Mercurial > hg > svcore
diff plugin/transform/FeatureExtractionModelTransformer.cpp @ 331:f620ce48c950
* Further naming change: Transformer -> ModelTransformer.
The Transform class now describes a thing that can be done, and the
ModelTransformer does it to a Model.
author | Chris Cannam |
---|---|
date | Wed, 07 Nov 2007 12:59:01 +0000 |
parents | plugin/transform/FeatureExtractionPluginTransformer.cpp@21bd032ae791 |
children | 1afaf98dbf11 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/plugin/transform/FeatureExtractionModelTransformer.cpp Wed Nov 07 12:59:01 2007 +0000 @@ -0,0 +1,553 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ + +/* + Sonic Visualiser + An audio file viewer and annotation editor. + Centre for Digital Music, Queen Mary, University of London. + This file copyright 2006 Chris Cannam and QMUL. + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. See the file + COPYING included with this distribution for more information. +*/ + +#include "FeatureExtractionModelTransformer.h" + +#include "plugin/FeatureExtractionPluginFactory.h" +#include "plugin/PluginXml.h" +#include "vamp-sdk/Plugin.h" + +#include "data/model/Model.h" +#include "base/Window.h" +#include "data/model/SparseOneDimensionalModel.h" +#include "data/model/SparseTimeValueModel.h" +#include "data/model/EditableDenseThreeDimensionalModel.h" +#include "data/model/DenseTimeValueModel.h" +#include "data/model/NoteModel.h" +#include "data/model/FFTModel.h" +#include "data/model/WaveFileModel.h" + +#include <QMessageBox> + +#include <iostream> + +FeatureExtractionModelTransformer::FeatureExtractionModelTransformer(Model *inputModel, + QString pluginId, + const ExecutionContext &context, + QString configurationXml, + QString outputName) : + PluginTransformer(inputModel, context), + m_plugin(0), + m_descriptor(0), + m_outputFeatureNo(0) +{ +// std::cerr << "FeatureExtractionModelTransformer::FeatureExtractionModelTransformer: plugin " << pluginId.toStdString() << ", outputName " << outputName.toStdString() << std::endl; + + FeatureExtractionPluginFactory *factory = + FeatureExtractionPluginFactory::instanceFor(pluginId); + + if (!factory) { + std::cerr << "FeatureExtractionModelTransformer: No factory available for plugin id \"" + << pluginId.toStdString() << "\"" << std::endl; + return; + } + + m_plugin = factory->instantiatePlugin(pluginId, m_input->getSampleRate()); + + if (!m_plugin) { + std::cerr << "FeatureExtractionModelTransformer: Failed to instantiate plugin \"" + << pluginId.toStdString() << "\"" << std::endl; + return; + } + + if (configurationXml != "") { + PluginXml(m_plugin).setParametersFromXml(configurationXml); + } + + DenseTimeValueModel *input = getInput(); + if (!input) return; + + size_t channelCount = input->getChannelCount(); + if (m_plugin->getMaxChannelCount() < channelCount) { + channelCount = 1; + } + if (m_plugin->getMinChannelCount() > channelCount) { + std::cerr << "FeatureExtractionModelTransformer:: " + << "Can't provide enough channels to plugin (plugin min " + << m_plugin->getMinChannelCount() << ", max " + << m_plugin->getMaxChannelCount() << ", input model has " + << input->getChannelCount() << ")" << std::endl; + return; + } + + std::cerr << "Initialising feature extraction plugin with channels = " + << channelCount << ", step = " << m_context.stepSize + << ", block = " << m_context.blockSize << std::endl; + + if (!m_plugin->initialise(channelCount, + m_context.stepSize, + m_context.blockSize)) { + std::cerr << "FeatureExtractionModelTransformer: Plugin " + << m_plugin->getIdentifier() << " failed to initialise!" << std::endl; + return; + } + + Vamp::Plugin::OutputList outputs = m_plugin->getOutputDescriptors(); + + if (outputs.empty()) { + std::cerr << "FeatureExtractionModelTransformer: Plugin \"" + << pluginId.toStdString() << "\" has no outputs" << std::endl; + return; + } + + for (size_t i = 0; i < outputs.size(); ++i) { + if (outputName == "" || outputs[i].identifier == outputName.toStdString()) { + m_outputFeatureNo = i; + m_descriptor = new Vamp::Plugin::OutputDescriptor + (outputs[i]); + break; + } + } + + if (!m_descriptor) { + std::cerr << "FeatureExtractionModelTransformer: Plugin \"" + << pluginId.toStdString() << "\" has no output named \"" + << outputName.toStdString() << "\"" << std::endl; + return; + } + +// std::cerr << "FeatureExtractionModelTransformer: output sample type " +// << m_descriptor->sampleType << std::endl; + + int binCount = 1; + float minValue = 0.0, maxValue = 0.0; + bool haveExtents = false; + + if (m_descriptor->hasFixedBinCount) { + binCount = m_descriptor->binCount; + } + +// std::cerr << "FeatureExtractionModelTransformer: output bin count " +// << binCount << std::endl; + + if (binCount > 0 && m_descriptor->hasKnownExtents) { + minValue = m_descriptor->minValue; + maxValue = m_descriptor->maxValue; + haveExtents = true; + } + + size_t modelRate = m_input->getSampleRate(); + size_t modelResolution = 1; + + switch (m_descriptor->sampleType) { + + case Vamp::Plugin::OutputDescriptor::VariableSampleRate: + if (m_descriptor->sampleRate != 0.0) { + modelResolution = size_t(modelRate / m_descriptor->sampleRate + 0.001); + } + break; + + case Vamp::Plugin::OutputDescriptor::OneSamplePerStep: + modelResolution = m_context.stepSize; + break; + + case Vamp::Plugin::OutputDescriptor::FixedSampleRate: + modelRate = size_t(m_descriptor->sampleRate + 0.001); + break; + } + + if (binCount == 0) { + + m_output = new SparseOneDimensionalModel(modelRate, modelResolution, + false); + + } else if (binCount == 1) { + + SparseTimeValueModel *model; + if (haveExtents) { + model = new SparseTimeValueModel + (modelRate, modelResolution, minValue, maxValue, false); + } else { + model = new SparseTimeValueModel + (modelRate, modelResolution, false); + } + model->setScaleUnits(outputs[m_outputFeatureNo].unit.c_str()); + + m_output = model; + + } else if (m_descriptor->sampleType == + Vamp::Plugin::OutputDescriptor::VariableSampleRate) { + + // We don't have a sparse 3D model, so interpret this as a + // note model. There's nothing to define which values to use + // as which parameters of the note -- for the moment let's + // treat the first as pitch, second as duration in frames, + // third (if present) as velocity. (Our note model doesn't + // yet store velocity.) + //!!! todo: ask the user! + + NoteModel *model; + if (haveExtents) { + model = new NoteModel + (modelRate, modelResolution, minValue, maxValue, false); + } else { + model = new NoteModel + (modelRate, modelResolution, false); + } + model->setScaleUnits(outputs[m_outputFeatureNo].unit.c_str()); + + m_output = model; + + } else { + + EditableDenseThreeDimensionalModel *model = + new EditableDenseThreeDimensionalModel + (modelRate, modelResolution, binCount, false); + + if (!m_descriptor->binNames.empty()) { + std::vector<QString> names; + for (size_t i = 0; i < m_descriptor->binNames.size(); ++i) { + names.push_back(m_descriptor->binNames[i].c_str()); + } + model->setBinNames(names); + } + + m_output = model; + } +} + +FeatureExtractionModelTransformer::~FeatureExtractionModelTransformer() +{ + std::cerr << "FeatureExtractionModelTransformer::~FeatureExtractionModelTransformer()" << std::endl; + delete m_plugin; + delete m_descriptor; +} + +DenseTimeValueModel * +FeatureExtractionModelTransformer::getInput() +{ + DenseTimeValueModel *dtvm = + dynamic_cast<DenseTimeValueModel *>(getInputModel()); + if (!dtvm) { + std::cerr << "FeatureExtractionModelTransformer::getInput: WARNING: Input model is not conformable to DenseTimeValueModel" << std::endl; + } + return dtvm; +} + +void +FeatureExtractionModelTransformer::run() +{ + DenseTimeValueModel *input = getInput(); + if (!input) return; + + if (!m_output) return; + + while (!input->isReady()) { +/* + if (dynamic_cast<WaveFileModel *>(input)) { + std::cerr << "FeatureExtractionModelTransformer::run: Model is not ready, but it's not a WaveFileModel (it's a " << typeid(input).name() << "), so