Chris@189
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@189
|
2
|
Chris@189
|
3 /*
|
Chris@189
|
4 Sonic Visualiser
|
Chris@189
|
5 An audio file viewer and annotation editor.
|
Chris@189
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@202
|
7 This file copyright 2006 QMUL.
|
Chris@189
|
8
|
Chris@189
|
9 This program is free software; you can redistribute it and/or
|
Chris@189
|
10 modify it under the terms of the GNU General Public License as
|
Chris@189
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@189
|
12 License, or (at your option) any later version. See the file
|
Chris@189
|
13 COPYING included with this distribution for more information.
|
Chris@189
|
14 */
|
Chris@189
|
15
|
Chris@189
|
16 #ifndef _RANGE_MAPPER_H_
|
Chris@189
|
17 #define _RANGE_MAPPER_H_
|
Chris@189
|
18
|
Chris@189
|
19 #include <QString>
|
Chris@189
|
20
|
Chris@686
|
21 #include "Debug.h"
|
Chris@880
|
22 #include <map>
|
Chris@189
|
23
|
Chris@189
|
24 class RangeMapper
|
Chris@189
|
25 {
|
Chris@189
|
26 public:
|
Chris@189
|
27 virtual ~RangeMapper() { }
|
Chris@885
|
28
|
Chris@885
|
29 /**
|
Chris@885
|
30 * Return the position that maps to the given value, rounding to
|
Chris@885
|
31 * the nearest position and clamping to the minimum and maximum
|
Chris@885
|
32 * extents of the mapper's positional range.
|
Chris@885
|
33 */
|
Chris@189
|
34 virtual int getPositionForValue(float value) const = 0;
|
Chris@885
|
35
|
Chris@885
|
36 /**
|
Chris@885
|
37 * Return the position that maps to the given value, rounding to
|
Chris@885
|
38 * the nearest position, without clamping. That is, whatever
|
Chris@885
|
39 * mapping function is in use will be projected even outside the
|
Chris@885
|
40 * minimum and maximum extents of the mapper's positional
|
Chris@885
|
41 * range. (The mapping outside that range is not guaranteed to be
|
Chris@885
|
42 * exact, except if the mapper is a linear one.)
|
Chris@885
|
43 */
|
Chris@885
|
44 virtual int getPositionForValueUnclamped(float value) const = 0;
|
Chris@885
|
45
|
Chris@885
|
46 /**
|
Chris@885
|
47 * Return the value mapped from the given position, clamping to
|
Chris@885
|
48 * the minimum and maximum extents of the mapper's value range.
|
Chris@885
|
49 */
|
Chris@189
|
50 virtual float getValueForPosition(int position) const = 0;
|
Chris@885
|
51
|
Chris@885
|
52 /**
|
Chris@885
|
53 * Return the value mapped from the given positionq, without
|
Chris@885
|
54 * clamping. That is, whatever mapping function is in use will be
|
Chris@885
|
55 * projected even outside the minimum and maximum extents of the
|
Chris@885
|
56 * mapper's value range. (The mapping outside that range is not
|
Chris@885
|
57 * guaranteed to be exact, except if the mapper is a linear one.)
|
Chris@885
|
58 */
|
Chris@885
|
59 virtual float getValueForPositionUnclamped(int position) const = 0;
|
Chris@885
|
60
|
Chris@885
|
61 /**
|
Chris@885
|
62 * Get the unit of the mapper's value range.
|
Chris@885
|
63 */
|
Chris@189
|
64 virtual QString getUnit() const { return ""; }
|
Chris@189
|
65 };
|
Chris@189
|
66
|
Chris@189
|
67
|
Chris@189
|
68 class LinearRangeMapper : public RangeMapper
|
Chris@189
|
69 {
|
Chris@189
|
70 public:
|
Chris@879
|
71 /**
|
Chris@879
|
72 * Map values in range minval->maxval linearly into integer range
|
Chris@879
|
73 * minpos->maxpos. minval and minpos must be less than maxval and
|
Chris@879
|
74 * maxpos respectively. If inverted is true, the range will be
|
Chris@879
|
75 * mapped "backwards" (minval to maxpos and maxval to minpos).
