diff transform/FeatureExtractionModelTransformer.cpp @ 388:370aa9714ef5

* Move plugin/transform to plain transform. This way transform can depend on model and GUI classes, but plugin doesn't have to.
author Chris Cannam
date Wed, 12 Mar 2008 18:02:17 +0000
parents plugin/transform/FeatureExtractionModelTransformer.cpp@7aa1de571880
children 115f60df1e4d
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/transform/FeatureExtractionModelTransformer.cpp	Wed Mar 12 18:02:17 2008 +0000
@@ -0,0 +1,643 @@
+/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
+
+/*
+    Sonic Visualiser
+    An audio file viewer and annotation editor.
+    Centre for Digital Music, Queen Mary, University of London.
+    This file copyright 2006 Chris Cannam and QMUL.
+    
+    This program is free software; you can redistribute it and/or
+    modify it under the terms of the GNU General Public License as
+    published by the Free Software Foundation; either version 2 of the
+    License, or (at your option) any later version.  See the file
+    COPYING included with this distribution for more information.
+*/
+
+#include "FeatureExtractionModelTransformer.h"
+
+#include "plugin/FeatureExtractionPluginFactory.h"
+#include "plugin/PluginXml.h"
+#include "vamp-sdk/Plugin.h"
+
+#include "data/model/Model.h"
+#include "base/Window.h"
+#include "base/Exceptions.h"
+#include "data/model/SparseOneDimensionalModel.h"
+#include "data/model/SparseTimeValueModel.h"
+#include "data/model/EditableDenseThreeDimensionalModel.h"
+#include "data/model/DenseTimeValueModel.h"
+#include "data/model/NoteModel.h"
+#include "data/model/FFTModel.h"
+#include "data/model/WaveFileModel.h"
+
+#include "TransformFactory.h"
+
+#include <iostream>
+
+FeatureExtractionModelTransformer::FeatureExtractionModelTransformer(Input in,
+                                                                     const Transform &transform) :
+    ModelTransformer(in, transform),
+    m_plugin(0),
+    m_descriptor(0),
+    m_outputFeatureNo(0)
+{
+//    std::cerr << "FeatureExtractionModelTransformer::FeatureExtractionModelTransformer: plugin " << pluginId.toStdString() << ", outputName " << m_transform.getOutput().toStdString() << std::endl;
+
+    QString pluginId = transform.getPluginIdentifier();
+
+    FeatureExtractionPluginFactory *factory =
+	FeatureExtractionPluginFactory::instanceFor(pluginId);
+
+    if (!factory) {
+        m_message = tr("No factory available for feature extraction plugin id \"%1\" (unknown plugin type, or internal error?)").arg(pluginId);
+	return;
+    }
+
+    DenseTimeValueModel *input = getConformingInput();
+    if (!input) {
+        m_message = tr("Input model for feature extraction plugin \"%1\" is of wrong type (internal error?)").arg(pluginId);
+        return;
+    }
+
+    m_plugin = factory->instantiatePlugin(pluginId, input->getSampleRate());
+    if (!m_plugin) {
+        m_message = tr("Failed to instantiate plugin \"%1\"").arg(pluginId);
+	return;
+    }
+
+    TransformFactory::getInstance()->makeContextConsistentWithPlugin
+        (m_transform, m_plugin);
+
+    TransformFactory::getInstance()->setPluginParameters
+        (m_transform, m_plugin);
+
+    size_t channelCount = input->getChannelCount();
+    if (m_plugin->getMaxChannelCount() < channelCount) {
+	channelCount = 1;
+    }
+    if (m_plugin->getMinChannelCount() > channelCount) {
+        m_message = tr("Cannot provide enough channels to feature extraction plugin \"%1\" (plugin min is %2, max %3; input model has %4)")
+            .arg(pluginId)
+            .arg(m_plugin->getMinChannelCount())
+            .arg(m_plugin->getMaxChannelCount())
