Mercurial > hg > svcore
comparison data/fft/FFTapi.cpp @ 226:a867be73b638
* Add non-fftw3 fft alternative
author | Chris Cannam |
---|---|
date | Fri, 09 Feb 2007 11:32:34 +0000 |
parents | |
children | e919a2b97c2a |
comparison
equal
deleted
inserted
replaced
225:185454896a76 | 226:a867be73b638 |
---|---|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ | |
2 | |
3 /* | |
4 Sonic Visualiser | |
5 An audio file viewer and annotation editor. | |
6 Centre for Digital Music, Queen Mary, University of London. | |
7 This file copyright 2006 Chris Cannam and QMUL. | |
8 FFT code from Don Cross's public domain FFT implementation. | |
9 | |
10 This program is free software; you can redistribute it and/or | |
11 modify it under the terms of the GNU General Public License as | |
12 published by the Free Software Foundation; either version 2 of the | |
13 License, or (at your option) any later version. See the file | |
14 COPYING included with this distribution for more information. | |
15 */ | |
16 | |
17 #include "FFTapi.h" | |
18 | |
19 #ifndef HAVE_FFTW3F | |
20 | |
21 #include <cmath> | |
22 | |
23 void | |
24 fft(unsigned int n, bool inverse, double *ri, double *ii, double *ro, double *io) | |
25 { | |
26 if (!ri || !ro || !io) return; | |
27 | |
28 unsigned int bits; | |
29 unsigned int i, j, k, m; | |
30 unsigned int blockSize, blockEnd; | |
31 | |
32 double tr, ti; | |
33 | |
34 if (n < 2) return; | |
35 if (n & (n-1)) return; | |
36 | |
37 double angle = 2.0 * M_PI; | |
38 if (inverse) angle = -angle; | |
39 | |
40 for (i = 0; ; ++i) { | |
41 if (n & (1 << i)) { | |
42 bits = i; | |
43 break; | |
44 } | |
45 } | |
46 | |
47 static unsigned int tableSize = 0; | |
48 static int *table = 0; | |
49 | |
50 if (tableSize != n) { | |
51 | |
52 delete[] table; | |
53 | |
54 table = new int[n]; | |
55 | |
56 for (i = 0; i < n; ++i) { | |
57 | |
58 m = i; | |
59 | |
60 for (j = k = 0; j < bits; ++j) { | |
61 k = (k << 1) | (m & 1); | |
62 m >>= 1; | |
63 } | |
64 | |
65 table[i] = k; | |
66 } | |
67 | |
68 tableSize = n; | |
69 } | |
70 | |
71 if (ii) { | |
72 for (i = 0; i < n; ++i) { | |
73 ro[table[i]] = ri[i]; | |
74 io[table[i]] = ii[i]; | |
75 } | |
76 } else { | |
77 for (i = 0; i < n; ++i) { | |
78 ro[table[i]] = ri[i]; | |
79 io[table[i]] = 0.0; | |
80 } | |
81 } | |
82 | |
83 blockEnd = 1; | |
84 | |
85 for (blockSize = 2; blockSize <= n; blockSize <<= 1) { | |
86 | |
87 double delta = angle / (double)blockSize; | |
88 double sm2 = -sin(-2 * delta); | |
89 double sm1 = -sin(-delta); | |
90 double cm2 = cos(-2 * delta); | |
91 double cm1 = cos(-delta); | |
92 double w = 2 * cm1; | |
93 double ar[3], ai[3]; | |
94 | |
95 for (i = 0; i < n; i += blockSize) { | |
96 | |
97 ar[2] = cm2; | |
98 ar[1] = cm1; | |
99 | |
100 ai[2] = sm2; | |
101 ai[1] = sm1; | |
102 | |