|
Chris@879
|
76 */
|
Chris@189
|
77 LinearRangeMapper(int minpos, int maxpos,
|
Chris@189
|
78 float minval, float maxval,
|
Chris@464
|
79 QString unit = "", bool inverted = false);
|
Chris@189
|
80
|
Chris@189
|
81 virtual int getPositionForValue(float value) const;
|
Chris@885
|
82 virtual int getPositionForValueUnclamped(float value) const;
|
Chris@885
|
83
|
Chris@189
|
84 virtual float getValueForPosition(int position) const;
|
Chris@885
|
85 virtual float getValueForPositionUnclamped(int position) const;
|
Chris@189
|
86
|
Chris@189
|
87 virtual QString getUnit() const { return m_unit; }
|
Chris@189
|
88
|
Chris@189
|
89 protected:
|
Chris@189
|
90 int m_minpos;
|
Chris@189
|
91 int m_maxpos;
|
Chris@189
|
92 float m_minval;
|
Chris@189
|
93 float m_maxval;
|
Chris@189
|
94 QString m_unit;
|
Chris@464
|
95 bool m_inverted;
|
Chris@189
|
96 };
|
Chris@189
|
97
|
Chris@189
|
98 class LogRangeMapper : public RangeMapper
|
Chris@189
|
99 {
|
Chris@189
|
100 public:
|
Chris@880
|
101 /**
|
Chris@880
|
102 * Map values in range minval->maxval into integer range
|
Chris@880
|
103 * minpos->maxpos such that logs of the values are mapped
|
Chris@885
|
104 * linearly. minval must be greater than zero, and minval and
|
Chris@885
|
105 * minpos must be less than maxval and maxpos respectively. If
|
Chris@885
|
106 * inverted is true, the range will be mapped "backwards" (minval
|
Chris@885
|
107 * to maxpos and maxval to minpos).
|
Chris@880
|
108 */
|
Chris@189
|
109 LogRangeMapper(int minpos, int maxpos,
|
Chris@356
|
110 float minval, float maxval,
|
Chris@464
|
111 QString m_unit = "", bool inverted = false);
|
Chris@189
|
112
|
Chris@356
|
113 static void convertRatioMinLog(float ratio, float minlog,
|
Chris@356
|
114 int minpos, int maxpos,
|
Chris@356
|
115 float &minval, float &maxval);
|
Chris@356
|
116
|
Chris@356
|
117 static void convertMinMax(int minpos, int maxpos,
|
Chris@356
|
118 float minval, float maxval,
|
Chris@356
|
119 float &ratio, float &minlog);
|
Chris@356
|
120
|
Chris@189
|
121 virtual int getPositionForValue(float value) const;
|
Chris@885
|
122 virtual int getPositionForValueUnclamped(float value) const;
|
Chris@885
|
123
|
Chris@189
|
124 virtual float getValueForPosition(int position) const;
|
Chris@885
|
125 virtual float getValueForPositionUnclamped(int position) const;
|
Chris@189
|
126
|
Chris@189
|
127 virtual QString getUnit() const { return m_unit; }
|
Chris@189
|
128
|
Chris@189
|
129 protected:
|
Chris@189
|
130 int m_minpos;
|
Chris@189
|
131 int m_maxpos;
|
Chris@189
|
132 float m_ratio;
|
Chris@189
|
133 float m_minlog;
|
Chris@189
|
134 float m_maxlog;
|
Chris@189
|
135 QString m_unit;
|
Chris@464
|
136 bool m_inverted;
|
Chris@189
|
137 };
|
Chris@189
|
138
|
Chris@880
|
139 class InterpolatingRangeMapper : public RangeMapper
|
Chris@880
|
140 {
|
Chris@880
|
141 public:
|
Chris@880
|
142 typedef std::map<float, int> CoordMap;
|
Chris@880
|
143
|
Chris@880
|
144 /**
|
Chris@880
|
145 * Given a series of (value, position) coordinate mappings,
|
Chris@880
|
146 * construct a range mapper that maps arbitrary values, in the
|
Chris@880
|
147 * range between minimum and maximum of the provided values, onto
|
Chris@880
|
148 * coordinates using linear interpolation between the supplied
|
Chris@880
|
149 * points.
|
Chris@880
|
150 *
|
Chris@880
|
151 *!!! todo: Cubic -- more generally useful than linear interpolation
|
Chris@880
|
152 *!!! todo: inverted flag
|
Chris@880
|
153 *
|
Chris@880
|
154 * The set of provided mappings must contain at least two
|
Chris@880
|
155 * coordinates.
|
Chris@880
|
156 *
|
Chris@880
|
157 * It is expected that the values and positions in the coordinate
|
Chris@880
|
158 * mappings will both be monotonically increasing (i.e. no
|
Chris@880
|
159 * inflections in the mapping curve). Behaviour is undefined if
|
Chris@880
|
160 * this is not the case.
