Mercurial > hg > svcore
view data/fft/FFTFileCacheReader.cpp @ 581:2e0c987a12bd
* Pull out the widgetry part of FileFinder into widgets/InteractiveFileFinder
(essentially this is just to avoid a dependency from data/fileio to widgets/
which is problematic for non-gui programs)
author | Chris Cannam |
---|---|
date | Fri, 27 Mar 2009 16:25:52 +0000 |
parents | 8accc7969c1c |
children | 06f13a3b9e9e |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006-2009 Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "FFTFileCacheReader.h" #include "FFTFileCacheWriter.h" #include "fileio/MatrixFile.h" #include "base/Profiler.h" #include "base/Thread.h" #include "base/Exceptions.h" #include <iostream> // The underlying matrix has height (m_height * 2 + 1). In each // column we store magnitude at [0], [2] etc and phase at [1], [3] // etc, and then store the normalization factor (maximum magnitude) at // [m_height * 2]. In compact mode, the factor takes two cells. FFTFileCacheReader::FFTFileCacheReader(FFTFileCacheWriter *writer) : m_readbuf(0), m_readbufCol(0), m_readbufWidth(0), m_readbufGood(false), m_storageType(writer->getStorageType()), m_factorSize(m_storageType == FFTCache::Compact ? 2 : 1), m_mfc(new MatrixFile (writer->getFileBase(), MatrixFile::ReadOnly, m_storageType == FFTCache::Compact ? sizeof(uint16_t) : sizeof(float), writer->getWidth(), writer->getHeight() * 2 + m_factorSize)) { // std::cerr << "FFTFileCacheReader: storage type is " << (storageType == FFTCache::Compact ? "Compact" : storageType == Polar ? "Polar" : "Rectangular") << std::endl; } FFTFileCacheReader::~FFTFileCacheReader() { if (m_readbuf) delete[] m_readbuf; delete m_mfc; } size_t FFTFileCacheReader::getWidth() const { return m_mfc->getWidth(); } size_t FFTFileCacheReader::getHeight() const { size_t mh = m_mfc->getHeight(); if (mh > m_factorSize) return (mh - m_factorSize) / 2; else return 0; } float FFTFileCacheReader::getMagnitudeAt(size_t x, size_t y) const { Profiler profiler("FFTFileCacheReader::getMagnitudeAt", false); float value = 0.f; switch (m_storageType) { case FFTCache::Compact: value = (getFromReadBufCompactUnsigned(x, y * 2) / 65535.0) * getNormalizationFactor(x); break; case FFTCache::Rectangular: { float real, imag; getValuesAt(x, y, real, imag); value = sqrtf(real * real + imag * imag); break; } case FFTCache::Polar: value = getFromReadBufStandard(x, y * 2); break; } return value; } float FFTFileCacheReader::getNormalizedMagnitudeAt(size_t x, size_t y) const { float value = 0.f; switch (m_storageType) { case FFTCache::Compact: value = getFromReadBufCompactUnsigned(x, y * 2) / 65535.0; break; default: { float mag = getMagnitudeAt(x, y); float factor = getNormalizationFactor(x); if (factor != 0) value = mag / factor; else value = 0.f; break; } } return value; } float FFTFileCacheReader::getMaximumMagnitudeAt(size_t x) const { return getNormalizationFactor(x); } float FFTFileCacheReader::getPhaseAt(size_t x, size_t y) const { float value = 0.f; switch (m_storageType) { case FFTCache::Compact: value = (getFromReadBufCompactSigned(x, y * 2 + 1) / 32767.0) * M_PI; break; case FFTCache::Rectangular: { float real, imag; getValuesAt(x, y, real, imag); value = atan2f(imag, real); break; } case FFTCache::Polar: value = getFromReadBufStandard(x, y * 2 + 1); break; } return value; } void FFTFileCacheReader::getValuesAt(size_t x, size_t y, float &real, float &imag) const { // std::cerr << "FFTFileCacheReader::getValuesAt(" << x << "," << y << ")" << std::endl; switch (m_storageType) { case FFTCache::Rectangular: real = getFromReadBufStandard(x, y * 2); imag = getFromReadBufStandard(x, y * 2 + 1); return; default: float mag = getMagnitudeAt(x, y); float phase = getPhaseAt(x, y); real = mag * cosf(phase); imag = mag * sinf(phase); return; } } void FFTFileCacheReader::getMagnitudesAt(size_t x, float *values, size_t minbin, size_t count, size_t step) const { Profiler profiler("FFTFileCacheReader::getMagnitudesAt"); switch (m_storageType) { case FFTCache::Compact: for (size_t i = 0; i < count; ++i) { size_t y = minbin + i * step; values[i] = (getFromReadBufCompactUnsigned(x, y * 2) / 65535.0) * getNormalizationFactor(x); } break; case FFTCache::Rectangular: { float real, imag; for (size_t i = 0; i < count; ++i) { size_t y = minbin + i * step; real = getFromReadBufStandard(x, y * 2); imag = getFromReadBufStandard(x, y * 2 + 1); values[i] = sqrtf(real * real + imag * imag); } break; } case FFTCache::Polar: for (size_t i = 0; i < count; ++i) { size_t y = minbin + i * step; values[i] = getFromReadBufStandard(x, y * 2); } break; } } bool FFTFileCacheReader::haveSetColumnAt(size_t x) const { if (m_readbuf && m_readbufGood && (m_readbufCol == x || (m_readbufWidth > 1 && m_readbufCol+1 == x))) { // std::cerr << "FFTFileCacheReader::haveSetColumnAt: short-circuiting; we know about this one" << std::endl; return true; } return m_mfc->haveSetColumnAt(x); } size_t FFTFileCacheReader::getCacheSize(size_t width, size_t height, FFTCache::StorageType type) { return (height * 2 + (type == FFTCache::Compact ? 2 : 1)) * width * (type == FFTCache::Compact ? sizeof(uint16_t) : sizeof(float)) + 2 * sizeof(size_t); // matrix file header size } void FFTFileCacheReader::populateReadBuf(size_t x) const { Profiler profiler("FFTFileCacheReader::populateReadBuf", false); // std::cerr << "FFTFileCacheReader::populateReadBuf(" << x << ")" << std::endl; if (!m_readbuf) { m_readbuf = new char[m_mfc->getHeight() * 2 * m_mfc->getCellSize()]; } m_readbufGood = false; try { bool good = false; if (m_mfc->haveSetColumnAt(x)) { // If the column is not available, we have no obligation // to do anything with the readbuf -- we can cheerfully // return garbage. It's the responsibility of the caller // to check haveSetColumnAt before trusting any retrieved // data. However, we do record whether the data in the // readbuf is good or not, because we can use that to // return an immediate result for haveSetColumnAt if the // column is right. good = true; m_mfc->getColumnAt(x, m_readbuf); } if (m_mfc->haveSetColumnAt(x + 1)) { m_mfc->getColumnAt (x + 1, m_readbuf + m_mfc->getCellSize() * m_mfc->getHeight()); m_readbufWidth = 2; } else { m_readbufWidth = 1; } m_readbufGood = good; } catch (FileReadFailed f) { std::cerr << "ERROR: FFTFileCacheReader::populateReadBuf: File read failed: " << f.what() << std::endl; memset(m_readbuf, 0, m_mfc->getHeight() * 2 * m_mfc->getCellSize()); } m_readbufCol = x; }