that's OK" << std::endl; + sleep(2); + break; // no need to wait + } +*/ + std::cerr << "FeatureExtractionModelTransformer::run: Waiting for input model to be ready..." << std::endl; + sleep(1); + } + + size_t sampleRate = m_input->getSampleRate(); + + size_t channelCount = input->getChannelCount(); + if (m_plugin->getMaxChannelCount() < channelCount) { + channelCount = 1; + } + + float **buffers = new float*[channelCount]; + for (size_t ch = 0; ch < channelCount; ++ch) { + buffers[ch] = new float[m_context.blockSize + 2]; + } + + bool frequencyDomain = (m_plugin->getInputDomain() == + Vamp::Plugin::FrequencyDomain); + std::vector<FFTModel *> fftModels; + + if (frequencyDomain) { + for (size_t ch = 0; ch < channelCount; ++ch) { + FFTModel *model = new FFTModel + (getInput(), + channelCount == 1 ? m_context.channel : ch, + m_context.windowType, + m_context.blockSize, + m_context.stepSize, + m_context.blockSize, + false); + if (!model->isOK()) { + QMessageBox::critical + (0, tr("FFT cache failed"), + tr("Failed to create the FFT model for this transform.\n" + "There may be insufficient memory or disc space to continue.")); + delete model; + setCompletion(100); + return; + } + model->resume(); + fftModels.push_back(model); + } + } + + long startFrame = m_input->getStartFrame(); + long endFrame = m_input->getEndFrame(); + + long contextStart = m_context.startFrame; + long contextDuration = m_context.duration; + + if (contextStart == 0 || contextStart < startFrame) { + contextStart = startFrame; + } + + if (contextDuration == 0) { + contextDuration = endFrame - contextStart; + } + if (contextStart + contextDuration > endFrame) { + contextDuration = endFrame - contextStart; + } + + long blockFrame = contextStart; + + long prevCompletion = 0; + + setCompletion(0); + + while (!m_abandoned) { + + if (frequencyDomain) { + if (blockFrame - int(m_context.blockSize)/2 > + contextStart + contextDuration) break; + } else { + if (blockFrame >= + contextStart + contextDuration) break; + } + +// std::cerr << "FeatureExtractionModelTransformer::run: blockFrame " +// << blockFrame << ", endFrame " << endFrame << ", blockSize " +// << m_context.blockSize << std::endl; + + long completion = + (((blockFrame - contextStart) / m_context.stepSize) * 99) / + (contextDuration / m_context.stepSize); + + // channelCount is either m_input->channelCount or 1 + + for (size_t ch = 0; ch < channelCount; ++ch) { + if (frequencyDomain) { + int column = (blockFrame - startFrame) / m_context.stepSize; + for (size_t i = 0; i <= m_context.blockSize/2; ++i) { + fftModels[ch]->getValuesAt + (column, i, buffers[ch][i*2], buffers[ch][i*2+1]); + } + } else { + getFrames(ch, channelCount, + blockFrame, m_context.blockSize, buffers[ch]); + } + } + + Vamp::Plugin::FeatureSet features = m_plugin->process + (buffers, Vamp::RealTime::frame2RealTime(blockFrame, sampleRate)); + + for (size_t fi = 0; fi < features[m_outputFeatureNo].size(); ++fi) { + Vamp::Plugin::Feature feature = + features[m_outputFeatureNo][fi]; + addFeature(blockFrame, feature); + } + + if (blockFrame == contextStart || completion > prevCompletion) { + setCompletion(completion); + prevCompletion = completion; + } + + blockFrame += m_context.stepSize; + } + + if (m_abandoned) return; + + Vamp::Plugin::FeatureSet features = m_plugin->getRemainingFeatures(); + + for (size_t fi = 0; fi < features[m_outputFeatureNo].size(); ++fi) { + Vamp::Plugin::Feature feature = + features[m_outputFeatureNo][fi]; + addFeature(blockFrame, feature); + } + + if (frequencyDomain) { + for (size_t ch = 0; ch < channelCount; ++ch) { + delete fftModels[ch]; + } + } + + setCompletion(100); +} + +void +FeatureExtractionModelTransformer::getFrames(int channel, int channelCount, + long startFrame, long size, + float *buffer) +{ + long offset = 0; + + if (startFrame < 0) { + for (int i = 0; i < size && startFrame + i < 0; ++i) { + buffer[i] = 0.0f; + } + offset = -startFrame; + size -= offset; + if (size <= 