getFromReadBufCompactSigned(x, y * 2 + 1) / 32767.0) * M_PI; break; case Rectangular: { float real, imag; getValuesAt(x, y, real, imag); value = princargf(atan2f(imag, real)); break; } case Polar: value = getFromReadBufStandard(x, y * 2 + 1); break; } return value; } void FFTFileCache::getValuesAt(size_t x, size_t y, float &real, float &imag) const { switch (m_storageType) { case Rectangular: real = getFromReadBufStandard(x, y * 2); imag = getFromReadBufStandard(x, y * 2 + 1); return; default: float mag = getMagnitudeAt(x, y); float phase = getPhaseAt(x, y); real = mag * cosf(phase); imag = mag * sinf(phase); return; } } bool FFTFileCache::haveSetColumnAt(size_t x) const { return m_mfc->haveSetColumnAt(x); } void FFTFileCache::setColumnAt(size_t x, float *mags, float *phases, float factor) { QMutexLocker locker(&m_writeMutex); size_t h = getHeight(); switch (m_storageType) { case Compact: for (size_t y = 0; y < h; ++y) { ((uint16_t *)m_writebuf)[y * 2] = uint16_t((mags[y] / factor) * 65535.0); ((uint16_t *)m_writebuf)[y * 2 + 1] = uint16_t(int16_t((phases[y] * 32767) / M_PI)); } break; case Rectangular: for (size_t y = 0; y < h; ++y) { ((float *)m_writebuf)[y * 2] = mags[y] * cosf(phases[y]); ((float *)m_writebuf)[y * 2 + 1] = mags[y] * sinf(phases[y]); } break; case Polar: for (size_t y = 0; y < h; ++y) { ((float *)m_writebuf)[y * 2] = mags[y]; ((float *)m_writebuf)[y * 2 + 1] = phases[y]; } break; } static float maxFactor = 0; if (factor > maxFactor) maxFactor = factor; // std::cerr << "Normalization factor: " << factor << ", max " << maxFactor << " (height " << getHeight() << ")" << std::endl; if (m_storageType == Compact) { ((uint16_t *)m_writebuf)[h * 2] = factor * 65535.0; } else { ((float *)m_writebuf)[h * 2] = factor; } m_mfc->setColumnAt(x, m_writebuf); } void FFTFileCache::setColumnAt(size_t x, float *real, float *imag) { QMutexLocker locker(&m_writeMutex); size_t h = getHeight(); float max = 0.0f; switch (m_storageType) { case Compact: for (size_t y = 0; y < h; ++y) { float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]); if (mag > max) max = mag; } for (size_t y = 0; y < h; ++y) { float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]); float phase = princargf(atan2f(imag[y], real[y])); ((uint16_t *)m_writebuf)[y * 2] = uint16_t((mag / max) * 65535.0); ((uint16_t *)m_writebuf)[y * 2 + 1] = uint16_t(int16_t((phase * 32767) / M_PI)); } break; case Rectangular: for (size_t y = 0; y < h; ++y) { ((float *)m_writebuf)[y * 2] = real[y]; ((float *)m_writebuf)[y * 2 + 1] = imag[y]; float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]); if (mag > max) max = mag; } break; case Polar: for (size_t y = 0; y < h; ++y) { float mag = sqrtf(real[y] * real[y] + imag[y] * imag[y]); if (mag > max) max = mag; ((float *)m_writebuf)[y * 2] = mag; ((float *)m_writebuf)[y * 2 + 1] = princargf(atan2f(imag[y], real[y])); } break; } ((float *)m_writebuf)[h * 2] = max; m_mfc->setColumnAt(x, m_writebuf); }