+            .arg(input->getChannelCount());
+	return;
+    }
+
+    std::cerr << "Initialising feature extraction plugin with channels = "
+              << channelCount << ", step = " << m_transform.getStepSize()
+              << ", block = " << m_transform.getBlockSize() << std::endl;
+
+    if (!m_plugin->initialise(channelCount,
+                              m_transform.getStepSize(),
+                              m_transform.getBlockSize())) {
+
+        size_t pstep = m_transform.getStepSize();
+        size_t pblock = m_transform.getBlockSize();
+
+        m_transform.setStepSize(0);
+        m_transform.setBlockSize(0);
+        TransformFactory::getInstance()->makeContextConsistentWithPlugin
+            (m_transform, m_plugin);
+
+        if (m_transform.getStepSize() != pstep ||
+            m_transform.getBlockSize() != pblock) {
+            
+            if (!m_plugin->initialise(channelCount,
+                                      m_transform.getStepSize(),
+                                      m_transform.getBlockSize())) {
+
+                m_message = tr("Failed to initialise feature extraction plugin \"%1\"").arg(pluginId);
+                return;
+
+            } else {
+
+                m_message = tr("Feature extraction plugin \"%1\" rejected the given step and block sizes (%2 and %3); using plugin defaults (%4 and %5) instead")
+                    .arg(pluginId)
+                    .arg(pstep)
+                    .arg(pblock)
+                    .arg(m_transform.getStepSize())
+                    .arg(m_transform.getBlockSize());
+            }
+
+        } else {
+
+            m_message = tr("Failed to initialise feature extraction plugin \"%1\"").arg(pluginId);
+            return;
+        }
+    }
+
+    if (m_transform.getPluginVersion() != "") {
+        QString pv = QString("%1").arg(m_plugin->getPluginVersion());
+        if (pv != m_transform.getPluginVersion()) {
+            QString vm = tr("Transform was configured for version %1 of plugin \"%2\", but the plugin being used is version %3")
+                .arg(m_transform.getPluginVersion())
+                .arg(pluginId)
+                .arg(pv);
+            if (m_message != "") {
+                m_message = QString("%1; %2").arg(vm).arg(m_message);
+            } else {
+                m_message = vm;
+            }
+        }
+    }
+
+    Vamp::Plugin::OutputList outputs = m_plugin->getOutputDescriptors();
+
+    if (outputs.empty()) {
+        m_message = tr("Plugin \"%1\" has no outputs").arg(pluginId);
+	return;
+    }
+    
+    for (size_t i = 0; i < outputs.size(); ++i) {
+	if (m_transform.getOutput() == "" ||
+            outputs[i].identifier == m_transform.getOutput().toStdString()) {
+	    m_outputFeatureNo = i;
+	    m_descriptor = new Vamp::Plugin::OutputDescriptor
+		(outputs[i]);
+	    break;
+	}
+    }
+
+    if (!m_descriptor) {
+        m_message = tr("Plugin \"%1\" has no output named \"%2\"")
+            .arg(pluginId)
+            .arg(m_transform.getOutput());
+	return;
+    }
+
+//    std::cerr << "FeatureExtractionModelTransformer: output sample type "
+//	      << m_descriptor->sampleType << std::endl;
+
+    int binCount = 1;
+    float minValue = 0.0, maxValue = 0.0;
+    bool haveExtents = false;
+    
+    if (m_descriptor->hasFixedBinCount) {
+	binCount = m_descriptor->binCount;
+    }
+
+//    std::cerr << "FeatureExtractionModelTransformer: output bin count "
+//	      << binCount << std::endl;
+
+    if (binCount > 0 && m_descriptor->hasKnownExtents) {
+	minValue = m_descriptor->minValue;
+	maxValue = m_descriptor->maxValue;
