annotate base/ColumnOp.h @ 1265:e2e66bfd4a88 3.0-integration

Start tests for ColumnOp (+ some resulting fixes)
author Chris Cannam
date Thu, 17 Nov 2016 11:56:54 +0000
parents 303039dd9e05
children dd190086db73
rev   line source
Chris@1187 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@1187 2
Chris@1187 3 /*
Chris@1187 4 Sonic Visualiser
Chris@1187 5 An audio file viewer and annotation editor.
Chris@1187 6 Centre for Digital Music, Queen Mary, University of London.
Chris@1188 7 This file copyright 2006-2016 Chris Cannam and QMUL.
Chris@1187 8
Chris@1187 9 This program is free software; you can redistribute it and/or
Chris@1187 10 modify it under the terms of the GNU General Public License as
Chris@1187 11 published by the Free Software Foundation; either version 2 of the
Chris@1187 12 License, or (at your option) any later version. See the file
Chris@1187 13 COPYING included with this distribution for more information.
Chris@1187 14 */
Chris@1187 15
Chris@1187 16 #ifndef COLUMN_OP_H
Chris@1187 17 #define COLUMN_OP_H
Chris@1187 18
Chris@1187 19 #include "BaseTypes.h"
Chris@1187 20
Chris@1187 21 #include <cmath>
Chris@1265 22 #include <vector>
Chris@1265 23 #include <algorithm>
Chris@1265 24 #include <iostream>
Chris@1187 25
Chris@1190 26 /**
Chris@1193 27 * Display normalization types for columns in e.g. grid plots.
Chris@1193 28 *
Chris@1193 29 * Max1 means to normalize to max value = 1.0.
Chris@1193 30 * Sum1 means to normalize to sum of values = 1.0.
Chris@1193 31 *
Chris@1193 32 * Hybrid means normalize to max = 1.0 and then multiply by
Chris@1193 33 * log10 of the max value, to retain some difference between
Chris@1193 34 * levels of neighbouring columns.
Chris@1193 35 *
Chris@1193 36 * Area normalization is handled separately.
Chris@1193 37 */
Chris@1193 38 enum class ColumnNormalization {
Chris@1193 39 None,
Chris@1193 40 Max1,
Chris@1193 41 Sum1,
Chris@1193 42 Hybrid
Chris@1193 43 };
Chris@1193 44
Chris@1193 45 /**
Chris@1190 46 * Class containing static functions for simple operations on data
Chris@1190 47 * columns, for use by display layers.
Chris@1190 48 */
Chris@1187 49 class ColumnOp
Chris@1187 50 {
Chris@1187 51 public:
Chris@1190 52 /**
Chris@1190 53 * Column type.
Chris@1190 54 */
Chris@1187 55 typedef std::vector<float> Column;
Chris@1187 56
Chris@1190 57 /**
Chris@1195 58 * Scale the given column using the given gain multiplier.
Chris@1195 59 */
Chris@1197 60 static Column applyGain(const Column &in, double gain) {
Chris@1195 61
Chris@1197 62 if (gain == 1.0) {
Chris@1195 63 return in;
Chris@1195 64 }
Chris@1195 65 Column out;
Chris@1195 66 out.reserve(in.size());
Chris@1195 67 for (auto v: in) {
Chris@1197 68 out.push_back(float(v * gain));
Chris@1195 69 }
Chris@1195 70 return out;
Chris@1195 71 }
Chris@1195 72
Chris@1195 73 /**
Chris@1265 74 * Scale an FFT output downward by half the FFT size.
Chris@1190 75 */
Chris@1187 76 static Column fftScale(const Column &in, int fftSize) {
Chris@1197 77 return applyGain(in, 2.0 / fftSize);
Chris@1187 78 }
Chris@1187 79
Chris@1190 80 /**
Chris@1190 81 * Determine whether an index points to a local peak.
Chris@1190 82 */
Chris@1187 83 static bool isPeak(const Column &in, int ix) {
Chris@1265 84 if (!in_range_for(in, ix)) {
Chris@1265 85 return false;
Chris@1265 86 }
Chris@1265 87 if (ix == 0) {
Chris@1265 88 return in[0] >= in[1];
Chris@1265 89 }
Chris@1265 90 if (!in_range_for(in, ix+1)) {
Chris@1265 91 return in[ix] > in[ix-1];
Chris@1265 92 }
Chris@1265 93 if (in[ix] < in[ix+1]) {
Chris@1265 94 return false;
Chris@1265 95 }
Chris@1265 96 if (in[ix] <= in[ix-1]) {
Chris@1265 97 return false;
Chris@1265 98 }
Chris@1187 99 return true;
Chris@1187 100 }
Chris@1187 101
Chris@1190 102 /**
Chris@1190 103 * Return a column containing only the local peak values (all
Chris@1190 104 * others zero).
Chris@1190 105 */
Chris@1187 106 static Column peakPick(const Column &in) {
Chris@1187 107
Chris@1187 108 std::vector<float> out(in.size(), 0.f);
Chris@1187 109 for (int i = 0; in_range_for(in, i); ++i) {
Chris@1187 110 if (isPeak(in, i)) {
Chris@1187 111 out[i] = in[i];
Chris@1187 112 }
Chris@1187 113 }
Chris@1187 114
Chris@1187 115 return out;
Chris@1187 116 }
Chris@1187 117
Chris@1190 118 /**
Chris@1190 119 * Return a column normalized from the input column according to
Chris@1190 120 * the given normalization scheme.