103 for (j = i, m = 0; m < blockEnd; j++, m++) { | |
104 | |
105 ar[0] = w * ar[1] - ar[2]; | |
106 ar[2] = ar[1]; | |
107 ar[1] = ar[0]; | |
108 | |
109 ai[0] = w * ai[1] - ai[2]; | |
110 ai[2] = ai[1]; | |
111 ai[1] = ai[0]; | |
112 | |
113 k = j + blockEnd; | |
114 tr = ar[0] * ro[k] - ai[0] * io[k]; | |
115 ti = ar[0] * io[k] + ai[0] * ro[k]; | |
116 | |
117 ro[k] = ro[j] - tr; | |
118 io[k] = io[j] - ti; | |
119 | |
120 ro[j] += tr; | |
121 io[j] += ti; | |
122 } | |
123 } | |
124 | |
125 blockEnd = blockSize; | |
126 } | |
127 | |
128 if (inverse) { | |
129 | |
130 double denom = (double)n; | |
131 | |
132 for (i = 0; i < n; i++) { | |
133 ro[i] /= denom; | |
134 io[i] /= denom; | |
135 } | |
136 } | |
137 } | |
138 | |
139 struct fftf_plan_ { | |
140 int size; | |
141 int inverse; | |
142 float *real; | |
143 fftf_complex *cplx; | |
144 }; | |
145 | |
146 fftf_plan | |
147 fftf_plan_dft_r2c_1d(int n, float *in, fftf_complex *out, unsigned) | |
148 { | |
149 if (n < 2) return 0; | |
150 if (n & (n-1)) return 0; | |
151 | |
152 fftf_plan_ *plan = new fftf_plan_; | |
153 plan->size = n; | |
154 plan->inverse = 0; | |
155 plan->real = in; | |
156 plan->cplx = out; | |
157 return plan; | |
158 } | |
159 | |
160 fftf_plan | |
161 fftf_plan_dft_c2r_1d(int n, fftf_complex *in, float *out, unsigned) | |
162 { | |
163 if (n < 2) return 0; | |
164 if (n & (n-1)) return 0; | |
165 | |
166 fftf_plan_ *plan = new fftf_plan_; | |
167 plan->size = n; | |
168 plan->inverse = 1; | |
169 plan->real = out; | |
170 plan->cplx = in; | |
171 return plan; | |
172 } | |
173 | |
174 void | |
175 fftf_destroy_plan(fftf_plan p) | |
176 { | |
177 delete p; | |
178 } | |
179 | |
180 void | |
181 fftf_execute(const fftf_plan p) | |
182 { | |
183 //!!! doesn't work yet for inverse transforms | |
184 | |
185 float *real = p->real; | |
186 fftf_complex *cplx = p->cplx; | |
187 int n = p->size; | |
188 int inv = p->inverse; | |
189 | |
190 double *ri = new double[n]; | |
191 double *ro = new double[n]; | |
192 double *io = new double[n]; | |
193 | |
194 double *ii = 0; | |
195 if (inv) ii = new double[n]; | |
196 | |
197 if (!inv) { | |
198 for (int i = 0; i < n; ++i) { | |
199 ri[i] = real[i]; | |
200 } | |
201 } else { | |
202 for (int i = 0; i < n/2+1; ++i) { | |
203 ri[i] = cplx[i][0]; | |
204 ii[i] = cplx[i][1]; | |
205 if (i > 0) { | |
206 ri[n-i] = ri[i]; | |
207 ii[n-i] = -ii[i]; | |
208 } | |
209 } | |
210 } | |
211 | |
212 fft(n, inv, ri, ii, ro, io); | |
213 | |
214 if (!inv) { | |
215 for (int i = 0; i < n/2+1; ++i) { | |
216 cplx[i][0] = ro[i]; | |
217 cplx[i][1] = io[i]; | |
218 } | |
219 } else { | |
220 for (int i = 0; i < n; ++i) { | |
221 real[i] = ro[i]; | |
222 } | |
223 } | |
224 | |
225 delete[] ri; | |
226 delete[] ro; | |
227 delete[] io; | |
228 delete[] ii; | |
229 } | |
230 | |
231 #endif |