Mercurial > hg > svcore
view data/model/FFTModel.h @ 1045:1a73618b0b67 cxx11
More type fixes, primarily in the spectrogram
author | Chris Cannam |
---|---|
date | Tue, 10 Mar 2015 10:31:27 +0000 |
parents | a1cd5abcb38b |
children | 0fd3661bcfff |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #ifndef _FFT_MODEL_H_ #define _FFT_MODEL_H_ #include "data/fft/FFTDataServer.h" #include "DenseThreeDimensionalModel.h" #include <set> #include <map> /** * An implementation of DenseThreeDimensionalModel that makes FFT data * derived from a DenseTimeValueModel available as a generic data * grid. The FFT data is acquired using FFTDataServer. Note that any * of the accessor functions may throw AllocationFailed if a cache * resize fails. */ class FFTModel : public DenseThreeDimensionalModel { Q_OBJECT public: /** * Construct an FFT model derived from the given * DenseTimeValueModel, with the given window parameters and FFT * size (which may exceed the window size, for zero-padded FFTs). * * If the model has multiple channels use only the given channel, * unless the channel is -1 in which case merge all available * channels. * * If polar is true, the data will normally be retrieved from the * FFT model in magnitude/phase form; otherwise it will normally * be retrieved in "cartesian" real/imaginary form. The results * should be the same either way, but a "polar" model addressed in * "cartesian" form or vice versa may suffer a performance * penalty. * * The fillFromColumn argument gives a hint that the FFT data * server should aim to start calculating FFT data at that column * number if possible, as that is likely to be requested first. */ FFTModel(const DenseTimeValueModel *model, int channel, WindowType windowType, int windowSize, int windowIncrement, int fftSize, bool polar, StorageAdviser::Criteria criteria = StorageAdviser::NoCriteria, sv_frame_t fillFromFrame = 0); ~FFTModel(); inline float getMagnitudeAt(int x, int y) { return m_server->getMagnitudeAt(x << m_xshift, y << m_yshift); } inline float getNormalizedMagnitudeAt(int x, int y) { return m_server->getNormalizedMagnitudeAt(x << m_xshift, y << m_yshift); } inline float getMaximumMagnitudeAt(int x) { return m_server->getMaximumMagnitudeAt(x << m_xshift); } inline float getPhaseAt(int x, int y) { return m_server->getPhaseAt(x << m_xshift, y << m_yshift); } inline void getValuesAt(int x, int y, float &real, float &imaginary) { m_server->getValuesAt(x << m_xshift, y << m_yshift, real, imaginary); } inline bool isColumnAvailable(int x) const { return m_server->isColumnReady(x << m_xshift); } inline bool getMagnitudesAt(int x, float *values, int minbin = 0, int count = 0) { return m_server->getMagnitudesAt(x << m_xshift, values, minbin << m_yshift, count, getYRatio()); } inline bool getNormalizedMagnitudesAt(int x, float *values, int minbin = 0, int count = 0) { return m_server->getNormalizedMagnitudesAt(x << m_xshift, values, minbin << m_yshift, count, getYRatio()); } inline bool getPhasesAt(int x, float *values, int minbin = 0, int count = 0) { return m_server->getPhasesAt(x << m_xshift, values, minbin << m_yshift, count, getYRatio()); } inline bool getValuesAt(int x, float *reals, float *imaginaries, int minbin = 0, int count = 0) { return m_server->getValuesAt(x << m_xshift, reals, imaginaries, minbin << m_yshift, count, getYRatio()); } inline sv_frame_t getFillExtent() const { return m_server->getFillExtent(); } // DenseThreeDimensionalModel and Model methods: // inline virtual int getWidth() const { return m_server->getWidth() >> m_xshift; } inline virtual int getHeight() const { // If there is no y-shift, the server's height (based on its // fftsize/2 + 1) is correct. If there is a shift, then the // server is using a larger fft size than we want, so we shift // it right as many times as necessary, but then we need to // re-add the "+1" part (because ((fftsize*2)/2 + 1) / 2 != // fftsize/2 + 1). return (m_server->getHeight() >> m_yshift) + (m_yshift > 0 ? 1 : 0); } virtual float getValueAt(int x, int y) const { return const_cast<FFTModel *>(this)->getMagnitudeAt(x, y); } virtual bool isOK() const { return m_server && m_server->getModel(); } virtual sv_frame_t getStartFrame() const { return 0; } virtual sv_frame_t getEndFrame() const { return sv_frame_t(getWidth()) * getResolution() + getResolution(); } virtual sv_samplerate_t getSampleRate() const; virtual int getResolution() const { return m_server->getWindowIncrement() << m_xshift; } virtual int getYBinCount() const { return getHeight(); } virtual float getMinimumLevel() const { return 0.f; // Can't provide } virtual float getMaximumLevel() const { return 1.f; // Can't provide } virtual Column getColumn(int x) const; virtual QString getBinName(int n) const; virtual bool shouldUseLogValueScale() const { return true; // Although obviously it's up to the user... } /** * Calculate an estimated frequency for a stable signal in this * bin, using phase unwrapping. This will be completely wrong if * the signal is not stable here. */ virtual bool estimateStableFrequency(int x, int y, double &frequency); enum PeakPickType { AllPeaks, /// Any bin exceeding its immediate neighbours MajorPeaks, /// Peaks picked using sliding median window MajorPitchAdaptivePeaks /// Bigger window for higher frequencies }; typedef std::set<int> PeakLocationSet; // bin typedef std::map<int, double> PeakSet; // bin -> freq /** * Return locations of peak bins in the range [ymin,ymax]. If * ymax is zero, getHeight()-1 will be used. */ virtual PeakLocationSet getPeaks(PeakPickType type, int x, int ymin = 0, int ymax = 0); /** * Return locations and estimated stable frequencies of peak bins. */ virtual PeakSet getPeakFrequencies(PeakPickType type, int x, int ymin = 0, int ymax = 0); virtual int getCompletion() const { return m_server->getFillCompletion(); } virtual QString getError() const { return m_server->getError(); } virtual Model *clone() const; virtual void suspend() { m_server->suspend(); } virtual void suspendWrites() { m_server->suspendWrites(); } virtual void resume() { m_server->resume(); } QString getTypeName() const { return tr("FFT"); } public slots: void sourceModelAboutToBeDeleted(); private: FFTModel(const FFTModel &); // not implemented FFTModel &operator=(const FFTModel &); // not implemented FFTDataServer *m_server; int m_xshift; int m_yshift; FFTDataServer *getServer(const DenseTimeValueModel *, int, WindowType, int, int, int, bool, StorageAdviser::Criteria, sv_frame_t); int getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate, int bin, float &percentile) const; int getYRatio() { int ys = m_yshift; int r = 1; while (ys) { --ys; r <<= 1; } return r; } }; #endif