comparison base/ColumnOp.h @ 1202:3b84f9bd0048 3.0-integration

Merge work on unified spectrogram and colour 3d plot caching renderer
author Chris Cannam
date Fri, 05 Aug 2016 15:05:02 +0100
parents 6f7a440b6218
children 303039dd9e05
comparison
equal deleted inserted replaced
1185:69c84a66727b 1202:3b84f9bd0048
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
2
3 /*
4 Sonic Visualiser
5 An audio file viewer and annotation editor.
6 Centre for Digital Music, Queen Mary, University of London.
7 This file copyright 2006-2016 Chris Cannam and QMUL.
8
9 This program is free software; you can redistribute it and/or
10 modify it under the terms of the GNU General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version. See the file
13 COPYING included with this distribution for more information.
14 */
15
16 #ifndef COLUMN_OP_H
17 #define COLUMN_OP_H
18
19 #include "BaseTypes.h"
20
21 #include <cmath>
22
23 /**
24 * Display normalization types for columns in e.g. grid plots.
25 *
26 * Max1 means to normalize to max value = 1.0.
27 * Sum1 means to normalize to sum of values = 1.0.
28 *
29 * Hybrid means normalize to max = 1.0 and then multiply by
30 * log10 of the max value, to retain some difference between
31 * levels of neighbouring columns.
32 *
33 * Area normalization is handled separately.
34 */
35 enum class ColumnNormalization {
36 None,
37 Max1,
38 Sum1,
39 Hybrid
40 };
41
42 /**
43 * Class containing static functions for simple operations on data
44 * columns, for use by display layers.
45 */
46 class ColumnOp
47 {
48 public:
49 /**
50 * Column type.
51 */
52 typedef std::vector<float> Column;
53
54 /**
55 * Scale the given column using the given gain multiplier.
56 */
57 static Column applyGain(const Column &in, double gain) {
58
59 if (gain == 1.0) {
60 return in;
61 }
62 Column out;
63 out.reserve(in.size());
64 for (auto v: in) {
65 out.push_back(float(v * gain));
66 }
67 return out;
68 }
69
70 /**
71 * Scale an FFT output by half the FFT size.
72 */
73 static Column fftScale(const Column &in, int fftSize) {
74 return applyGain(in, 2.0 / fftSize);
75 }
76
77 /**
78 * Determine whether an index points to a local peak.
79 */
80 static bool isPeak(const Column &in, int ix) {
81
82 if (!in_range_for(in, ix-1)) return false;
83 if (!in_range_for(in, ix+1)) return false;
84 if (in[ix] < in[ix+1]) return false;
85 if (in[ix] < in[ix-1]) return false;
86
87 return true;
88 }
89
90 /**
91 * Return a column containing only the local peak values (all
92 * others zero).
93 */
94 static Column peakPick(const Column &in) {
95
96 std::vector<float> out(in.size(), 0.f);
97 for (int i = 0; in_range_for(in, i); ++i) {
98 if (isPeak(in, i)) {
99 out[i] = in[i];
100 }
101 }
102
103 return out;
104 }
105
106 /**
107 * Return a column normalized from the input column according to
108 * the given normalization scheme.
109 */
110 static Column normalize(const Column &in, ColumnNormalization n) {
111
112 if (n == ColumnNormalization::None) {
113 return in;
114 }
115
116 float scale = 1.f;
117
118 if (n == ColumnNormalization::Sum1) {
119
120 float sum = 0.f;
121
122 for (auto v: in) {
123 sum += v;
124 }
125
126 if (sum != 0.f) {
127 scale = 1.f / sum;
128 }
129 } else {
130
131 float max = *max_element(in.begin(), in.end());
132
133 if (n == ColumnNormalization::Max1) {
134 if (max != 0.f) {
135 scale = 1.f / max;
136 }
137 } else if (n == ColumnNormalization::Hybrid) {
138 if (max > 0.f) {
139 scale = log10f(max + 1.f) / max;
140 }
141 }
142 }
143
144 return applyGain(in, scale);
145 }
146
147 /**
148 * Distribute the given column into a target vector of a different
149 * size, optionally using linear interpolation. The binfory vector
150 * contains a mapping from y coordinate (i.e. index into the
151 * target vector) to bin (i.e. index into the source column).
152 */
153 static Column distribute(const Column &in,
154 int h,
155 const std::vector<double> &binfory,
156 int minbin,
157 bool interpolate) {
158
159 std::vector<float> out(h, 0.f);
160 int bins = int(in.size());
161
162 for (int y = 0; y < h; ++y) {
163
164 double sy0 = binfory[y] - minbin;
165 double sy1 = sy0 + 1;
166 if (y+1 < h) {
167 sy1 = binfory[y+1] - minbin;
168 }
169
170 if (interpolate && fabs(sy1 - sy0) < 1.0) {
171
172 double centre = (sy0 + sy1) / 2;
173 double dist = (centre - 0.5) - rint(centre - 0.5);
174 int bin = int(centre);
175
176 int other = (dist < 0 ? (bin-1) : (bin+1));
177
178 if (bin < 0) bin = 0;
179 if (bin >= bins) bin = bins-1;
180
181 if (other < 0 || other >= bins) {
182 other = bin;
183 }
184
185 double prop = 1.0 - fabs(dist);
186
187 double v0 = in[bin];
188 double v1 = in[other];
189
190 out[y] = float(prop * v0 + (1.0 - prop) * v1);
191
192 } else { // not interpolating this one
193
194 int by0 = int(sy0 + 0.0001);
195 int by1 = int(sy1 + 0.0001);
196 if (by1 < by0 + 1) by1 = by0 + 1;
197 if (by1 >= bins) by1 = by1 - 1;
198
199 for (int bin = by0; bin < by1; ++bin) {
200
201 float value = in[bin];
202
203 if (bin == by0 || value > out[y]) {
204 out[y] = value;
205 }
206 }
207 }
208 }
209
210 return out;
211 }
212
213 };
214
215 #endif
216