annotate data/model/FFTModel.cpp @ 870:284851a784fa tonioni

The Mac also has CoreAudio for file loading
author Chris Cannam
date Thu, 09 Jan 2014 21:30:33 +0000 (2014-01-09)
parents e802e550a1f2
children 59e7fe1b1003
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@297 18 #include "AggregateWaveModel.h"
Chris@152 19
Chris@183 20 #include "base/Profiler.h"
Chris@275 21 #include "base/Pitch.h"
Chris@183 22
Chris@402 23 #include <algorithm>
Chris@402 24
Chris@152 25 #include <cassert>
Chris@152 26
Chris@608 27 #ifndef __GNUC__
Chris@608 28 #include <alloca.h>
Chris@608 29 #endif
Chris@608 30
Chris@152 31 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 32 int channel,
Chris@152 33 WindowType windowType,
Chris@152 34 size_t windowSize,
Chris@152 35 size_t windowIncrement,
Chris@152 36 size_t fftSize,
Chris@152 37 bool polar,
Chris@334 38 StorageAdviser::Criteria criteria,
Chris@152 39 size_t fillFromColumn) :
Chris@152 40 //!!! ZoomConstraint!
Chris@152 41 m_server(0),
Chris@152 42 m_xshift(0),
Chris@152 43 m_yshift(0)
Chris@152 44 {
Chris@297 45 setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm.
Chris@297 46
Chris@297 47 m_server = getServer(model,
Chris@297 48 channel,
Chris@297 49 windowType,
Chris@297 50 windowSize,
Chris@297 51 windowIncrement,
Chris@297 52 fftSize,
Chris@297 53 polar,
Chris@334 54 criteria,
Chris@297 55 fillFromColumn);
Chris@152 56
Chris@200 57 if (!m_server) return; // caller should check isOK()
Chris@200 58
Chris@152 59 size_t xratio = windowIncrement / m_server->getWindowIncrement();
Chris@152 60 size_t yratio = m_server->getFFTSize() / fftSize;
Chris@152 61
Chris@152 62 while (xratio > 1) {
Chris@152 63 if (xratio & 0x1) {
Chris@843 64 cerr << "ERROR: FFTModel: Window increment ratio "
Chris@152 65 << windowIncrement << " / "
Chris@152 66 << m_server->getWindowIncrement()
Chris@843 67 << " must be a power of two" << endl;
Chris@152 68 assert(!(xratio & 0x1));
Chris@152 69 }
Chris@152 70 ++m_xshift;
Chris@152 71 xratio >>= 1;
Chris@152 72 }
Chris@152 73
Chris@152 74 while (yratio > 1) {
Chris@152 75 if (yratio & 0x1) {
Chris@843 76 cerr << "ERROR: FFTModel: FFT size ratio "
Chris@152 77 << m_server->getFFTSize() << " / " << fftSize
Chris@843 78 << " must be a power of two" << endl;
Chris@152 79 assert(!(yratio & 0x1));
Chris@152 80 }
Chris@152 81 ++m_yshift;
Chris@152 82 yratio >>= 1;
Chris@152 83 }
Chris@152 84 }
Chris@152 85
Chris@152 86 FFTModel::~FFTModel()
Chris@152 87 {
Chris@200 88 if (m_server) FFTDataServer::releaseInstance(m_server);
Chris@152 89 }
Chris@152 90
Chris@360 91 void
Chris@360 92 FFTModel::sourceModelAboutToBeDeleted()
Chris@360 93 {
Chris@360 94 if (m_sourceModel) {
Chris@843 95 cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_sourceModel << ")" << endl;
Chris@362 96 if (m_server) {
Chris@362 97 FFTDataServer::releaseInstance(m_server);
Chris@362 98 m_server = 0;
Chris@362 99 }
Chris@360 100 FFTDataServer::modelAboutToBeDeleted(m_sourceModel);
Chris@360 101 }
Chris@360 102 }
Chris@360 103
Chris@297 104 FFTDataServer *
Chris@297 105 FFTModel::getServer(const DenseTimeValueModel *model,
Chris@297 106 int channel,
Chris@297 107 WindowType windowType,
Chris@297 108 size_t windowSize,
Chris@297 109 size_t windowIncrement,
Chris@297 110 size_t fftSize,
Chris@297 111 bool polar,
Chris@334 112 StorageAdviser::Criteria criteria,
Chris@297 113 size_t fillFromColumn)
Chris@297 114 {
Chris@297 115 // Obviously, an FFT model of channel C (where C != -1) of an
Chris@297 116 // aggregate model is the same as the FFT model of the appropriate
Chris@297 117 // channel of whichever model that aggregate channel is drawn
Chris@297 118 // from. We should use that model here, in case we already have
Chris@297 119 // the data for it or will be wanting the same data again later.