+        haveExtents = true;
+    }
+
+    size_t modelRate = input->getSampleRate();
+    size_t modelResolution = 1;
+    
+    switch (m_descriptor->sampleType) {
+
+    case Vamp::Plugin::OutputDescriptor::VariableSampleRate:
+	if (m_descriptor->sampleRate != 0.0) {
+	    modelResolution = size_t(modelRate / m_descriptor->sampleRate + 0.001);
+	}
+	break;
+
+    case Vamp::Plugin::OutputDescriptor::OneSamplePerStep:
+	modelResolution = m_transform.getStepSize();
+	break;
+
+    case Vamp::Plugin::OutputDescriptor::FixedSampleRate:
+	modelRate = size_t(m_descriptor->sampleRate + 0.001);
+	break;
+    }
+
+    if (binCount == 0) {
+
+	m_output = new SparseOneDimensionalModel(modelRate, modelResolution,
+						 false);
+
+    } else if (binCount == 1) {
+
+        SparseTimeValueModel *model;
+        if (haveExtents) {
+            model = new SparseTimeValueModel
+                (modelRate, modelResolution, minValue, maxValue, false);
+        } else {
+            model = new SparseTimeValueModel
+                (modelRate, modelResolution, false);
+        }
+        model->setScaleUnits(outputs[m_outputFeatureNo].unit.c_str());
+
+        m_output = model;
+
+    } else if (m_descriptor->sampleType ==
+	       Vamp::Plugin::OutputDescriptor::VariableSampleRate) {
+
+        // We don't have a sparse 3D model, so interpret this as a
+        // note model.  There's nothing to define which values to use
+        // as which parameters of the note -- for the moment let's
+        // treat the first as pitch, second as duration in frames,
+        // third (if present) as velocity. (Our note model doesn't
+        // yet store velocity.)
+        //!!! todo: ask the user!
+	
+        NoteModel *model;
+        if (haveExtents) {
+            model = new NoteModel
+                (modelRate, modelResolution, minValue, maxValue, false);
+        } else {
+            model = new NoteModel
+                (modelRate, modelResolution, false);
+        }            
+        model->setScaleUnits(outputs[m_outputFeatureNo].unit.c_str());
+
+        m_output = model;
+
+    } else {
+
+        EditableDenseThreeDimensionalModel *model =
+            new EditableDenseThreeDimensionalModel
+            (modelRate, modelResolution, binCount, false);
+
+	if (!m_descriptor->binNames.empty()) {
+	    std::vector<QString> names;
+	    for (size_t i = 0; i < m_descriptor->binNames.size(); ++i) {
+		names.push_back(m_descriptor->binNames[i].c_str());
+	    }
+	    model->setBinNames(names);
+	}
+        
+        m_output = model;
+    }
+
+    if (m_output) m_output->setSourceModel(input);
+}
+
+FeatureExtractionModelTransformer::~FeatureExtractionModelTransformer()
+{
+    std::cerr << "FeatureExtractionModelTransformer::~FeatureExtractionModelTransformer()" << std::endl;
+    delete m_plugin;
+    delete m_descriptor;
+}
+
+DenseTimeValueModel *
+FeatureExtractionModelTransformer::getConformingInput()
+{
+    DenseTimeValueModel *dtvm =
+	dynamic_cast<DenseTimeValueModel *>(getInputModel());
+    if (!dtvm) {
+	std::cerr << "FeatureExtractionModelTransformer::getConformingInput: WARNING: Input model is not conformable to DenseTimeValueModel" << std::endl;
+    }
+    return dtvm;
+}
+
+void
+FeatureExtractionModelTransformer::run()
+{
+    DenseTimeValueModel *input = getConformingInput();
+    if (!input) return;
+
+    if (!m_output) return;
+
+    while (!input->isReady()) {
+/*
+        if (dynamic_cast<WaveFileModel *>(input)) {
+            std::cerr << "FeatureExtractionModelTransformer::run: Model is not ready, but it's not a WaveFileModel (it's a " << typeid(input).name() << "), so that's OK" << std::endl;
