view data/model/FFTModel.h @ 1833:21c792334c2e sensible-delimited-data-strings

Rewrite all the DelimitedDataString stuff so as to return vectors of individual cell strings rather than having the classes add the delimiters themselves. Rename accordingly to names based on StringExport. Take advantage of this in the CSV writer code so as to properly quote cells that contain delimiter characters.
author Chris Cannam
date Fri, 03 Apr 2020 17:11:05 +0100
parents c546429d4c2f
children 1b688ab5f1b3
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 Chris Cannam.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#ifndef FFT_MODEL_H
#define FFT_MODEL_H

#include "DenseThreeDimensionalModel.h"
#include "DenseTimeValueModel.h"

#include "base/Window.h"

#include <bqfft/FFT.h>
#include <bqvec/Allocators.h>

#include <set>
#include <vector>
#include <complex>

/**
 * An implementation of DenseThreeDimensionalModel that makes FFT data
 * derived from a DenseTimeValueModel available as a generic data
 * grid.
 */
class FFTModel : public DenseThreeDimensionalModel
{
    Q_OBJECT

    //!!! threading requirements?
    //!!! doubles? since we're not caching much

public:
    /**
     * Construct an FFT model derived from the given
     * DenseTimeValueModel, with the given window parameters and FFT
     * size (which may exceed the window size, for zero-padded FFTs).
     * 
     * If the model has multiple channels use only the given channel,
     * unless the channel is -1 in which case merge all available
     * channels.
     */
    FFTModel(ModelId model, // a DenseTimeValueModel
             int channel,
             WindowType windowType,
             int windowSize,
             int windowIncrement,
             int fftSize);
    ~FFTModel();

    // DenseThreeDimensionalModel and Model methods:
    //
    bool isOK() const override;
    int getCompletion() const override;
    
    int getWidth() const override;
    int getHeight() const override;
    
    float getValueAt(int x, int y) const override {
        return getMagnitudeAt(x, y);
    }
    sv_frame_t getStartFrame() const override {
        return 0;
    }
    sv_frame_t getTrueEndFrame() const override {
        return sv_frame_t(getWidth()) * getResolution() + getResolution();
    }
    sv_samplerate_t getSampleRate() const override {
        return m_sampleRate;
    }
    int getResolution() const override {
        return m_windowIncrement;
    }
    
    float getMinimumLevel() const override { return 0.f; } // Can't provide
    float getMaximumLevel() const override { return 1.f; } // Can't provide

    Column getColumn(int x) const override; // magnitudes

    bool hasBinValues() const override {
        return true;
    }
    QString getBinValueUnit() const override {
        return "Hz";
    }
    bool shouldUseLogValueScale() const override {
        return true;
    }
    float getBinValue(int n) const override;
    QString getBinName(int n) const override;

    QVector<QString>
    getStringExportHeaders(DataExportOptions) const override {
        return {};
    }

    QVector<QVector<QString>>
    toStringExportRows(DataExportOptions, sv_frame_t, sv_frame_t) const override {
        return {};
    }

    // FFTModel methods:
    //
    QString getError() const { return m_error; }

    int getChannel() const { return m_channel; }
    WindowType getWindowType() const { return m_windowType; }
    int getWindowSize() const { return m_windowSize; }
    int getWindowIncrement() const { return m_windowIncrement; }
    int getFFTSize() const { return m_fftSize; }

    void setMaximumFrequency(double freq);
    double getMaximumFrequency() const { return m_maximumFrequency; }

//!!! review which of these are ever actually called
    
    float getMagnitudeAt(int x, int y) const;
    float getMaximumMagnitudeAt(int x) const;
    Column getPhases(int x) const;
    float getPhaseAt(int x, int y) const;
    void getValuesAt(int x, int y, float &real, float &imaginary) const;
    bool getMagnitudesAt(int x, float *values, int minbin = 0, int count = 0) const;
    bool getPhasesAt(int x, float *values, int minbin = 0, int count = 0) const;
    bool getValuesAt(int x, float *reals, float *imaginaries, int minbin = 0, int count = 0) const;

    /**
     * Calculate an estimated frequency for a stable signal in this
     * bin, using phase unwrapping.  This will be completely wrong if
     * the signal is not stable here.
     */
    virtual bool estimateStableFrequency(int x, int y, double &frequency);

    enum PeakPickType
    {
        AllPeaks,                /// Any bin exceeding its immediate neighbours
        MajorPeaks,              /// Peaks picked using sliding median window
        MajorPitchAdaptivePeaks  /// Bigger window for higher frequencies
    };

    typedef std::set<int> PeakLocationSet; // bin
    typedef std::map<int, double> PeakSet; // bin -> freq

    /**
     * Return locations of peak bins in the range [ymin,ymax].  If
     * ymax is zero, getHeight()-1 will be used.
     */
    virtual PeakLocationSet getPeaks(PeakPickType type, int x,
                                     int ymin = 0, int ymax = 0) const;

    /**
     * Return locations and estimated stable frequencies of peak bins.
     */
    virtual PeakSet getPeakFrequencies(PeakPickType type, int x,
                                       int ymin = 0, int ymax = 0) const;

    QString getTypeName() const override { return tr("FFT"); }

private:
    FFTModel(const FFTModel &) =delete;
    FFTModel &operator=(const FFTModel &) =delete;

    const ModelId m_model; // a DenseTimeValueModel
    sv_samplerate_t m_sampleRate;
    int m_channel;
    WindowType m_windowType;
    int m_windowSize;
    int m_windowIncrement;
    int m_fftSize;
    Window<float> m_windower;
    mutable breakfastquay::FFT m_fft;
    double m_maximumFrequency;
    mutable QString m_error;
    
    int getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
                              int bin, double &dist) const;

    std::pair<sv_frame_t, sv_frame_t> getSourceSampleRange(int column) const {
        sv_frame_t startFrame = m_windowIncrement * sv_frame_t(column);
        sv_frame_t endFrame = startFrame + m_windowSize;
        // Cols are centred on the audio sample (e.g. col 0 is centred at sample 0)
        startFrame -= m_windowSize / 2;
        endFrame -= m_windowSize / 2;
        return { startFrame, endFrame };
    }

    typedef std::vector<float, breakfastquay::StlAllocator<float>> fvec;
    typedef std::vector<std::complex<float>,
                        breakfastquay::StlAllocator<std::complex<float>>> cvec;

    cvec getFFTColumn(int column) const;
    fvec getSourceSamples(int column) const;
    fvec getSourceData(std::pair<sv_frame_t, sv_frame_t>) const;
    fvec getSourceDataUncached(std::pair<sv_frame_t, sv_frame_t>) const;

    struct SavedSourceData {
        std::pair<sv_frame_t, sv_frame_t> range;
        fvec data;
    };
    mutable SavedSourceData m_savedData;

    struct SavedColumn {
        int n;
        cvec col;
    };
    mutable std::vector<SavedColumn> m_cached;
    mutable size_t m_cacheWriteIndex;
    size_t m_cacheSize;
};

#endif