Chris@297 120
Chris@297 121 // If the channel is -1 (i.e. mixture of all channels), then we
Chris@297 122 // can't do this shortcut unless the aggregate model only has one
Chris@297 123 // channel or contains exactly all of the channels of a single
Chris@297 124 // other model. That isn't very likely -- if it were the case,
Chris@297 125 // why would we be using an aggregate model?
Chris@297 126
Chris@297 127 if (channel >= 0) {
Chris@297 128
Chris@297 129 const AggregateWaveModel *aggregate =
Chris@297 130 dynamic_cast<const AggregateWaveModel *>(model);
Chris@297 131
Chris@297 132 if (aggregate && channel < aggregate->getComponentCount()) {
Chris@297 133
Chris@297 134 AggregateWaveModel::ModelChannelSpec spec =
Chris@297 135 aggregate->getComponent(channel);
Chris@297 136
Chris@297 137 return getServer(spec.model,
Chris@297 138 spec.channel,
Chris@297 139 windowType,
Chris@297 140 windowSize,
Chris@297 141 windowIncrement,
Chris@297 142 fftSize,
Chris@297 143 polar,
Chris@334 144 criteria,
Chris@297 145 fillFromColumn);
Chris@297 146 }
Chris@297 147 }
Chris@297 148
Chris@297 149 // The normal case
Chris@297 150
Chris@297 151 return FFTDataServer::getFuzzyInstance(model,
Chris@297 152 channel,
Chris@297 153 windowType,
Chris@297 154 windowSize,
Chris@297 155 windowIncrement,
Chris@297 156 fftSize,
Chris@297 157 polar,
Chris@334 158 criteria,
Chris@297 159 fillFromColumn);
Chris@297 160 }
Chris@297 161
Chris@152 162 size_t
Chris@152 163 FFTModel::getSampleRate() const
Chris@152 164 {
Chris@152 165 return isOK() ? m_server->getModel()->getSampleRate() : 0;
Chris@152 166 }
Chris@152 167
Chris@533 168 FFTModel::Column
Chris@533 169 FFTModel::getColumn(size_t x) const
Chris@152 170 {
Chris@183 171 Profiler profiler("FFTModel::getColumn", false);
Chris@183 172
Chris@533 173 Column result;
Chris@533 174
Chris@152 175 result.clear();
Chris@408 176 size_t h = getHeight();
Chris@509 177 result.reserve(h);
Chris@408 178
Chris@608 179 #ifdef __GNUC__
Chris@408 180 float magnitudes[h];
Chris@608 181 #else
Chris@608 182 float *magnitudes = (float *)alloca(h * sizeof(float));
Chris@608 183 #endif
Chris@500 184
Chris@408 185 if (m_server->getMagnitudesAt(x << m_xshift, magnitudes)) {
Chris@500 186
Chris@408 187 for (size_t y = 0; y < h; ++y) {
Chris@500 188 result.push_back(magnitudes[y]);
Chris@408 189 }
Chris@500 190
Chris@408 191 } else {
Chris@408 192 for (size_t i = 0; i < h; ++i) result.push_back(0.f);
Chris@152 193 }
Chris@533 194
Chris@533 195 return result;
Chris@152 196 }
Chris@152 197
Chris@152 198 QString
Chris@152 199 FFTModel::getBinName(size_t n) const
Chris@152 200 {
Chris@152 201 size_t sr = getSampleRate();
Chris@152 202 if (!sr) return "";
Chris@204 203 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 204 return name;
Chris@152 205 }
Chris@152 206
Chris@275 207 bool
Chris@275 208 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
Chris@275 209 {
Chris@275 210 if (!isOK()) return false;
Chris@275 211
Chris@275 212 size_t sampleRate = m_server->getModel()->getSampleRate();
Chris@275 213
Chris@275 214 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 215 frequency = (float(y) * sampleRate) / fftSize;
Chris@275 216
Chris@275 217 if (x+1 >= getWidth()) return false;
Chris@275 218
Chris@275 219 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 220 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 221 // At window size w, for bin b, f is b*sr/w.
Chris@275 222 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 223 // We need to know what phase shift we expect from h/sr sec.
Chris@275 224 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 225 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 226 // = 2pi * (h * b) / w.