+            sleep(2);
+            break; // no need to wait
+        }
+*/
+        std::cerr << "FeatureExtractionModelTransformer::run: Waiting for input model to be ready..." << std::endl;
+        sleep(1);
+    }
+
+    size_t sampleRate = input->getSampleRate();
+
+    size_t channelCount = input->getChannelCount();
+    if (m_plugin->getMaxChannelCount() < channelCount) {
+	channelCount = 1;
+    }
+
+    float **buffers = new float*[channelCount];
+    for (size_t ch = 0; ch < channelCount; ++ch) {
+	buffers[ch] = new float[m_transform.getBlockSize() + 2];
+    }
+
+    size_t stepSize = m_transform.getStepSize();
+    size_t blockSize = m_transform.getBlockSize();
+
+    bool frequencyDomain = (m_plugin->getInputDomain() ==
+                            Vamp::Plugin::FrequencyDomain);
+    std::vector<FFTModel *> fftModels;
+
+    if (frequencyDomain) {
+        for (size_t ch = 0; ch < channelCount; ++ch) {
+            FFTModel *model = new FFTModel
+                                  (getConformingInput(),
+                                   channelCount == 1 ? m_input.getChannel() : ch,
+                                   m_transform.getWindowType(),
+                                   blockSize,
+                                   stepSize,
+                                   blockSize,
+                                   false,
+                                   StorageAdviser::PrecisionCritical);
+            if (!model->isOK()) {
+                delete model;
+                setCompletion(100);
+                //!!! need a better way to handle this -- previously we were using a QMessageBox but that isn't an appropriate thing to do here either
+                throw AllocationFailed("Failed to create the FFT model for this feature extraction model transformer");
+            }
+            model->resume();
+            fftModels.push_back(model);
+        }
+    }
+
+    long startFrame = m_input.getModel()->getStartFrame();
+    long   endFrame = m_input.getModel()->getEndFrame();
+
+    RealTime contextStartRT = m_transform.getStartTime();
+    RealTime contextDurationRT = m_transform.getDuration();
+
+    long contextStart =
+        RealTime::realTime2Frame(contextStartRT, sampleRate);
+
+    long contextDuration =
+        RealTime::realTime2Frame(contextDurationRT, sampleRate);
+
+    if (contextStart == 0 || contextStart < startFrame) {
+        contextStart = startFrame;
+    }
+
+    if (contextDuration == 0) {
+        contextDuration = endFrame - contextStart;
+    }
+    if (contextStart + contextDuration > endFrame) {
+        contextDuration = endFrame - contextStart;
+    }
+
+    long blockFrame = contextStart;
+
+    long prevCompletion = 0;
+
+    setCompletion(0);
+
+    while (!m_abandoned) {
+
+        if (frequencyDomain) {
+            if (blockFrame - int(blockSize)/2 >
+                contextStart + contextDuration) break;
+        } else {
+            if (blockFrame >= 
+                contextStart + contextDuration) break;
+        }
+
+//	std::cerr << "FeatureExtractionModelTransformer::run: blockFrame "
+//		  << blockFrame << ", endFrame " << endFrame << ", blockSize "
+//                  << blockSize << std::endl;
+
+	long completion =
+	    (((blockFrame - contextStart) / stepSize) * 99) /
+	    (contextDuration / stepSize);
+
+	// channelCount is either m_input.getModel()->channelCount or 1
+
+        if (frequencyDomain) {
+            for (size_t ch = 0; ch < channelCount; ++ch) {
+                int column = (blockFrame - startFrame) / stepSize;
+                for (size_t i = 0; i <= blockSize/2; ++i) {
