Mercurial > hg > svcore
diff base/ColumnOp.h @ 1206:659372323b45 tony-2.0-integration
Merge latest SV 3.0 branch code
author | Chris Cannam |
---|---|
date | Fri, 19 Aug 2016 15:58:57 +0100 |
parents | 6f7a440b6218 |
children | 303039dd9e05 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/base/ColumnOp.h Fri Aug 19 15:58:57 2016 +0100 @@ -0,0 +1,216 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +/* + Sonic Visualiser + An audio file viewer and annotation editor. + Centre for Digital Music, Queen Mary, University of London. + This file copyright 2006-2016 Chris Cannam and QMUL. + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. See the file + COPYING included with this distribution for more information. +*/ + +#ifndef COLUMN_OP_H +#define COLUMN_OP_H + +#include "BaseTypes.h" + +#include <cmath> + +/** + * Display normalization types for columns in e.g. grid plots. + * + * Max1 means to normalize to max value = 1.0. + * Sum1 means to normalize to sum of values = 1.0. + * + * Hybrid means normalize to max = 1.0 and then multiply by + * log10 of the max value, to retain some difference between + * levels of neighbouring columns. + * + * Area normalization is handled separately. + */ +enum class ColumnNormalization { + None, + Max1, + Sum1, + Hybrid +}; + +/** + * Class containing static functions for simple operations on data + * columns, for use by display layers. + */ +class ColumnOp +{ +public: + /** + * Column type. + */ + typedef std::vector<float> Column; + + /** + * Scale the given column using the given gain multiplier. + */ + static Column applyGain(const Column &in, double gain) { + + if (gain == 1.0) { + return in; + } + Column out; + out.reserve(in.size()); + for (auto v: in) { + out.push_back(float(v * gain)); + } + return out; + } + + /** + * Scale an FFT output by half the FFT size. + */ + static Column fftScale(const Column &in, int fftSize) { + return applyGain(in, 2.0 / fftSize); + } + + /** + * Determine whether an index points to a local peak. + */ + static bool isPeak(const Column &in, int ix) { + + if (!in_range_for(in, ix-1)) return false; + if (!in_range_for(in, ix+1)) return false; + if (in[ix] < in[ix+1]) return false; + if (in[ix] < in[ix-1]) return false; + + return true; + } + + /** + * Return a column containing only the local peak values (all + * others zero). + */ + static Column peakPick(const Column &in) { + + std::vector<float> out(in.size(), 0.f); + for (int i = 0; in_range_for(in, i); ++i) { + if (isPeak(in, i)) { + out[i] = in[i]; + } + } + + return out; + } + + /** + * Return a column normalized from the input column according to + * the given normalization scheme. + */ + static Column normalize(const Column &in, ColumnNormalization n) { + + if (n == ColumnNormalization::None) { + return in; + } + + float scale = 1.f; + + if (n == ColumnNormalization::Sum1) { + + float sum = 0.f; + + for (auto v: in) { + sum += v; + } + + if (sum != 0.f) { + scale = 1.f / sum; + } + } else { + + float max = *max_element(in.begin(), in.end()); + + if (n == ColumnNormalization::Max1) { + if (max != 0.f) { + scale = 1.f / max; + } + } else if (n == ColumnNormalization::Hybrid) { + if (max > 0.f) { + scale = log10f(max + 1.f) / max; + } + } + } + + return applyGain(in, scale); + } + + /** + * Distribute the given column into a target vector of a different + * size, optionally using linear interpolation. The binfory vector + * contains a mapping from y coordinate (i.e. index into the + * target vector) to bin (i.e. index into the source column). + */ + static Column distribute(const Column &in, + int h, + const std::vector<double> &binfory, + int minbin, + bool interpolate) { + + std::vector<float> out(h, 0.f); + int bins = int(in.size()); + + for (int y = 0; y < h; ++y) { + + double sy0 = binfory[y] - minbin; + double sy1 = sy0 + 1; + if (y+1 < h) { + sy1 = binfory[y+1] - minbin; + } + + if (interpolate && fabs(sy1 - sy0) < 1.0) { + + double centre = (sy0 + sy1) / 2; + double dist = (centre - 0.5) - rint(centre - 0.5); + int bin = int(centre); + + int other = (dist < 0 ? (bin-1) : (bin+1)); + + if (bin < 0) bin = 0; + if (bin >= bins) bin = bins-1; + + if (other < 0 || other >= bins) { + other = bin; + } + + double prop = 1.0 - fabs(dist); + + double v0 = in[bin]; + double v1 = in[other]; + + out[y] = float(prop * v0 + (1.0 - prop) * v1); + + } else { // not interpolating this one + + int by0 = int(sy0 + 0.0001); + int by1 = int(sy1 + 0.0001); + if (by1 < by0 + 1) by1 = by0 + 1; + if (by1 >= bins) by1 = by1 - 1; + + for (int bin = by0; bin < by1; ++bin) { + + float value = in[bin]; + + if (bin == by0 || value > out[y]) { + out[y] = value; + } + } + } + } + + return out; + } + +}; + +#endif +