Chris@275 227
Chris@275 228 float oldPhase = getPhaseAt(x, y);
Chris@275 229 float newPhase = getPhaseAt(x+1, y);
Chris@275 230
Chris@275 231 size_t incr = getResolution();
Chris@275 232
Chris@275 233 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
Chris@275 234
Chris@275 235 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 236
Chris@275 237 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
Chris@275 238
Chris@275 239 // The new frequency estimate based on the phase error resulting
Chris@275 240 // from assuming the "native" frequency of this bin
Chris@275 241
Chris@275 242 frequency =
Chris@275 243 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
Chris@275 244 (2 * M_PI * incr);
Chris@275 245
Chris@275 246 return true;
Chris@275 247 }
Chris@275 248
Chris@275 249 FFTModel::PeakLocationSet
Chris@275 250 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
Chris@275 251 {
Chris@551 252 Profiler profiler("FFTModel::getPeaks");
Chris@551 253
Chris@275 254 FFTModel::PeakLocationSet peaks;
Chris@275 255 if (!isOK()) return peaks;
Chris@275 256
Chris@275 257 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 258 ymax = getHeight() - 1;
Chris@275 259 }
Chris@275 260
Chris@275 261 if (type == AllPeaks) {
Chris@551 262 int minbin = ymin;
Chris@551 263 if (minbin > 0) minbin = minbin - 1;
Chris@551 264 int maxbin = ymax;
Chris@551 265 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
Chris@551 266 const int n = maxbin - minbin + 1;
Chris@608 267 #ifdef __GNUC__
Chris@551 268 float values[n];
Chris@608 269 #else
Chris@608 270 float *values = (float *)alloca(n * sizeof(float));
Chris@608 271 #endif
Chris@551 272 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
Chris@275 273 for (size_t bin = ymin; bin <= ymax; ++bin) {
Chris@551 274 if (bin == minbin || bin == maxbin) continue;
Chris@551 275 if (values[bin - minbin] > values[bin - minbin - 1] &&
Chris@551 276 values[bin - minbin] > values[bin - minbin + 1]) {
Chris@275 277 peaks.insert(bin);
Chris@275 278 }
Chris@275 279 }
Chris@275 280 return peaks;
Chris@275 281 }
Chris@275 282
Chris@551 283 Column values = getColumn(x);
Chris@275 284
Chris@500 285 float mean = 0.f;
Chris@551 286 for (int i = 0; i < values.size(); ++i) mean += values[i];
Chris@500 287 if (values.size() >0) mean /= values.size();
Chris@500 288
Chris@275 289 // For peak picking we use a moving median window, picking the
Chris@275 290 // highest value within each continuous region of values that
Chris@275 291 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 292 // size to a roughly constant pitch range (about four tones).
Chris@275 293
Chris@275 294 size_t sampleRate = getSampleRate();
Chris@275 295
Chris@275 296 std::deque<float> window;
Chris@275 297 std::vector<size_t> inrange;
Chris@280 298 float dist = 0.5;
Chris@500 299
Chris@280 300 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@275 301 size_t halfWin = medianWinSize/2;
Chris@275 302
Chris@275 303 size_t binmin;
Chris@275 304 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 305 else binmin = 0;
Chris@275 306
Chris@275 307 size_t binmax;
Chris@275 308 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 309 else binmax = values.size()-1;
Chris@275 310
Chris@500 311 size_t prevcentre = 0;
Chris@500 312
Chris@275 313 for (size_t bin = binmin; bin <= binmax; ++bin) {
Chris@275 314
Chris@275 315 float value = values[bin];
Chris@275 316
Chris@275 317 window.push_back(value);
Chris@275 318
Chris@280 319 // so-called median will actually be the dist*100'th percentile
Chris@280 320 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 321 halfWin = medianWinSize/2;
Chris@275 322
Chris@500 323 while (window.size() > medianWinSize) {
Chris@500 324 window.pop_front();
Chris@500 325 }
Chris@500 326
Chris@500 327 size_t actualSize = window.size();
Chris@275 328
Chris@275 329 if (type == MajorPitchAdaptivePeaks) {
Chris@275 330 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 331 else binmax = values.size()-1;
Chris@275 332 }
Chris@275 333
Chris@275 334 std::deque<float> sorted(window);
Chris@275 335 std::sort(sorted.begin(), sorted.end());
Chris@280 336 float median = sorted[int(sorted.size() * dist)];
Chris@275 337
Chris@500 338 size_t centrebin = 0;