Chris@1190 121 */
Chris@1193 122 static Column normalize(const Column &in, ColumnNormalization n) {
Chris@1187 123
Chris@1265 124 if (n == ColumnNormalization::None || in.empty()) {
Chris@1187 125 return in;
Chris@1187 126 }
Chris@1187 127
Chris@1193 128 float scale = 1.f;
Chris@1193 129
Chris@1193 130 if (n == ColumnNormalization::Sum1) {
Chris@1193 131
Chris@1193 132 float sum = 0.f;
Chris@1193 133
Chris@1193 134 for (auto v: in) {
Chris@1193 135 sum += v;
Chris@1193 136 }
Chris@1193 137
Chris@1193 138 if (sum != 0.f) {
Chris@1193 139 scale = 1.f / sum;
Chris@1193 140 }
Chris@1193 141 } else {
Chris@1193 142
Chris@1193 143 float max = *max_element(in.begin(), in.end());
Chris@1193 144
Chris@1193 145 if (n == ColumnNormalization::Max1) {
Chris@1193 146 if (max != 0.f) {
Chris@1193 147 scale = 1.f / max;
Chris@1193 148 }
Chris@1193 149 } else if (n == ColumnNormalization::Hybrid) {
Chris@1193 150 if (max > 0.f) {
Chris@1193 151 scale = log10f(max + 1.f) / max;
Chris@1193 152 }
Chris@1193 153 }
Chris@1193 154 }
Chris@1187 155
Chris@1197 156 return applyGain(in, scale);
Chris@1187 157 }
Chris@1187 158
Chris@1190 159 /**
Chris@1190 160 * Distribute the given column into a target vector of a different
Chris@1190 161 * size, optionally using linear interpolation. The binfory vector
Chris@1190 162 * contains a mapping from y coordinate (i.e. index into the
Chris@1265 163 * target vector) to bin (i.e. index into the source column). The
Chris@1265 164 * source column ("in") may be a partial column; it's assumed to
Chris@1265 165 * contain enough bins to span the destination range, starting
Chris@1265 166 * with the bin of index minbin.
Chris@1190 167 */
Chris@1187 168 static Column distribute(const Column &in,
Chris@1187 169 int h,
Chris@1187 170 const std::vector<double> &binfory,
Chris@1187 171 int minbin,
Chris@1187 172 bool interpolate) {
Chris@1198 173
Chris@1187 174 std::vector<float> out(h, 0.f);
Chris@1187 175 int bins = int(in.size());
Chris@1187 176
Chris@1187 177 for (int y = 0; y < h; ++y) {
Chris@1187 178
Chris@1187 179 double sy0 = binfory[y] - minbin;
Chris@1187 180 double sy1 = sy0 + 1;
Chris@1187 181 if (y+1 < h) {
Chris@1187 182 sy1 = binfory[y+1] - minbin;
Chris@1187 183 }
Chris@1265 184
Chris@1265 185 std::cerr << "y = " << y << " of " << h << ", sy0 = " << sy0 << ", sy1 = " << sy1 << std::endl;
Chris@1187 186
Chris@1187 187 if (interpolate && fabs(sy1 - sy0) < 1.0) {
Chris@1187 188
Chris@1187 189 double centre = (sy0 + sy1) / 2;
Chris@1187 190 double dist = (centre - 0.5) - rint(centre - 0.5);
Chris@1187 191 int bin = int(centre);
Chris@1187 192
Chris@1187 193 int other = (dist < 0 ? (bin-1) : (bin+1));
Chris@1187 194
Chris@1187 195 if (bin < 0) bin = 0;
Chris@1187 196 if (bin >= bins) bin = bins-1;
Chris@1187 197
Chris@1187 198 if (other < 0 || other >= bins) {
Chris@1187 199 other = bin;
Chris@1187 200 }
Chris@1187 201
Chris@1187 202 double prop = 1.0 - fabs(dist);
Chris@1187 203
Chris@1187 204 double v0 = in[bin];
Chris@1187 205 double v1 = in[other];
Chris@1187 206
Chris@1187 207 out[y] = float(prop * v0 + (1.0 - prop) * v1);
Chris@1187 208
Chris@1187 209 } else { // not interpolating this one
Chris@1187 210
Chris@1187 211 int by0 = int(sy0 + 0.0001);
Chris@1187 212 int by1 = int(sy1 + 0.0001);
Chris@1187 213 if (by1 < by0 + 1) by1 = by0 + 1;
Chris@1253 214 if (by1 >= bins) by1 = bins - 1;
Chris@1198 215
Chris@1253 216 for (int bin = by0; bin <= by1; ++bin) {
Chris@1187 217
Chris@1187 218 float value = in[bin];
Chris@1187 219
Chris@1201 220 if (bin == by0 || value > out[y]) {
Chris@1187 221 out[y] = value;
Chris@1187 222 }
Chris@1187 223 }
Chris@1187 224 }
Chris@1187 225 }
Chris@1187 226
Chris@1187 227 return out;
Chris@1187 228 }
Chris@1187 229
Chris@1187 230 };
Chris@1187 231
Chris@1187 232 #endif
Chris@1187 233