+                    fftModels[ch]->getValuesAt
+                        (column, i, buffers[ch][i*2], buffers[ch][i*2+1]);
+                }
+            }
+        } else {
+            getFrames(channelCount, blockFrame, blockSize, buffers);
+        }
+
+	Vamp::Plugin::FeatureSet features = m_plugin->process
+	    (buffers, Vamp::RealTime::frame2RealTime(blockFrame, sampleRate));
+
+	for (size_t fi = 0; fi < features[m_outputFeatureNo].size(); ++fi) {
+	    Vamp::Plugin::Feature feature =
+		features[m_outputFeatureNo][fi];
+	    addFeature(blockFrame, feature);
+	}
+
+	if (blockFrame == contextStart || completion > prevCompletion) {
+	    setCompletion(completion);
+	    prevCompletion = completion;
+	}
+
+	blockFrame += stepSize;
+    }
+
+    if (m_abandoned) return;
+
+    Vamp::Plugin::FeatureSet features = m_plugin->getRemainingFeatures();
+
+    for (size_t fi = 0; fi < features[m_outputFeatureNo].size(); ++fi) {
+	Vamp::Plugin::Feature feature =
+	    features[m_outputFeatureNo][fi];
+	addFeature(blockFrame, feature);
+    }
+
+    if (frequencyDomain) {
+        for (size_t ch = 0; ch < channelCount; ++ch) {
+            delete fftModels[ch];
+        }
+    }
+
+    setCompletion(100);
+}
+
+void
+FeatureExtractionModelTransformer::getFrames(int channelCount,
+                                             long startFrame, long size,
+                                             float **buffers)
+{
+    long offset = 0;
+
+    if (startFrame < 0) {
+        for (int c = 0; c < channelCount; ++c) {
+            for (int i = 0; i < size && startFrame + i < 0; ++i) {
+                buffers[c][i] = 0.0f;
+            }
+        }
+        offset = -startFrame;
+        size -= offset;
+        if (size <= 0) return;
+        startFrame = 0;
+    }
+
+    DenseTimeValueModel *input = getConformingInput();
+    if (!input) return;
+    
+    long got = 0;
+
+    if (channelCount == 1) {
+
+        got = input->getData(m_input.getChannel(), startFrame, size,
+                             buffers[0] + offset);
+
+        if (m_input.getChannel() == -1 && input->getChannelCount() > 1) {
+            // use mean instead of sum, as plugin input
+            float cc = float(input->getChannelCount());
+            for (long i = 0; i < size; ++i) {
+                buffers[0][i + offset] /= cc;
+            }
+        }
+
+    } else {
+
+        float **writebuf = buffers;
+        if (offset > 0) {
+            writebuf = new float *[channelCount];
+            for (int i = 0; i < channelCount; ++i) {
+                writebuf[i] = buffers[i] + offset;
+            }
+        }
+
+        got = input->getData(0, channelCount-1, startFrame, size, writebuf);
+
+        if (writebuf != buffers) delete[] writebuf;
+    }
+
+    while (got < size) {
+        for (int c = 0; c < channelCount; ++c) {
+            buffers[c][got + offset] = 0.0;
+        }
+        ++got;
+    }
+}
+
+void
+FeatureExtractionModelTransformer::addFeature(size_t blockFrame,
+					     const Vamp::Plugin::Feature &feature)
+{
+    size_t inputRate = m_input.getModel()->getSampleRate();
+
+//    std::cerr << "FeatureExtractionModelTransformer::addFeature("
+//	      << blockFrame << ")" << std::endl;
+
+    int binCount = 1;
+    if (m_descriptor->hasFixedBinCount) {
+	binCount = m_descriptor->binCount;
+    }
+
+    size_t frame = blockFrame;
+
+    if (m_descriptor->sampleType ==
+	Vamp::Plugin::OutputDescriptor::VariableSampleRate) {
+
+	if (!feature.hasTimestamp) {
+	    std::cerr
+		<< "WARNING: FeatureExtractionModelTransformer::addFeature: "
+		<< "Feature has variable sample rate but no timestamp!"