Chris@500 339 if (bin > actualSize/2) centrebin = bin - actualSize/2;
Chris@500 340
Chris@500 341 while (centrebin > prevcentre || bin == binmin) {
Chris@275 342
Chris@500 343 if (centrebin > prevcentre) ++prevcentre;
Chris@500 344
Chris@500 345 float centre = values[prevcentre];
Chris@500 346
Chris@500 347 if (centre > median) {
Chris@500 348 inrange.push_back(centrebin);
Chris@500 349 }
Chris@500 350
Chris@500 351 if (centre <= median || centrebin+1 == values.size()) {
Chris@500 352 if (!inrange.empty()) {
Chris@500 353 size_t peakbin = 0;
Chris@500 354 float peakval = 0.f;
Chris@500 355 for (size_t i = 0; i < inrange.size(); ++i) {
Chris@500 356 if (i == 0 || values[inrange[i]] > peakval) {
Chris@500 357 peakval = values[inrange[i]];
Chris@500 358 peakbin = inrange[i];
Chris@500 359 }
Chris@500 360 }
Chris@500 361 inrange.clear();
Chris@500 362 if (peakbin >= ymin && peakbin <= ymax) {
Chris@500 363 peaks.insert(peakbin);
Chris@275 364 }
Chris@275 365 }
Chris@275 366 }
Chris@500 367
Chris@500 368 if (bin == binmin) break;
Chris@275 369 }
Chris@275 370 }
Chris@275 371
Chris@275 372 return peaks;
Chris@275 373 }
Chris@275 374
Chris@275 375 size_t
Chris@280 376 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
Chris@280 377 size_t bin, float &percentile) const
Chris@275 378 {
Chris@280 379 percentile = 0.5;
Chris@275 380 if (type == MajorPeaks) return 10;
Chris@275 381 if (bin == 0) return 3;
Chris@280 382
Chris@275 383 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 384 float binfreq = (sampleRate * bin) / fftSize;
Chris@275 385 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 386
Chris@275 387 int hibin = lrintf((hifreq * fftSize) / sampleRate);
Chris@275 388 int medianWinSize = hibin - bin;
Chris@275 389 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 390
Chris@280 391 percentile = 0.5 + (binfreq / sampleRate);
Chris@280 392
Chris@275 393 return medianWinSize;
Chris@275 394 }
Chris@275 395
Chris@275 396 FFTModel::PeakSet
Chris@275 397 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
Chris@275 398 size_t ymin, size_t ymax)
Chris@275 399 {
Chris@551 400 Profiler profiler("FFTModel::getPeakFrequencies");
Chris@551 401
Chris@275 402 PeakSet peaks;
Chris@275 403 if (!isOK()) return peaks;
Chris@275 404 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 405
Chris@275 406 size_t sampleRate = getSampleRate();
Chris@275 407 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 408 size_t incr = getResolution();
Chris@275 409
Chris@275 410 // This duplicates some of the work of estimateStableFrequency to
Chris@275 411 // allow us to retrieve the phases in two separate vertical
Chris@275 412 // columns, instead of jumping back and forth between columns x and
Chris@275 413 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 414
Chris@275 415 std::vector<float> phases;
Chris@275 416 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 417 i != locations.end(); ++i) {
Chris@275 418 phases.push_back(getPhaseAt(x, *i));
Chris@275 419 }
Chris@275 420
Chris@275 421 size_t phaseIndex = 0;
Chris@275 422 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 423 i != locations.end(); ++i) {
Chris@275 424 float oldPhase = phases[phaseIndex];
Chris@275 425 float newPhase = getPhaseAt(x+1, *i);
Chris@275 426 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
Chris@275 427 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 428 float frequency =
Chris@275 429 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 430 / (2 * M_PI * incr);
Chris@275 431 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
Chris@275 432 // if (stable)
Chris@275 433 peaks[*i] = frequency;
Chris@275 434 ++phaseIndex;
Chris@275 435 }
Chris@275 436
Chris@275 437 return peaks;
Chris@275 438 }
Chris@275 439
Chris@152 440 Model *
Chris@152 441 FFTModel::clone() const
Chris@152 442 {
Chris@152 443 return new FFTModel(*this);
Chris@152 444 }
Chris@152 445
Chris@152 446 FFTModel::FFTModel(const FFTModel &model) :
Chris@152 447 DenseThreeDimensionalModel(),
Chris@152 448 m_server(model.m_server),
Chris@152 449 m_xshift(model.m_xshift),
Chris@152 450 m_yshift(model.m_yshift)
Chris@152 451 {
Chris@152 452 FFTDataServer::claimInstance(m_server);
Chris@152 453 }
Chris@152 454