0) return; + startFrame = 0; + } + + long got = getInput()->getData + ((channelCount == 1 ? m_context.channel : channel), + startFrame, size, buffer + offset); + + while (got < size) { + buffer[offset + got] = 0.0; + ++got; + } + + if (m_context.channel == -1 && channelCount == 1 && + getInput()->getChannelCount() > 1) { + // use mean instead of sum, as plugin input + int cc = getInput()->getChannelCount(); + for (long i = 0; i < size; ++i) { + buffer[i] /= cc; + } + } +} + +void +FeatureExtractionModelTransformer::addFeature(size_t blockFrame, + const Vamp::Plugin::Feature &feature) +{ + size_t inputRate = m_input->getSampleRate(); + +// std::cerr << "FeatureExtractionModelTransformer::addFeature(" +// << blockFrame << ")" << std::endl; + + int binCount = 1; + if (m_descriptor->hasFixedBinCount) { + binCount = m_descriptor->binCount; + } + + size_t frame = blockFrame; + + if (m_descriptor->sampleType == + Vamp::Plugin::OutputDescriptor::VariableSampleRate) { + + if (!feature.hasTimestamp) { + std::cerr + << "WARNING: FeatureExtractionModelTransformer::addFeature: " + << "Feature has variable sample rate but no timestamp!" + << std::endl; + return; + } else { + frame = Vamp::RealTime::realTime2Frame(feature.timestamp, inputRate); + } + + } else if (m_descriptor->sampleType == + Vamp::Plugin::OutputDescriptor::FixedSampleRate) { + + if (feature.hasTimestamp) { + //!!! warning: sampleRate may be non-integral + frame = Vamp::RealTime::realTime2Frame(feature.timestamp, + lrintf(m_descriptor->sampleRate)); + } else { + frame = m_output->getEndFrame(); + } + } + + if (binCount == 0) { + + SparseOneDimensionalModel *model = getOutput<SparseOneDimensionalModel>(); + if (!model) return; + model->addPoint(SparseOneDimensionalModel::Point(frame, feature.label.c_str())); + + } else if (binCount == 1) { + + float value = 0.0; + if (feature.values.size() > 0) value = feature.values[0]; + + SparseTimeValueModel *model = getOutput<SparseTimeValueModel>(); + if (!model) return; + model->addPoint(SparseTimeValueModel::Point(frame, value, feature.label.c_str())); +// std::cerr << "SparseTimeValueModel::addPoint(" << frame << ", " << value << "), " << feature.label.c_str() << std::endl; + + } else if (m_descriptor->sampleType == + Vamp::Plugin::OutputDescriptor::VariableSampleRate) { + + float pitch = 0.0; + if (feature.values.size() > 0) pitch = feature.values[0]; + + float duration = 1; + if (feature.values.size() > 1) duration = feature.values[1]; + + float velocity = 100; + if (feature.values.size() > 2) velocity = feature.values[2]; + + NoteModel *model = getOutput<NoteModel>(); + if (!model) return; + + model->addPoint(NoteModel::Point(frame, pitch, + lrintf(duration), + feature.label.c_str())); + + } else { + + DenseThreeDimensionalModel::Column values = feature.values; + + EditableDenseThreeDimensionalModel *model = + getOutput<EditableDenseThreeDimensionalModel>(); + if (!model) return; + + model->setColumn(frame / model->getResolution(), values); + } +} + +void +FeatureExtractionModelTransformer::setCompletion(int completion) +{ + int binCount = 1; + if (m_descriptor->hasFixedBinCount) { + binCount = m_descriptor->binCount; + } + +// std::cerr << "FeatureExtractionModelTransformer::setCompletion(" +// << completion << ")" << std::endl; + + if (binCount == 0) { + + SparseOneDimensionalModel *model = getOutput<SparseOneDimensionalModel>(); + if (!model) return; + model->setCompletion(completion); + + } else if (binCount == 1) { + + SparseTimeValueModel *model = getOutput<SparseTimeValueModel>(); + if (!model) return; + model->setCompletion(completion); + + } else if (m_descriptor->sampleType == + Vamp::Plugin::OutputDescriptor::VariableSampleRate) { + + NoteModel *model = getOutput<NoteModel>(); + if (!model) return; + model->setCompletion(completion); + + } else { + + EditableDenseThreeDimensionalModel *model = + getOutput<EditableDenseThreeDimensionalModel>(); + if (!model) return; + model->setCompletion(completion); + } +} +