Mercurial > hg > svcore
diff data/model/test/TestFFTModel.h @ 1105:a27b1ce86e4f 3.0-integration
Merge from branch simple-fft-model
author | Chris Cannam |
---|---|
date | Fri, 26 Jun 2015 14:07:25 +0100 |
parents | 393134235fa0 |
children | 457a1a619c5f |
line wrap: on
line diff
--- a/data/model/test/TestFFTModel.h Fri Jun 12 12:41:19 2015 +0100 +++ b/data/model/test/TestFFTModel.h Fri Jun 26 14:07:25 2015 +0100 @@ -40,24 +40,35 @@ int columnNo, vector<vector<complex<float>>> expectedValues, int expectedWidth) { for (int ch = 0; in_range_for(expectedValues, ch); ++ch) { - for (int polar = 0; polar <= 1; ++polar) { - FFTModel fftm(model, ch, window, windowSize, windowIncrement, - fftSize, bool(polar)); - QCOMPARE(fftm.getWidth(), expectedWidth); - int hs1 = fftSize/2 + 1; - QCOMPARE(fftm.getHeight(), hs1); - vector<float> reals(hs1 + 1, 0.f); - vector<float> imags(hs1 + 1, 0.f); - reals[hs1] = 999.f; // overrun guards - imags[hs1] = 999.f; + FFTModel fftm(model, ch, window, windowSize, windowIncrement, fftSize); + QCOMPARE(fftm.getWidth(), expectedWidth); + int hs1 = fftSize/2 + 1; + QCOMPARE(fftm.getHeight(), hs1); + vector<float> reals(hs1 + 1, 0.f); + vector<float> imags(hs1 + 1, 0.f); + reals[hs1] = 999.f; // overrun guards + imags[hs1] = 999.f; + for (int stepThrough = 0; stepThrough <= 1; ++stepThrough) { + if (stepThrough) { + // Read through the columns in order instead of + // randomly accessing the one we want. This is to + // exercise the case where the FFT model saves + // part of each input frame and moves along by + // only the non-overlapping distance + for (int sc = 0; sc < columnNo; ++sc) { + fftm.getValuesAt(sc, &reals[0], &imags[0]); + } + } fftm.getValuesAt(columnNo, &reals[0], &imags[0]); for (int i = 0; i < hs1; ++i) { float eRe = expectedValues[ch][i].real(); float eIm = expectedValues[ch][i].imag(); - if (reals[i] != eRe || imags[i] != eIm) { + float thresh = 1e-5f; + if (abs(reals[i] - eRe) > thresh || + abs(imags[i] - eIm) > thresh) { cerr << "ERROR: output is not as expected for column " - << i << " in channel " << ch << " (polar store = " - << polar << ")" << endl; + << i << " in channel " << ch << " (stepThrough = " + << stepThrough << ")" << endl; cerr << "expected : "; for (int j = 0; j < hs1; ++j) { cerr << expectedValues[ch][j] << " "; @@ -68,15 +79,15 @@ } cerr << endl; } - QCOMPARE(reals[i], eRe); - QCOMPARE(imags[i], eIm); + COMPARE_FUZZIER_F(reals[i], eRe); + COMPARE_FUZZIER_F(imags[i], eIm); } QCOMPARE(reals[hs1], 999.f); QCOMPARE(imags[hs1], 999.f); } } } - + private slots: // NB. FFTModel columns are centred on the sample frame, and in @@ -88,7 +99,7 @@ // (rather than something with a step in it that is harder to // reason about the FFT of) and the results for subsequent columns // are those of our expected signal. - + void dc_simple_rect() { MockWaveModel mwm({ DC }, 16, 4); test(&mwm, RectangularWindow, 8, 8, 8, 0, @@ -98,7 +109,7 @@ test(&mwm, RectangularWindow, 8, 8, 8, 2, { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4); test(&mwm, RectangularWindow, 8, 8, 8, 3, - { { { }, {}, {}, {}, {} } }, 4); + { { {}, {}, {}, {}, {} } }, 4); } void dc_simple_hann() { @@ -112,7 +123,131 @@ test(&mwm, HanningWindow, 8, 8, 8, 2, { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4); test(&mwm, HanningWindow, 8, 8, 8, 3, - { { { }, {}, {}, {}, {} } }, 4); + { { {}, {}, {}, {}, {} } }, 4); + } + + void dc_simple_hann_halfoverlap() { + MockWaveModel mwm({ DC }, 16, 4); + test(&mwm, HanningWindow, 8, 4, 8, 0, + { { {}, {}, {}, {}, {} } }, 7); + test(&mwm, HanningWindow, 8, 4, 8, 2, + { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7); + test(&mwm, HanningWindow, 8, 4, 8, 3, + { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7); + test(&mwm, HanningWindow, 