+		<< std::endl;
+	    return;
+	} else {
+	    frame = Vamp::RealTime::realTime2Frame(feature.timestamp, inputRate);
+	}
+
+    } else if (m_descriptor->sampleType ==
+	       Vamp::Plugin::OutputDescriptor::FixedSampleRate) {
+
+	if (feature.hasTimestamp) {
+	    //!!! warning: sampleRate may be non-integral
+	    frame = Vamp::RealTime::realTime2Frame(feature.timestamp,
+                                                   lrintf(m_descriptor->sampleRate));
+	} else {
+	    frame = m_output->getEndFrame();
+	}
+    }
+	
+    if (binCount == 0) {
+
+	SparseOneDimensionalModel *model =
+            getConformingOutput<SparseOneDimensionalModel>();
+	if (!model) return;
+
+	model->addPoint(SparseOneDimensionalModel::Point(frame, feature.label.c_str()));
+	
+    } else if (binCount == 1) {
+
+	float value = 0.0;
+	if (feature.values.size() > 0) value = feature.values[0];
+
+	SparseTimeValueModel *model =
+            getConformingOutput<SparseTimeValueModel>();
+	if (!model) return;
+
+	model->addPoint(SparseTimeValueModel::Point(frame, value, feature.label.c_str()));
+//        std::cerr << "SparseTimeValueModel::addPoint(" << frame << ", " << value << "), " << feature.label.c_str() << std::endl;
+
+    } else if (m_descriptor->sampleType == 
+	       Vamp::Plugin::OutputDescriptor::VariableSampleRate) {
+
+        float pitch = 0.0;
+        if (feature.values.size() > 0) pitch = feature.values[0];
+
+        float duration = 1;
+        if (feature.values.size() > 1) duration = feature.values[1];
+        
+        float velocity = 100;
+        if (feature.values.size() > 2) velocity = feature.values[2];
+        if (velocity < 0) velocity = 127;
+        if (velocity > 127) velocity = 127;
+
+        NoteModel *model = getConformingOutput<NoteModel>();
+        if (!model) return;
+
+        model->addPoint(NoteModel::Point(frame, pitch,
+                                         lrintf(duration),
+                                         velocity / 127.f,
+                                         feature.label.c_str()));
+	
+    } else {
+	
+	DenseThreeDimensionalModel::Column values = feature.values;
+	
+	EditableDenseThreeDimensionalModel *model =
+            getConformingOutput<EditableDenseThreeDimensionalModel>();
+	if (!model) return;
+
+	model->setColumn(frame / model->getResolution(), values);
+    }
+}
+
+void
+FeatureExtractionModelTransformer::setCompletion(int completion)
+{
+    int binCount = 1;
+    if (m_descriptor->hasFixedBinCount) {
+	binCount = m_descriptor->binCount;
+    }
+
+//    std::cerr << "FeatureExtractionModelTransformer::setCompletion("
+//              << completion << ")" << std::endl;
+
+    if (binCount == 0) {
+
+	SparseOneDimensionalModel *model =
+            getConformingOutput<SparseOneDimensionalModel>();
+	if (!model) return;
+	model->setCompletion(completion, true); //!!!m_context.updates);
+
+    } else if (binCount == 1) {
+
+	SparseTimeValueModel *model =
+            getConformingOutput<SparseTimeValueModel>();
+	if (!model) return;
+	model->setCompletion(completion, true); //!!!m_context.updates);
+
+    } else if (m_descriptor->sampleType ==
+	       Vamp::Plugin::OutputDescriptor::VariableSampleRate) {
+
+	NoteModel *model =
+            getConformingOutput<NoteModel>();
+	if (!model) return;
+	model->setCompletion(completion, true); //!!!m_context.updates);
+
+    } else {
+
+	EditableDenseThreeDimensionalModel *model =
+            getConformingOutput<EditableDenseThreeDimensionalModel>();
+	if (!model) return;
+	model->setCompletion(completion, true); //!!!m_context.updates);
+    }
+}
+