|
Chris@880
|
161 */
|
Chris@880
|
162 InterpolatingRangeMapper(CoordMap pointMappings,
|
Chris@880
|
163 QString unit);
|
Chris@880
|
164
|
Chris@880
|
165 virtual int getPositionForValue(float value) const;
|
Chris@885
|
166 virtual int getPositionForValueUnclamped(float value) const;
|
Chris@885
|
167
|
Chris@880
|
168 virtual float getValueForPosition(int position) const;
|
Chris@885
|
169 virtual float getValueForPositionUnclamped(int position) const;
|
Chris@880
|
170
|
Chris@880
|
171 virtual QString getUnit() const { return m_unit; }
|
Chris@880
|
172
|
Chris@880
|
173 protected:
|
Chris@880
|
174 CoordMap m_mappings;
|
Chris@880
|
175 std::map<int, float> m_reverse;
|
Chris@880
|
176 QString m_unit;
|
Chris@885
|
177
|
Chris@885
|
178 template <typename T>
|
Chris@885
|
179 float interpolate(T *mapping, float v) const;
|
Chris@880
|
180 };
|
Chris@880
|
181
|
Chris@880
|
182 class AutoRangeMapper : public RangeMapper
|
Chris@880
|
183 {
|
Chris@880
|
184 public:
|
Chris@880
|
185 enum MappingType {
|
Chris@880
|
186 Interpolating,
|
Chris@880
|
187 StraightLine,
|
Chris@880
|
188 Logarithmic,
|
Chris@880
|
189 };
|
Chris@880
|
190
|
Chris@880
|
191 typedef std::map<float, int> CoordMap;
|
Chris@880
|
192
|
Chris@880
|
193 /**
|
Chris@880
|
194 * Given a series of (value, position) coordinate mappings,
|
Chris@880
|
195 * construct a range mapper that maps arbitrary values, in the
|
Chris@880
|
196 * range between minimum and maximum of the provided values, onto
|
Chris@880
|
197 * coordinates.
|
Chris@880
|
198 *
|
Chris@880
|
199 * The mapping used may be
|
Chris@880
|
200 *
|
Chris@880
|
201 * Interpolating -- an InterpolatingRangeMapper will be used
|
Chris@880
|
202 *
|
Chris@880
|
203 * StraightLine -- a LinearRangeMapper from the minimum to
|
Chris@880
|
204 * maximum value coordinates will be used, ignoring all other
|
Chris@880
|
205 * supplied coordinate mappings
|
Chris@880
|
206 *
|
Chris@880
|
207 * Logarithmic -- a LogRangeMapper from the minimum to
|
Chris@880
|
208 * maximum value coordinates will be used, ignoring all other
|
Chris@880
|
209 * supplied coordinate mappings
|
Chris@880
|
210 *
|
Chris@880
|
211 * The mapping will be chosen automatically by looking at the
|
Chris@880
|
212 * supplied coordinates. If the supplied coordinates fall on a
|
Chris@880
|
213 * straight line, a StraightLine mapping will be used; if they
|
Chris@880
|
214 * fall on a log curve, a Logarithmic mapping will be used;
|
Chris@880
|
215 * otherwise an Interpolating mapping will be used.
|
Chris@880
|
216 *
|
Chris@880
|
217 *!!! todo: inverted flag
|
Chris@880
|
218 *
|
Chris@880
|
219 * The set of provided mappings must contain at least two
|
Chris@880
|
220 * coordinates, or at least three if the points are not supposed
|
Chris@880
|
221 * to be in a straight line.
|
Chris@880
|
222 *
|
Chris@880
|
223 * It is expected that the values and positions in the coordinate
|
Chris@880
|
224 * mappings will both be monotonically increasing (i.e. no
|
Chris@880
|
225 * inflections in the mapping curve). Behaviour is undefined if
|
Chris@880
|
226 * this is not the case.
|
Chris@880
|
227 */
|
Chris@880
|
228 AutoRangeMapper(CoordMap pointMappings,
|
Chris@880
|
229 QString unit);
|
Chris@880
|
230
|
Chris@880
|
231 ~AutoRangeMapper();
|
Chris@880
|
232
|
Chris@880
|
233 /**
|
Chris@880
|
234 * Return the mapping type in use.
|
Chris@880
|
235 */
|
Chris@880
|
236 MappingType getType() const { return m_type; }
|
Chris@880
|
237
|
Chris@880
|
238 virtual int getPositionForValue(float value) const;
|
Chris@885
|
239 virtual int getPositionForValueUnclamped(float value) const;
|
Chris@885
|
240
|
Chris@880
|
241 virtual float getValueForPosition(int position) const;
|
Chris@885
|
242 virtual float getValueForPositionUnclamped(int position) const;
|
Chris@880
|
243
|
Chris@880
|
244 virtual QString getUnit() const { return m_unit; }
|
Chris@880
|
245
|
Chris@880
|
246 protected:
|
Chris@880
|
247 MappingType m_type;
|
Chris@880
|
248 CoordMap m_mappings;
|
Chris@880
|
249 QString m_unit;
|
Chris@880
|
250 RangeMapper *m_mapper;
|
Chris@880
|
251
|
Chris@880
|
252 MappingType chooseMappingTypeFor(const CoordMap &);
|
Chris@880
|
253 };
|
Chris@189
|
254
|
Chris@189
|
255 #endif
|