8, 4, 8, 6, + { { {}, {}, {}, {}, {} } }, 7); + } + + void sine_simple_rect() { + MockWaveModel mwm({ Sine }, 16, 4); + // Sine: output is purely imaginary. Note the sign is flipped + // (normally the first half of the output would have negative + // sign for a sine starting at 0) because the model does an + // FFT shift to centre the phase + test(&mwm, RectangularWindow, 8, 8, 8, 0, + { { {}, {}, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 1, + { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 2, + { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 3, + { { {}, {}, {}, {}, {} } }, 4); + } + + void cosine_simple_rect() { + MockWaveModel mwm({ Cosine }, 16, 4); + // Cosine: output is purely real. Note the sign is flipped + // because the model does an FFT shift to centre the phase + test(&mwm, RectangularWindow, 8, 8, 8, 0, + { { {}, {}, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 1, + { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 2, + { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 3, + { { {}, {}, {}, {}, {} } }, 4); + } + + void twochan_simple_rect() { + MockWaveModel mwm({ Sine, Cosine }, 16, 4); + // Test that the two channels are read and converted separately + test(&mwm, RectangularWindow, 8, 8, 8, 0, + { + { {}, {}, {}, {}, {} }, + { {}, {}, {}, {}, {} } + }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 1, + { + { {}, { 0.f, 2.f }, {}, {}, {} }, + { {}, { -2.f, 0.f }, {}, {}, {} } + }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 2, + { + { {}, { 0.f, 2.f }, {}, {}, {} }, + { {}, { -2.f, 0.f }, {}, {}, {} } + }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 3, + { + { {}, {}, {}, {}, {} }, + { {}, {}, {}, {}, {} } + }, 4); + } + + void nyquist_simple_rect() { + MockWaveModel mwm({ Nyquist }, 16, 4); + // Again, the sign is flipped. This has the same amount of + // energy as the DC example + test(&mwm, RectangularWindow, 8, 8, 8, 0, + { { {}, {}, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 1, + { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 2, + { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 3, + { { {}, {}, {}, {}, {} } }, 4); + } + + void dirac_simple_rect() { + MockWaveModel mwm({ Dirac }, 16, 4); + // The window scales by 0.5 and some signs are flipped. Only + // column 1 has any data (the single impulse). + test(&mwm, RectangularWindow, 8, 8, 8, 0, + { { {}, {}, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 1, + { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 2, + { { {}, {}, {}, {}, {} } }, 4); + test(&mwm, RectangularWindow, 8, 8, 8, 3, + { { {}, {}, {}, {}, {} } }, 4); + } + + void dirac_simple_rect_2() { + MockWaveModel mwm({ Dirac }, 16, 8); + // With 8 samples padding, the FFT shift places the first + // Dirac impulse at the start of column 1, thus giving all + // positive values + test(&mwm, RectangularWindow, 8, 8, 8, 0, + { { {}, {}, {}, {}, {} } }, 5); + test(&mwm, RectangularWindow, 8, 8, 8, 1, + { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 5); + test(&mwm, RectangularWindow, 8, 8, 8, 2, + { { {}, {}, {}, {}, {} } }, 5); + test(&mwm, RectangularWindow, 8, 8, 8, 3, + { { {}, {}, {}, {}, {} } }, 5); + test(&mwm, RectangularWindow, 8, 8, 8, 4, + { { {}, {}, {}, {}, {} } }, 5); + } + + void dirac_simple_rect_halfoverlap() { + MockWaveModel mwm({ Dirac }, 16, 4); + test(&mwm, RectangularWindow, 8, 4, 8, 0, + { { {}, {}, {}, {}, {} } }, 7); + test(&mwm, RectangularWindow, 8, 4, 8, 1, + { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 7); + test(&mwm, RectangularWindow, 8, 4, 8, 2, + { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 7); + test(&mwm, RectangularWindow, 8, 4, 8, 3, + { { {}, {}, {}, {}, {} } }, 7); } };